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Regular Expression Denial-of-Service
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Normal input：
      abc@def.com

Enter your email:

Validate the input email using a vulnerable regex:

^[a-zA-Z0-9._]+@([a-zA-Z0-9]+.)+com$

The Server Side The Client Side

Respond immediately

Malicious input：
      c@cccccccc...

Denial-of-Service



• Existing Solutions
Ø Regex engine substitution

Omitting extended features, consuming space, 

bringing semantic differences or incompatibilities.

Ø Input length restriction

Facing a dilemma known as “Goldilocks problem”.

Ø Regex repair

• Repairing vulnerable regexes can greatly 

mitigate their vulnerabilities. 

• But it's challenging. 

Regular Expression Denial-of-Service Defense
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• Our Solution
Ø We proposed RegexScalpel, a regex ReDoS vulnerability 

analysis and repair framework based on localize-and-fix.

Ø RegexScalpel can preserve the semantics of the original 

regex, and the iterative repair method also keeps out 

vulnerabilities of the repaired regexes.
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• Our Solution
Ø RegexScalpel first leverages the fine-grained 

vulnerability patterns to localize the vulnerabilities and 

obtain the information for the repair. 

Ø The information includes their vulnerable patterns, the 

source (i.e., the pathological sub-regexes), and the root 

causes (e.g., the overlapping sub-regexes).
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• Our Solution
Ø RegexScalpel then fixs the pathological sub-regexes 

according to the repair patterns and the information.

Ø The repair patterns use micro-manipulations (e.g., 

adding a lookaround, deleting a quantifier or sub-regex, 

modifying a quantifier or sub-regex) to remove the 

overlapping paths or reducing the maximum times of 

backtracking.
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• Our Solution
Ø RegexScalpel next determines whether the repaired 

regexes are ReDoS-invulnerable and whether it can pass 

all the given test cases. 

Ø If so, the repaired regex is called a successful one. If not, 

RegexScalpel continues the vulnerability analysis and 

repairs it.

Ø RegexScalpel finally returns a repaired regex randomly 

chosen from the successful ones.
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Vulnerable Patterns
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• Nested Quantifiers (NQ)

Ø The NQ pattern is a regex with nested quantifiers.

Ø In order to facilitate fixing the pathological regex, we subdivided NQ pattern into 

three sub-patterns (i.e., NQ1, NQ2 and NQ3).



Vulnerable Patterns
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• Quantified Overlapping Disjunction (QOD)

Ø The QOD pattern is a quantified disjunction whose multiple inner sub-regexes 

overlap.

Ø In order to facilitate fixing the pathological regex, we subdivided QOD pattern into 

two sub-patterns (i.e., QOD1 and QOD2).



Vulnerable Patterns
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• Quantified Overlapping Adjacent (QOA)

Ø The QOA pattern is a quantified regex containing two adjacent overlapping sub-regexes.

Ø In order to facilitate fixing the pathological regex, we subdivided QOA pattern into five 

sub-patterns (i.e., QOA1, QOA2, QOA3, QOA4, and QOA5).



Vulnerable Patterns
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• Starting with Large Quantifier (SLQ)

Ø The SLQ pattern is a regex starting with a sub-regex with a large quantifier.

Ø In order to facilitate fixing the pathological regex, we subdivided SLQ pattern into 

three sub-patterns (i.e., SLQ1, SLQ2, SLQ3, SLQ4, and SLQ5).



Repair Patterns
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• Nested Quantifiers (NQ)

Ø The NQ pattern has a redundant 

quantifier by nature. So to fix NQ 

pattern, we can remove the 

redundant quantifier.



Repair Patterns
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• Quantified Overlapping Disjunction (QOD)

Ø The QOD pattern has multiple matching paths across the overlapping disjunctions for a string.

Ø We proposed three strategies, namely, deleting one overlapping disjunction, adding a lookaround 

constraint to one overlapping disjunction, and modifying one overlapping disjunction by 

subtracting the first set of the other one.



Repair Patterns
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• Quantified Overlapping Adjacent (QOA)

Ø The QOA pattern contains the corresponding two overlapping adjacencies.

Ø We proposed three repair strategies, that is, merging the overlapping adjacencies, adding a 

lookaround constraint to one overlapping adjacency, and modifying one overlapping adjacency.



Repair Patterns
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• Starting with Large Quantifier (SLQ)

Ø The SLQ pattern contains the sub-regex starting with a large quantifier (for SLQ1 and SLQ2) or 

the overlapping sub-regexes (for SLQ3, SLQ4 and SLQ5).

Ø We proposed four strategies, namely, adding a start-of-line anchor, replacing the large quantifier 

with a small one, adding a lookaround to one sub-regex, and modifying one sub-regex by 

subtracting the first set of the other one.



Case Exhibition
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• The NPM package nodejs-tmpl (6,858,130 weekly downloads) used this regex, which aims to match 

the simple string formatting using {}.



Experiment Setup
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• Evaluation Datasets

Ø Our evaluation was conducted on the 

ReDoS-vulnerable regexes collected 

from two widely-used sources: (i) the 

SOLA-DA benchmark and (ii) real-

world CVEs.



Experiment Setup
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• Evaluation Metrics

Ø A defense is considered successful if it (i) passes all the given test cases, and 

(ii) is free from ReDoS attack. 

Ø The success defense rate is calculated by dividing the number of successful 

defenses by the total number of vulnerable regexes under defense.

• Evaluation Approaches

Ø We selected three state-of-the-art tools belonging to three paradigms, i.e., 

regex engine substitution (RE2), input length restriction (LLI), and regex repair 

(FlashRegex).



Comparing State-of-the-art tools 
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Regex engine 
substitution

Input length 
restriction

Input length 
restriction

Our method

• RegexScalpel can effectively defend 98.88% of vulnerable regexes, compared with 

21.20% achieved by the best work.



Comparing Maintainers' Repairs
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Input length 
restriction

Our method

• Among the repaired vulnerable regexes handcrafted by the maintainers, only 

77.23% are ReDoS free. RegexScalpel outperforms manual fixing, and successfully 

repairs 99.03% of regexes.



Usefulness to Maintainers
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• RegexScalpel detected and repaired 

16 new ReDoS regexes in ten 

popular projects.

• All the 16 repairs were accepted by 

the maintainers and merged into 

subsequent project releases, 

resulting in 8 confirmed CVEs. 



Semantics Preservation
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• We used the following equation to calculate the semantic similarities between the 

repaired regexes and the original ones.

• For the benchmarks, most similarities go 

beyond 98%. On average, the semantic 

similarity is 99.57%, meaning that the 

semantics of regexes are well-preserved 

after the repair.



Summary
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• We proposed RegexScalpel, which can defend ReDoS attacks by automatically localizing 

and repairing vulnerable regexes. 

• The evaluation exhibits the remarkable effectiveness of RegexScalpel. It achieves 98.88% 

successful repair ratio, compared with 21.20% achieved by the best existing work.

• RegexScalpel helped to repair 16 ReDoS vulnerabilities in the ten real-world projects and 

got confirmed by the maintainers, resulting in 8 confirmed CVEs.

• RegexScalpel can synthesize repaired regexes preserving the semantics of the original ones 

and keeping the semantics as close as possible to the original ones.
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