
Regulator: Dynamic
Analysis to Detect ReDoS

Robert McLaughlin, Fabio Pagani, Noah Spahn,
Christopher Kruegel, Giovanni Vigna

University of California, Santa Barbara

1

So, About That Code Review …

const normalizeDataURL = (urlString, {stripHash}) => {

 const match = /^data:(?<type>.*?),(?<data>.*?)(?:#(?<hash>.*))?$/.exec(urlString);

 if (!match) {

 throw new Error(`Invalid URL: ${urlString}`);

 }

 let {type, data, hash} = match.groups;

 // ...

}

2

So, About That Code Review …

const normalizeDataURL = (urlString, {stripHash}) => {

 const match = /^data:(?<type>.*?),(?<data>.*?)(?:#(?<hash>.*))?$/.exec(urlString);

 if (!match) {

 throw new Error(`Invalid URL: ${urlString}`);

 }

 let {type, data, hash} = match.groups;

 // ...

}

3

data:png,DEADBEEFCAFE

data:jpg,DEADBEEFCAFE#value

data:,DEADBEEFCAFE

OOPS! You’ve Got CVE-2021-33502

const normalizeDataURL = (urlString, {stripHash}) => {

 const match = /^data:(?<type>.*?),(?<data>.*?)(?:#(?<hash>.*))?$/.exec(urlString);

 if (!match) {

 throw new Error(`Invalid URL: ${urlString}`);

 }

 let {type, data, hash} = match.groups;

 // ...

}

4

OOPS! You’ve Got CVE-2021-33502

const normalizeDataURL = (urlString, {stripHash}) => {

 const match = /^data:(?<type>.*?),(?<data>.*?)(?:#(?<hash>.*))?$/.exec(urlString);

 if (!match) {

 throw new Error(`Invalid URL: ${urlString}`);

 }

 let {type, data, hash} = match.groups;

 // ...

}

5

… but you’re in good company

● Denial-of-Service (DoS)
○ Attacker seeks to deny access to a resource

○ Ideally, attacker seeks amplification to achieve asymmetry

○ Consuming more victim resources with less effort

○ Disrupting system availability, Denying others fair access to victim resources

● One source of amplification is unintended complexity in victim software
○ Remote attackers may leverage this to force worst-case execution

○ Consumes execution time on the victim

● Regular Expressions (regexps) have complexity!

ReDoS: An Algorithmic Complexity Attack

6

Significant Real Impact

In the course of the study, we identify 25 previously unknown
vulnerabilities in popular modules and test 2,846 of the most popular
websites against them. We find that 339 of these websites suffer from at
least one ReDoS vulnerability.

Freezing the Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers
Cristian-Alexandru Staicu and Michael Pradel, USENIX ‘18

7

Incremental, But Incomplete Prior Results

● Several prior studies examining ReDoS detectors report high false-positive
and high true-positive rates on commonly cited tools

● Shen1 reports 45% false-negative rate for RXXR2

● Liu2 reports 97% false-positive rate for Rexploiter, 48% false-negative rate for
Shen’s tool ReScue

● All have limitations on feature support

1. Rescue: Crafting Regular Expression DoS Attacks Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu,
Xiaoxing Ma, and Jian Lu, ASE ‘18
2. Revealer: Detecting and Exploiting Regular Expression Denial-of-Service Vulnerabilities Yinxi Liu,
Mingxue Zhang, and Wei Meng, Security & Privacy ‘21

8

● Notice: Ambiguity in this NFA means we may need to backtrack!

● Attempt constrained depth-first search from q0

● When at q2, where do we go?

Overview (automaton) / Prior diagnostic attempts

9

● Notice: Ambiguity in this NFA means we may need to backtrack!

● Attempt constrained depth-first search from q0

● When at q2, where do we go?

Overview (automaton) / Prior diagnostic attempts

10

abbbbb

Regular Expressions Are Software, Too!

● Much research work has been done on making regular expressions efficient
● BUT this requires long compile times extra space
● Instead, “give up” -- modern regex engines use Spencer’s backtracking alg.

○ Translates a regex into bytecode, as literally as possible

/my.?regex(?:goes)here$/ Lexer / Parser Compiler bytecode

bytecode

SomeInput!!

Interpreter Match /
no-match

11

We need a new approach

12

Regulator: A Simple Solution

13

Slowdown Fuzzer Formula Derivation Dynamic Verifier

/my.+(?:regexp)?here*/

Result

Regulator: A Simple Solution

14

Slowdown Fuzzer Formula Derivation Dynamic Verifier

/my.+(?:regexp)?here*/

Result

Regulator / Fuzzer

Corpus

Heuristic
Prioritization

Instrumented
Execution

Mutation
Engine

15

Regulator / Fuzzer

Corpus

Heuristic
Prioritization

Instrumented
Execution

Mutation
Engine

16

Regulator / Fuzzer / Instrumented Execution

● We instrument the regexp bytecode interpreter itself, Irregexp

● AFL-style perfmap to efficiently approximate coverage

○ Each cell counts the hits of a particular branch

3 - - - -

- - - 1 -

- 7 - - -

- - - 53 -

- 102 - - -
17

Representatives

Regulator / Fuzzer / Heuristic Prioritization

● Problem: We want to prioritize longest path
while avoiding local maxima

● Solution: Prioritize maximizing
representatives from each perfmap
component

● Problem: Only some components are in the
hot path, prioritizing others is wasted work

● Solution: De-prioritize “stale” inputs with no
recent novel offspring inputs

3 - - - -

- - - 1 -

- 7 - - -

- - - 53 -

- 102 - - -

baab
aaba

baba
cabb caba

18

Regulator / Fuzzer / Mutation Engine “Suggestion”

● The regexp bytecode virtual machine has one loaded character register

● We keep a shadow register which remembers from where in the string the
character was loaded

● On every character-comparison branch, we store

○ (1) the source index of the current loaded character (shadow register)

○ (2) the character(s) which would have negated the branch condition

● Then, during mutation, we will randomly replace the character at that index
with one which negates the branch – a “Suggestion”

19

Regulator: A Simple Solution

20

Slowdown Fuzzer Formula Derivation Dynamic Verifier

/my.+(?:regexp)?here*/

Result

● We now have a costly string (the witness)

○ Needs more information! Is this bad? How bad?

Regulator: ReDoS Formula Derivation

21
Malign inputs take the form: attack prefix + (pump string)n + attack suffix

Regulator: ReDoS Formula Derivation

● Observation: with high likelihood, the witness string exemplifies the formula

● Approach: we try all (prefix, pump string, suffix) combinations

● When a we find a slow example, we time 20 sample points from 10 to 256
pumps, and fit the result to either linear, power, or exponential regression

22

Regexp: hello(1234)*\d*world

Witness: hello1234worl

prefix pump
string

suffix

Example:
hello1234worl
hello12341234worl
hello123412341234worl
…

Regulator: A Simple Solution

23

Slowdown Fuzzer Formula Derivation Dynamic Verifier

/my.+(?:regexp)?here*/

Result

Regulator: Dynamic Verification

● Need to verify correctness of derived ReDoS formula

● Approach:

○ Derive the longest attack string under 1 million characters

○ Following prior work, check for 10 seconds of slow-down1

● Once verified, we binary-search for the shortest string with 10s slow-down

24

1. Why aren’t regular expressions a lingua franca? An empirical study on the re-use and portability of regular
expressions. James C Davis, Louis G Michael IV, Christy A Coghlan, Francisco Servant, and Dongyoon Lee,
ESEC/FSE ‘19

Evaluation

● Against prior work
○ RXXR2
○ Rexploiter
○ NFAA
○ ReScue
○ Revealer
○ PerfFuzz1 fuzzer + Regulator backend*

● Dataset:
● 3 standard regular expression

corpuses:
○ Snort - 13,957 samples
○ RegExLib - 2,990 samples
○ Corpus - 10,037 samples

● Scrape of NPM (package manager
for JavaScript), using both Abstract
Syntax Tree crawling and basic
constant folding

○ 42,743 samples

25

1. PerfFuzz: Automatically Generating Pathological Inputs Caroline Lemieux, Rohan Padhye,
Koushik Sen, and Dawn Song. ACM SIGSOFT ‘18

Research Question 1: Is Regulator’s Fuzzer Effective?

● We need to ensure high
coverage of the regular
expression bytecode

● We partition the samples into
thirds by bytecode instruction
count

26

Research Question 2: How Does Regulator Compare?

Other ReDoS detection tools (base dataset)

27

Research Question 2: How Does Regulator Compare?

Other ReDoS detection tools (npm dataset)

28

Research Question 3: Novel Detections?

● 6 assigned CVE numbers

● Dozens of verified & fixed bugs

● Several difficult-to-find detections

○ Requires certain flags to be set

○ High complexity trips up other analyses

○ Feature use: back-references, look-arounds, special character groups, etc

29

● Limit attacker-controlled
string lengths

● A limit of 1,000 or 10,000
characters mitigates nearly
all ReDoS that we
observed

A Recommendation

30

Thank you!

31

https://github.com/ucsb-seclab/regulator-dynamic

robert349@ucsb.edu

@robmcl4

Slowdown Fuzzer Dynamic Verifier

/my.+(?:regexp)?here*/

Result

Formula Derivation

