
RegexScalpel: Regular Expression Denial of Service (ReDoS) Defense by
Localize-and-Fix

Yeting Li, Yecheng Sun, Zhiwu Xu, Jialun Cao, Yuekang Li, Rongchen Li,

Haiming Chen, Shing-Chi Cheung, Yang Liu, Yang Xiao

Institute of Information Engineering, Chinese Academy of Sciences
Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences
Shenzhen University

The Hong Kong University of Science and Technology
Nanyang Technological University

1

Regular Expression Denial-of-Service

2

Normal input：
 abc@def.com

Enter your email:

Validate the input email using a vulnerable regex:

^[a-zA-Z0-9._]+@([a-zA-Z0-9]+.)+com$

The Server Side The Client Side

Respond immediately

Malicious input：
 c@cccccccc...

Denial-of-Service

• Existing Solutions
Ø Regex engine substitution

Omitting extended features, consuming space,

bringing semantic differences or incompatibilities.

Ø Input length restriction

Facing a dilemma known as “Goldilocks problem”.

Ø Regex repair

• Repairing vulnerable regexes can greatly

mitigate their vulnerabilities.

• But it's challenging.

Regular Expression Denial-of-Service Defense

3

• Our Solution
Ø We proposed RegexScalpel, a regex ReDoS vulnerability

analysis and repair framework based on localize-and-fix.

Ø RegexScalpel can preserve the semantics of the original

regex, and the iterative repair method also keeps out

vulnerabilities of the repaired regexes.

Regular Expression Denial-of-Service Defense

4

• Our Solution
Ø RegexScalpel first leverages the fine-grained

vulnerability patterns to localize the vulnerabilities and

obtain the information for the repair.

Ø The information includes their vulnerable patterns, the

source (i.e., the pathological sub-regexes), and the root

causes (e.g., the overlapping sub-regexes).

Regular Expression Denial-of-Service Defense

5

• Our Solution
Ø RegexScalpel then fixs the pathological sub-regexes

according to the repair patterns and the information.

Ø The repair patterns use micro-manipulations (e.g.,

adding a lookaround, deleting a quantifier or sub-regex,

modifying a quantifier or sub-regex) to remove the

overlapping paths or reducing the maximum times of

backtracking.

Regular Expression Denial-of-Service Defense

6

• Our Solution
Ø RegexScalpel next determines whether the repaired

regexes are ReDoS-invulnerable and whether it can pass

all the given test cases.

Ø If so, the repaired regex is called a successful one. If not,

RegexScalpel continues the vulnerability analysis and

repairs it.

Ø RegexScalpel finally returns a repaired regex randomly

chosen from the successful ones.

Regular Expression Denial-of-Service Defense

7

Vulnerable Patterns

8

• Nested Quantifiers (NQ)

Ø The NQ pattern is a regex with nested quantifiers.

Ø In order to facilitate fixing the pathological regex, we subdivided NQ pattern into

three sub-patterns (i.e., NQ1, NQ2 and NQ3).

Vulnerable Patterns

9

• Quantified Overlapping Disjunction (QOD)

Ø The QOD pattern is a quantified disjunction whose multiple inner sub-regexes

overlap.

Ø In order to facilitate fixing the pathological regex, we subdivided QOD pattern into

two sub-patterns (i.e., QOD1 and QOD2).

Vulnerable Patterns

10

• Quantified Overlapping Adjacent (QOA)

Ø The QOA pattern is a quantified regex containing two adjacent overlapping sub-regexes.

Ø In order to facilitate fixing the pathological regex, we subdivided QOA pattern into five

sub-patterns (i.e., QOA1, QOA2, QOA3, QOA4, and QOA5).

Vulnerable Patterns

11

• Starting with Large Quantifier (SLQ)

Ø The SLQ pattern is a regex starting with a sub-regex with a large quantifier.

Ø In order to facilitate fixing the pathological regex, we subdivided SLQ pattern into

three sub-patterns (i.e., SLQ1, SLQ2, SLQ3, SLQ4, and SLQ5).

Repair Patterns

12

• Nested Quantifiers (NQ)

Ø The NQ pattern has a redundant

quantifier by nature. So to fix NQ

pattern, we can remove the

redundant quantifier.

Repair Patterns

13

• Quantified Overlapping Disjunction (QOD)

Ø The QOD pattern has multiple matching paths across the overlapping disjunctions for a string.

Ø We proposed three strategies, namely, deleting one overlapping disjunction, adding a lookaround

constraint to one overlapping disjunction, and modifying one overlapping disjunction by

subtracting the first set of the other one.

Repair Patterns

14

• Quantified Overlapping Adjacent (QOA)

Ø The QOA pattern contains the corresponding two overlapping adjacencies.

Ø We proposed three repair strategies, that is, merging the overlapping adjacencies, adding a

lookaround constraint to one overlapping adjacency, and modifying one overlapping adjacency.

Repair Patterns

15

• Starting with Large Quantifier (SLQ)

Ø The SLQ pattern contains the sub-regex starting with a large quantifier (for SLQ1 and SLQ2) or

the overlapping sub-regexes (for SLQ3, SLQ4 and SLQ5).

Ø We proposed four strategies, namely, adding a start-of-line anchor, replacing the large quantifier

with a small one, adding a lookaround to one sub-regex, and modifying one sub-regex by

subtracting the first set of the other one.

Case Exhibition

16

• The NPM package nodejs-tmpl (6,858,130 weekly downloads) used this regex, which aims to match

the simple string formatting using {}.

Experiment Setup

17

• Evaluation Datasets

Ø Our evaluation was conducted on the

ReDoS-vulnerable regexes collected

from two widely-used sources: (i) the

SOLA-DA benchmark and (ii) real-

world CVEs.

Experiment Setup

18

• Evaluation Metrics

Ø A defense is considered successful if it (i) passes all the given test cases, and

(ii) is free from ReDoS attack.

Ø The success defense rate is calculated by dividing the number of successful

defenses by the total number of vulnerable regexes under defense.

• Evaluation Approaches

Ø We selected three state-of-the-art tools belonging to three paradigms, i.e.,

regex engine substitution (RE2), input length restriction (LLI), and regex repair

(FlashRegex).

Comparing State-of-the-art tools

19

Regex engine
substitution

Input length
restriction

Input length
restriction

Our method

• RegexScalpel can effectively defend 98.88% of vulnerable regexes, compared with

21.20% achieved by the best work.

Comparing Maintainers' Repairs

20

Input length
restriction

Our method

• Among the repaired vulnerable regexes handcrafted by the maintainers, only

77.23% are ReDoS free. RegexScalpel outperforms manual fixing, and successfully

repairs 99.03% of regexes.

Usefulness to Maintainers

21

• RegexScalpel detected and repaired

16 new ReDoS regexes in ten

popular projects.

• All the 16 repairs were accepted by

the maintainers and merged into

subsequent project releases,

resulting in 8 confirmed CVEs.

Semantics Preservation

22

• We used the following equation to calculate the semantic similarities between the

repaired regexes and the original ones.

• For the benchmarks, most similarities go

beyond 98%. On average, the semantic

similarity is 99.57%, meaning that the

semantics of regexes are well-preserved

after the repair.

Summary

23

• We proposed RegexScalpel, which can defend ReDoS attacks by automatically localizing

and repairing vulnerable regexes.

• The evaluation exhibits the remarkable effectiveness of RegexScalpel. It achieves 98.88%

successful repair ratio, compared with 21.20% achieved by the best existing work.

• RegexScalpel helped to repair 16 ReDoS vulnerabilities in the ten real-world projects and

got confirmed by the maintainers, resulting in 8 confirmed CVEs.

• RegexScalpel can synthesize repaired regexes preserving the semantics of the original ones

and keeping the semantics as close as possible to the original ones.

Q&AQ&A
THANKSTHANKS

Presenter: Yecheng Sun

E-mail: sunyc@ios.ac.cn

