
POLYCRUISE: A Cross-Language
Dynamic Information Flow Analysis

Wen Li*, Jiang Ming+, Xiapu Luo◊, Haipeng Cai*

*Washington State University
+University of Texas at Arlington

◊ The Hong Kong Polytechnic University

2

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Interfacing mechanisms between languages
◦Uniform mechanism

- inter-process communication (IPC)
e.g., Remote Procedure Call (RPC) on socket,

shared memory

◦ Language-specific mechanism
- foreign function interface (FFI)

e.g., JNI for Java-C, Python extension for
Python-C

● Cross-language DIFA
◦ DIFA cross language boundaries

3

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Challenges in DIFA for multi-language program (MLP)
◦ Semantics disparity

- Existing DIFAs → stopped at language boundaries
- Stitching single-language DIFAs → not applicable

◦Analysis cost-effectiveness
- No instrumentation guidance for MLP
- More complicated than SLP

● POLYCRUISE’s targets
- unified instrumentation guidance
- scalable DIFA
- online bug detection

4

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

Example 1:

Sensitive data leaks on
bidirectional invocations cross
language units

Example 2:

Sensitive data leaks on implicit
invocations cross language
units

5

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

static analysis & instrumentation online dynamic analysis bug detection on DIFA

● POLYCRUISE Workflow

6

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Static analysis & Instrumentation

◦ Efficiency? Only instrument necessary points (slicing)
◦How to obtain unified instrumentation guidance for different

language units?

→ Traditional data flow analysis? ×
- Single-language feasibility: stop at language boundaries
- Heavy: memory usage & time cost
- Consistency issue

→ Symbolic Dependence Analysis (SDA) √
- Light weight & extensibility to new languages
- Steps: LISR translation → SDA on LISR → Instrumentation guidance

7

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Symbolic Dependence Analysis (SDA)

<1> Source → (S9, V)
<2> forward(true flow dependencies) → D(S9)∩U(S11) ≠ ∅
<3> backward (anti-dependencies) → U(S8)∩D(S9) ≠ ∅

Hence, the symbolic dependence set of S9 → {S8, S11}.

8

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Online dynamic analysis
- Language-agnostic
- Accumulated

● Dynamic information flow graph (DIFG)

- Interthread control flow edge
- Intra-thread control flow edge
- Interthread data flow edge
- Intra-thread data flow edge

9

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Bug detection

bug detection plug-ins

buffer-overflow div-by-zero Incomplete comparison …..

DIFG

10

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Three evaluation metrics
- Effectiveness
→ PyCBench: 46 micro benchmarks for Python-C

- Efficiency
→ Efficiency of SDA on 12 real-world Python-C programs
→ Run-time slowdown and memory usage on 12 real-world

Python-C programs

- Capacity of bug discovery on real-world programs

● Environment
Ubuntu 18.04 workstation with an Intel i7-10875H CPU and 16GB RAM

11

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Effectiveness results of POLYCRUISE on PyCBench
Group #Inter-language path #intra-language path #fasle-negative #false-positive

General flow 10 4 0 0
Global flow 9 0 0 0
Field sensitivity 8 0 0 2
Object sensitivity 9 2 0 1
Dynamic invocation 4 0 0 0
Summary 40 6 0 3

POLYCRUISE achieved 93.5% precision and 100% recall on PyCBench

12

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● SDA on 12 real-world Python-C programs
Benchmark Size (KLoC) Time (second) Memory (MB) Instruction rate%

Bounter 3.5 0.02 2.97 52%
Immutables 5.9 0.04 4.68 50%
Simplejson 6.4 0.03 4.47 56%
Japronto 9.4 0.02 3.89 47%
Pygit2 17.0 0.13 14.54 43%
Psycopg2 27.5 0.14 15.32 57%
Cvxopt 56.0 1.21 35.52 52%
Pygame 207.0 2.27 85.32 44%
PyTables 219.8 2.45 101.11 51%
Pyo 259.1 20.21 258.73 62%
NumPy 919.7 10.99 557.95 48%
PyTorch 6,419.2 175.19 7,414.95 51%

13

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Run-time slowdown and memory usage

Compared to whole-system instrumentation version:

→ Slowdown: the SDA improved the reduction of slowdown factor from 18.3% (in
Japronto) to 66.2% (in PyTorch)

→ Peak memory: the SDA reduced the memory usage by 16.2% (in Japronto) to
67.1% (in Cvxopt)

14

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Bug Discovery by POLYCRUISE

Benchmark #Integer-
overflow

#Buffer-
overflow

#Incomplete-
comparison

#CVE

Bounter 0 1 0 1
Immutables 0 1 0 0
Japronto 0 1 0 0
Cvxopt 0 0 4 1
Pyo 0 2 0 2
Numpy 1 3 1 4
Summary 1 8 5 8

15

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● Extensibility to support other languages
- LISR translator
- Instrumentor

● Limitations
- Field-insensitive implementation
- Failed to cover implicit data flows

- Capability of bug discovery limited by test inputs
- Support language interfacing: FFI

16

Background – Motivation – Methodology – Evaluation – Discussion – Conclusion

● POLYCRUISE, a novel dynamic information
flow analysis (DIFA) for multilingual systems.
- SDA-guided instrumentation
- Online DIFA
- Bug detection plug-ins

● 14 bugs on 6 real-world Python-C programs, 8 CVEs assigned

17

Thanks for Your Attention
Q & A

Presenter: Wen Li
Email: li.wen@wsu.edu

Code, data, PoCs: https://github.com/Daybreak2019/PolyCruise

mailto:li.wen@wsu.edu
https://github.com/Daybreak2019/PolyCruise

