
SARA:

Secure Android Remote Authorization

Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim,
Z. Berkay Celik, Antonio Bianchi

Purdue University

Mobile Devices in Authorization Schemes

BANK APP

Confirm

Transfer $100 to

John Doe

Confirm Cancel

Threat Model

Attacker
Capabilities

Compromise
OS

Manipulate
IO

Alter
Program
Flow

Physical
Access

Sporadic

Threat Model

Attacker
Capabilities

Compromise
OS

Manipulate
IO

Alter
Program
Flow

Physical
Access

SporadicCan we use TrustZone to defeat such a powerful attacker?

Existing APIs in Android

Key Storage in TrustZone

Key Attestation in TrustZone

TrustZone controlled Secure UI

Biometric Prompt

Existing APIs in Android

Key Storage in TrustZone

Key Attestation in TrustZone

TrustZone controlled Secure UI

Biometric Prompt

Existing APIs in Android

Key Storage in TrustZone

Key Attestation in TrustZone

TrustZone controlled Secure UI

Biometric Prompt

Market Analysis

112,886 Apps (Google Play Store)

• 0 Apps using

Android Protected Confirmation

• 5 Apps using

• All local use cases

Key Attestation

API Limitations

• Fake Prompt

• Everlasting Biometric

Biometric Prompt

• Illegitimate User

• Overwriting Confirmation

Android Protected Confirmation

API Limitations

• Fake Prompt

• Everlasting Biometric

Biometric Prompt

• Illegitimate User

• Overwriting Confirmation

Android Protected Confirmation

API Limitations

• Fake Prompt

• Everlasting Biometric

Biometric Prompt

• Illegitimate User

• Overwriting Confirmation

Android Protected Confirmation

API Limitations

• Fake Prompt

• Everlasting Biometric

Biometric Prompt

• Illegitimate User

• Overwriting Confirmation

Android Protected Confirmation

EviL Hack3R

API Limitations

• Fake Prompt

• Everlasting Biometric

Biometric Prompt

• Illegitimate User

• Overwriting Confirmation

Android Protected Confirmation

Goals

Usability
Goals

• Easy to use for developers

• Use existing Android APIs

Security
Goals

• OS Compromise

• TEE Usage

• Key Attestation

• User Awareness

• Server Verification

• Physical Attacks

• User Awareness

• Physical Authorization

SARA

SARA’s Architecture

TEE-enforced Android APIs

App Attestation Biometric Prompt

Android LibraryServer Module

Authorization Protocol

(Biometric Confirmation)

Android Protected Confirmation

SARA’s Process The User’s Experience

Enable authorization -> One time only process

Keypair generation and Attestation

Authorize Action

Biometric Prompt Displayed

User provides biometric input (i.e., fingerprint)

Prompt gets signed upon user’s valid biometric input

Confirmation Prompt Displayed

User sees Android Protected Confirmation Prompt

User presses hardware button to accept prompt

Second signature takes place and sent to server for verification

SARA’s Process The User’s Experience

Enable authorization -> One time only process

Keypair generation and Attestation

Authorize Action

Biometric Prompt Displayed

User provides biometric input (i.e., fingerprint)

Prompt gets signed upon user’s valid biometric input

Confirmation Prompt Displayed

User sees Android Protected Confirmation Prompt

User presses hardware button to accept prompt

Second signature takes place and sent to server for verification

SARA’s Process The User’s Experience

Enable authorization -> One time only process

Keypair generation and Attestation

Authorize Action

Biometric Prompt Displayed

User provides biometric input (i.e., fingerprint)

Prompt gets signed upon user’s valid biometric input

Confirmation Prompt Displayed

User sees Android Protected Confirmation Prompt

User presses hardware button to accept prompt

Second signature takes place and sent to server for verification

SARA’s Process The Developer’s Experience

Android
Import
Library

Setup
Protocol

Authorize
Action

Server
Import
Library

Setup
Protocol

Authorize
Action

SARA’s Security Evaluation

• Model SARA’s authorization protocol in ProVerif’s cryptographic protocol verifier.

ProVerif Model

• The legitimate user sees the action the server performs

• The legitimate user physically authorizes the action the server perform

• Server has a guarantee the that the action has been authorized by the legitimate
user

Verify that SARA’s protocol satisfies the following security goals
for any action undertaken by a server:

• Modeled alternate protocols in ProVerif to show the possible attacks on them due
to their limitations

Attacks on Incomplete Protocols

User Study

Comparison between Native API and SARA’s API

Two identical tasks divided into 3 subtasks each

Answers to two questions:

• Does using SARA make it easier for developers to use Android’s
TEE-enforced APIs?

• How long does it take for a developer to learn how to use SARA?

Completion Results

Completed after 105 minutes Native Task Library Task

Subtask-1: Successfully created a

keypair(s) with the requisite properties

0/14 14/14

Subtask-2: Successfully created the

confirmation and biometric prompts

0/14 14/14

Subtask-3: Successfully attested the

keypair(s) on the server

0/14 14/14

Evaluation Survey Summary

SARA Native API

Positive Experience 93% 0%

Preference of Usage 100% 0%

SUS Score 95.18 11.61

Conclusion

SARA is easy to use

SARA uses existing APIs

SARA provides root resiliency

SARA even provides resilience against physical attacks

SARA’s security has been evaluated using ProVerif

SARA’s usability has been evaluated through a user study

THANK YOU!!!

Any Questions?
https://github.com/purseclab/SARA-Secure-Android-Remote-Authorization

imran8@purdue.edu

https://github.com/purseclab/SARA-Secure-Android-Remote-Authorization

