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Threats of Data Reconstruction Attacks

* “The Achilles Heel” of Privacy-Preserving Distributed Learning
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Existing Attacks Solve the Gradient Matching Problem
via Optimization
 The Gradient Matching Problem

min d(i Vol (fo(X ), Y ), G)

(XYoo M

Dummy Inputs/Labels Distance Metric

( Attack Instances

o DLG zhueta; nrsi9: d(G;, G)) = ||G; — G.||,, L-BFGS;
o Inverting [Geiping et al.; NIPS™20]: d(Gl-, 61) — (1 — COS(GZ-, G)), Adam;

 Gradlnversion [vin et al.;cvPr21): BatchNorm statistics as the prior;
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Attacker’s Knowledge
1. The Model Parameter (®)

2. The Average Gradient (G)
3. The NN Architecture (f)
4. 3 '

(he Bateh-Size- (M)




Empirical Results and The Mysteries

e DLG Results (Batch Slze M 8 ResNet 56)  GradIlnversion Results
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Our Work Answers

1. How the separation from the average
gradient is possible?

2. What factors influences data
reconstruction attacks?




Exploiting the ExXANs in ReLU Networks

*EXAN = Exclusively Activated Neurons (dubbed by us)

O Def.: ExAN at the i-th ReLU layer ~ Property: Backward signals (dashed lines) only flow via

M
Z [A™]. =1 neurons activated in forward computation (solid lines)
=1 N ExANs of
" activation pattern D1 Sample # D,
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Neuron Exclusivity Analysis on Data Reconstruction

 Gradient Matching Problem -> Gradient Equation

min
{ (Xm’Ym) }%zl

® | et's consider the (unbiased) FCN: f(X; W,, ..

1 _
d(ﬁ Vol (Jo(X,), Y,),G) <€—>
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a complex nonlinear

General Principle
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matrix equation
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‘l' | erms Analysis | Linear Gradient
e 0SS gmk M # | Equation Systems
vectors VB e =1 (solvable with off-the-
afc (X) {(Dm)H }M shelf solvers, e.g. Gurobi)
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Main Results on Security Boundary

* (Attack Side) When a mini-batch satisfies the following EXAN condition, all n n .
the samples can be analytically reconstructed with provably low error. ¢ E n .
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B |n the last ReLU layer, each sample has > 2 ExANs => reconstructing g | SC

| Exclusivity
® In the remaining ReLU layers, each sample has > 1 ExAN => reconstructing D" =
O Insecure 7]
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 (Defense Side) When a mini-batch satisfies the following condition, g 3
there exists infinitely many batches which share the same gradients. § »

 Lack of |

® In the first RelLU layer, each sample has 0 ExAN => Impossibility of | |
| Exclusivity |

Reconstruction (due to infinitely many candidate solutions)




Reconstructing the Loss Vectors

® |Inspecting the gradient equation of the last ReLU layer.

[EH]C 28 fH_ (3)

 Observation l: If the m-th sample has at least 2 ExANs at the last RelU layer, there are
always 2 more repetitive values in the ratio vector [GH] /[GH]k, which equals to gf/gk .

[EH ]4 ® With the estimated ratios /"
g1
1 1 1 2 2 2 J
@11 @3 @) 13i+@) 13 @D)-12 @) 3
Ratio * Determine the labels based on the
‘fl f2 f3 +‘f3 .f4‘f5 Signs.
Grls b~ repetitive * Determine the range of g; based on
/\

91/93 91/93 e 91/95 91/93 the constraints ZPC = 1

8



Reconstructing the Activation Patterns

* Observation ll. If the m-th sample has 1 ExXAN at the i-th layer, then the non-
vanishing gradients to the precedent layer indicate the ExANs at the (i-1)-th

layer, i.e., D",

* Recursion: If the (i-1)-th layer has at least
< | meaer | ONe EXAN, the reconstruction can be
“ done for the (i-2)-th layer ... until the first

by ReLU layer.

7% % 0 The 2nd RelU o The 1st ReLU
Ap=(1 1 100 gAl—(1 0 1 0
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Extension to Deep ConvNets

* 1 X Gradient Matching Problem -> M x Feature Matching Problem

arg min | ®(X,) — @, |
X

m

Stage 1. Reconstruct
feature maps by our
attack on FCN.

X Stage 2. Reconstruct each input by
- inverting the corresponding feature map.
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Defense Side Results

* A Moderate Architectural Change for Exclusivity Elimination
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Size of the Largest Perturbation

1.0
—+— CIFAR-10
0.8 - —+#— Facescrub
—a—  RetinaMNIST
= 0.6 - —o— DermaMNIST
— Km —a— OrganMNIST
2 0.4 T
\ + X\l
0.2 - - +
0.0 . T T
20 40 60
Layer Width

AGy = 10— JAG, =

Ground Ground
Truth Artifact Truth Artifact

11

G(WoX +bo)+b1)...+br-1)+bu

DermaMNIST RetinaMNIST OrganMNIST
) WPrPTERS O'S'W\ ﬁw‘
0.6 0.6
04 n o te *
a. v
€ 044 0.3 044,
¢ |almost no perf. ;..
0.2+ 0.2+ - _
Overhead 0.1+ ¢ wioreduction
*  w' reduction
0.0 Y Y Y 0.0* y Y T 0.0 T v -
0 20 40 60 0 20 40 60 0 20 40 60

Width of the 1ST Layer Width of the 1ST Layer Width of the 1ST Layer

Combo with Other Obfuscation (e.g. DPSGD)

DPSGD
DPSGD + Ours
4 3 -+
| =S BT
$ L L
A B D (0.1) D(OS) D(1.0) E(0.1) E(OS) E (1.0)
']‘ Group

Ours



More Evaluation Results

« Comparison of Reconstruction on VGG13

e What influences the number of ExANs?
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Conclusions and Future Directions

Phenomenon Network Depth Labe_l : Batch Size
Composition

Common Cause

v

Data Reconstruction

Training Epoch

e Last ReLU > 2 ExANs
e Other ReLU >1 ExAN

e The 1st ReLU =0 ExAN

Guaranteed Impossibility of Unique
Reconstruction Attack Reconstruction

Ground-Truth  Other Solution

BEEDEGER OEEEDEEE
BECEOESEE ) AG, = 4e” and AG, = le™*



Thank you for your Audience!

For more details, welcome to follow our paper.
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Abstract (Sample #1 _Sample #2
Among existing privacy attacks on the gradient of neural net-
works, data reconstruction attack, which reverse engineers
the training batch from the gradient, poses a severe threat on
the private training data. Despite its empirical success on large
architectures and small training batches, unstable reconstruc-

tion accuracy is also observed when a smaller architecture or |

. : sus -~ Back- reconstruct-
a larger batch is under attack. Due to the weak interpretability i O O mepagauog, ' able?
of existing learning-based attacks, there is little known on Y - L i B




