MaDIoT 2.0: Modern High-Wattage IoT Botnet Attacks and Defenses

Tohid Shekari, Alvaro Cardenas, and Raheem Beyah Georgia Institute of Technology University of California Sana Cruz

August 2022

Manipulation of Demand IoT (MaDIoT)

- Soltan et. al. in USENIX Security 2018
 - High-wattage IoT botnet
 - Bulk power grid
 - Random nodes!
 - Frequency instability
 - Voltage instability
 - Line overload

Georgia

Not Everything is Dark and Gloomy

• Huang et. al. in USENIX Security 2019

- Grid protection schemes
 - UFLS
 - UVLS
- Grid controllers
 - Governor or frequency control
 - AVR or voltage control
- Random?! NOT effective in most of the cases Very low and trivial success rate (1%)

Threat Model – MaDIOT 2.0

- Some recent natural blackouts
- Natural events in the weak nodes (stability perspective) lead to blackout
- Quite rare a critical event happening in the critical points in the grid!

Blackout	Date	Primary Cause	Affected People (million)
Argentina, Paraguay, Uruguay [12]	June 2019	Over load and outage of two transmission lines	48
Java [13], [14]	August 2019	Outage of a large power plant	120
Sri Lanka blackout [15]	March 2016	Outage of a heavy transmission line	21
India 16	July 2012	Outage of a heavy transmission line	620
Northeast US and Canada [17]	August 2003	Outage of a heavy transmission line while some generators were out of service	55
Italy [18]	September 2003	Overload and outage of a tie-line importing energy to Italy	56
Eastern Denmark 19	September 2003	Outage of a nuclear power plant	5

Threat Model - MaDIoT 2.0

- Attack on random nodes?!
- Changing the load in specific nodes is MORE catastrophic!
- Stability perspective
 - Frequency stability
 - Voltage stability
- More detailed information about the grid operation
- Distributed high-wattage IoT botnet

Threat Model - MaDIoT 2.0

- MaDIoT 2.0 is executed in two stages:
 - Stage I: data acquisition stage
 - Graph of the grid (offline)
 - Transmission line parameters (offline)
 - Real-time system operation power consumption/generation at different nodes (online)
 - Stage II: system analysis stage (online, every 5-15 minutes)
 - Find the weakest nodes of the system from stability perspective
 - Launch the IoT botnet attack

Graph of the Grid and Line Data

- Topology of the power grid
 - Reconnaissance
 - Offline analysis
 - Can be done with semi-automatic ways
 - Satellite pictures are useful because in the bulk power grid everything is outdoor

Real-Time System Operation

- Power grid operation data (power generation and consumption in each node)
- Node? City or a big power plant
- ISO website
- Bloomberg terminal
- Crawlers to obtain such data

MARKETS

System Analysis Stage

- Mathematical calculations to rank the system nodes
- Voltage stability perspective
- Very hard to calculate in real-time high dimensional nonlinear equations
- Approximation methods literature
 - Index 1- voltage magnitude
 - Index 2 modal analysis
- Weakest nodes?

Numerical Evaluation

- Only simulation results
 - Real-world implementation has devastating effect and is not possible
- Two standard test cases to compare with previous works
 - IEEE 9 node system
 - IEEE 39 node system
- Comprehensive system model to minimize the simulation error
- Component controllers and protective devices
- System controllers and protective devices

Overall Performance of the Attacks

Georgia Tech

Countermeasures

- Data-driven countermeasures (long-term)
 - Data privacy issue limiting the real-time data access
 - Releasing the delayed version of the grid operation data
 - 1% parameter estimation error reduces the F-1 score by almost 5%
 - Registering high-wattage IoT devices in an online database

Countermeasures

- Hardware-driven countermeasures (short-term)
 - Revising the existing protection schemes, e.g., UFLS

Conclusions

- Targeted high-wattage IoT botnet can cause power grid blackouts
- MaDIoT 2.0 targets the weakest nodes of the grid from the stability perspective
- Short-term (hardware-driven) and long-term (data-driven) countermeasures could be implemented to lower the risk
- The attack vector can be studied in other domains, e.g., electricity markets

Thank You!

Questions?!

