
Backporting Security Patches of Web Applications:
A Prototype Design and Implementation on Injection Vulnerability

Patches

Youkun Shi1, Yuan Zhang1, Tianhan Luo1, Xiangyu Mao1, Yinzhi Cao2, Ziwen

Wang1, Yudi Zhao1, Zongan Huang1, Min Yang1

Fudan University1

Johns Hopkins University2

 Page 2

Unpatched Web Applications

A large number of websites are still running old vulnerable applications [1,2]

[1] https://threatpost.com/drupalgeddon-2-0-still-haunting-115k-sites/132518/
[2] https://www.tenable.com/blog/critical-drupal-core-vulnerability-what-you-need-to-know

CVE-2018-7600, a high-risk unauthenticated

RCE vulnerability in Drupal core

After three months since the patch release,

there are still about 115,000 unpatched websites

 Page 3

Vulnerability Patching Practice

1. Patch command

• Directly applies the official patch (for a specific version) to a vulnerable version

• Limitations: Highly susceptible to code conflicts

• In our dataset, 1,049/1,526 target versions report code conflicts when applying the patches

2. Auto-upgrade APIs

• Uses auto-upgrade APIs provided by (some) web applications

• Limitations: Requires significant developer efforts and is prone to compatibility issues

• In our dataset, 624 / 1,526 target versions do not have auto-upgrade APIs

 863 / 1,526 target versions report compatibility issues

 Page 4

Running Example

• OpenEMR 5.0.0.5 and 5.0.0.6 are affected by CVE-2018-10572

1. OpenEMR doesn’t provide auto-upgrades API

2. Directly apply patch command will fail on the old version due to code conflicts

Code conflicts hinder patch apply!

 Page 5

Patch Backporting

• Problem Definition: Given a patch for a vulnerable version, backport the patch to fix the

same vulnerability on another vulnerable version.

• Challenges: How to automatically backport patches to old versions with guaranteed

compatibility and security?

• Can the patch be compatible (not affecting normal functionality) with another vulnerable version?

• Can the patch fix the vulnerability on another vulnerable version?

• Can the patch be automatically applied to another vulnerable version?

 Page 6

Problem Understanding

• Three Mismatches among <vulnerability, patch, target>

• <Patch, Vulnerability> Mismatch → break compatibility

• The patch may contain vulnerability-irrelevant modifications, which may affect the

functionalities of a web application.

• <Target, Vulnerability> Mismatch → break security

• The target version may have a different vulnerability logic to the one that the patch aims to

fix, thus requiring a new patching logic.

• <Patch, Target> Mismatch → break automation

• The patch may not be easily applied to a target version due to cross-version code location

changes

 Page 7

This Work: Patch Backporting

• Scope: Injection-based vulnerability patches

• Key Insight: injection-based vulnerabilities are fixed by restricting the capability of the sink function

• Sink Capability: all the user inputs that can go to the sink functions

• Key Idea: backport the safe sink capability across different vulnerable versions

• Safely Backportable Patch (SBP): the patch only restricts the capability of the sink function

• Filter our irrelevant patch modifications: ✗ <Patch, Vulnerability> Mismatch & ✓ Compatibility

• Safely Backportable Version (SBV): the target has the same sink capability as the pre-patch version

• Select only a part of backportable versions: ✗ <Target, Vulnerability> Mismatch & ✓ Security

• Deploy SBP upon on SBV: replace the vulnerable sink with the safe sink

• Only requires minimal source code modifications: ✗ <Patch, Target> Mismatch & ✓ Automation

 Page 8

Running Example: Patch Backporting

convert

deploy

Official Patch

SBP

SBV
safely backport
with guarantee

 Page 9

Sink Capability

• The Representation

• Sink Flow: a control-flow path leading to the sink function

• The inputs that reach the sink along each path are represented as <flow1 , flow2 , ...>

• Each sink flow consists of <RCflow , DEflow>

• Reaching Condition (RCflow): a set of the control-flow conditions in the flow

• Data Expression (DEflow): the symbolic expression of the critical sink parameters in

the flow

• Thus, the sink capability can be represented as

• {<RCflow1 , DEflow1>, <RCflow2 , DEflow2>, ...}

 Page 10

Sink Capability Example

• The Sink Capability (SC) can be represented as <flow1, flow2, flow3>

2

2

2

3

5

5

6

8

7

9

4

10 11

10 11

10 11

Flow1

Flow2

Flow3

DEflow1

RCflow1

RCflow2

DEflow2

3

3 6

RCflow3

DEflow3

 Page 11

SBP & SBV

• Safely Backportable Patch (SBP) Properties: pre-patch vs post-patch

1. PSBP-a : is a subset of

2. PSBP-b : is a subset of

3. PSBP-c : and are deterministically computable for every flowk

• Compatibility Guarantee: SBP deployment will not affect the functionality of the target application

• Safely Backportable Version (SBV) Properties: pre-patch vs target

1. PSBV-a : is same as for every flowk

2. PSBV-b : is same as for every flowk

• Security Guarantee: SBP deployment can fix the vulnerability of the target application

 Page 12

Approach Overview

• Three Steps

1. SBP Identification & Generation

• Analyze whether a patch is backportable and if so, transform it to SBP

2. SBV Verification

• Verify whether a target version is an SBV (aka, can apply the SBP)

3. Patch Deployment

• Automatically deploy SBP on an SBV

• Automatic Tool: SKYPORT, based on PHPJoern

 Page 13

SKYPORT Workflow

• Patch Affection Analysis (M1), Sink Capability Extraction (M2)

• Backportable Analysis (M3), Patch Deployment (M4)

Four
Modules

 Page 14

Evaluation & Dataset

CMS Name # CVEs # Versions # <CVE, Version>

WordPress 34 187 430

PHPMyAdmin 29 108 257

Prestashop 11 34 101

RoundcubeMail 8 48 76

MantisBT 24 74 198

Piwigo 11 37 108

OpenEMR 11 20 70

phpipam 3 6 13

MISP 9 55 118

LimeSurvey 15 82 155

Total 155 651 1,526

Selection Criteria

1. The Web application with more

than 1k stars in the GitHub

2. Injection vulnerability patches

3. Patches that fix the vulnerability by

restricting the sink functions

 Page 15

Evaluation & Dataset Statistics

• Patches

• 98 / 155 security patches contain vulnerability-irrelevant modifications

• E.g., functionality modifications, variable or function name modifications

• May lead to backward compatibility or patch deployment issues

• Target versions

• 563 / 1,526 target versions do not have the same vulnerable logic as the pre-patch

• These versions are not SBVs, thus not being backportable (aka, requiring a new patch)

• 1,071 / 1,526 target versions have code location changes around the patch

• May lead to code conflicts when directly applying the original patch via patch command

These results show that patch backporting is non-trivial!

 Page 16

Evaluation & SKYPORT

1. Effectiveness: How effective is SKYPORT in patch backporting?

• SKYPORT successfully backport 98 SBPs to 750 SBVs with 100% success rate

2. Efficiency: How efficient is SKYPORT in patch backporting?

• SKYPORT takes 6459.75 seconds on average for an end-to-end case

3. Comparison: How does SKYPORT compare to existing practices?

Patch Command Auto-upgrade/Strict Auto-upgrade/Relaxed SKYPORT

Success 455 39 149 750

< 98, 750>

Step 1
 SBP Analysis

Step 2
SBV Analysis

Step 3
SBP → SBV

<155, 1,526>

<111, 1,137>

< 98, 750>

 Page 17

Evaluation & SKYPORT-patched Apps

• Evaluating SKYPORT-patched Apps involves significant human efforts

• We evaluate a subset of SKYPORT-patched Apps, covering <11, 27> CVE-version pairs

1. Security: Can the SBPs defend against vulnerability-related attacks?

• SKYPORT-patched apps successfully defended against all the collected exploits

2. Compatibility: Do the SBPs incur functionality issues?

• SKYPORT-patched apps with 100% test pass ratio for compatibility with single or multiple SBPs

3. Performance: What is the performance overhead introduced by SBPs?

• The SBPs introduce negligible overhead when compared with the official patches

 Page 18

Conclusion

• Methodology for automatic patch backporting with guaranteed compatibility

and security.

• Formulation for safely backportable patches (SBP) and safely backportable

versions (SBV), which enable safe patch backporting.

• Tool for automatically backporting injection-based PHP patches to old

vulnerable versions.

• Evaluation results that demonstrate the effectiveness and efficiency of the

proposed approach.

 Page 19

THANKS
Q&A

ykshi21@m.fudan.edu.cn

