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 Subgraph Counts
 Triangle is a set of 3 nodes with 3 edges.
 𝒌𝒌-star consists of a central node connected to 𝑘𝑘 other nodes.
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 Clustering Coefficient
 Probability that two friends of a user is also a friend.  Useful for friend suggestion.
 = 3 × #triangles / #2-stars (40% in the above graph).

Will be a friend (after friend suggestion)?

Outline



 Local Differential Privacy (LDP)
 User obfuscates her personal data by herself (i.e., no trusted third party). 
 Privacy is protected against attackers with any background knowledge.
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 Privacy Issues
 #Triangles/#𝑘𝑘-stars can reveal sensitive edges. [Imola+, UseSec21]



 Subgraph Counting under LDP [Imola+, UseSec21]
 #𝑘𝑘-stars can be accurately estimated within 1 round.
 #triangles can be accurately estimated within 2 rounds.
 But the DL cost is extremely large, e.g., 400 Gbits (6 hours when 20 Mbps). 
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 Our Contributions
 We dramatically reduce the DL cost with several new algorithmic ideas.
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400 Gbits (6 hours)  160 Mbits (8 seconds). 
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𝑣𝑣4

 Graph
 Can be represented as an adjacency matrix 𝐀𝐀 (1: edge, 0: no edge).
 User vi knows her neighbor list 𝐚𝐚i (𝑖𝑖-th row of 𝐀𝐀).

 Local Graph Model
 User vi obfuscates her neighbor list 𝐚𝐚i and sends noisy data ℛi(𝐚𝐚i) to a server.
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 Edge LDP [Qin+, CCS17]
 Protects a single bit in a neighbor list 𝐚𝐚 ∈ {0,1}𝑛𝑛 with privacy budget 𝜀𝜀.

Pr[ℛ 𝐚𝐚 = 𝑦𝑦] ≤ 𝑒𝑒𝜀𝜀Pr[ℛ 𝐚𝐚′ = 𝑦𝑦]

Randomizer ℛ provides 𝜀𝜀-edge LDP if for all 𝐚𝐚,𝐚𝐚′ ∈ {0,1}𝑛𝑛 that differ in one bit and all 𝑦𝑦 ∈ 𝒴𝒴, 
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 1 edge affects 2 elements of 𝐀𝐀  each edge is protected with at most 2𝜀𝜀 .
 Our triangle algorithm uses only         each edge is protected with 𝜀𝜀.
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𝑣𝑣4

 Triangles
 Challenging because a user cannot see an edge between others.
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 1st Round
 Each user applies RR to each bit of her neighbor list.  edge LDP.
 Each user sends noisy edges. Server publishes noisy graph 𝐺𝐺𝐺.

#2-stars =3

#triangles = ?

Triangle Counting under LDP [Imola+, UseSec21]
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2nd round

 2nd Round
 Each user can count triangles including one noisy edge using noisy graph 𝐺𝐺𝐺.
 Each user sends #noisy triangles (+ corrective term) + Lap.  edge LDP.
 Server calculates an unbiased estimate of #triangles.
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DL cost is extremely large because 𝑮𝑮𝐺 is dense. 

Triangle Counting under LDP [Imola+, UseSec21]
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Overview

ℛ
#noisy triangles + Lap.
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 Our Approach
 We use asymmetric RR to make a sparse noisy graph 𝐺𝐺𝐺.
 DL cost is significantly reduced at the cost of the estimation error.

 We propose two techniques (selective DL and double clipping) to reduce the error.
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Selective Download
 Full DL Strategy (ARRFull)
 User 𝑣𝑣𝑖𝑖 downloads all noisy edges, i.e., noisy graph 𝐺𝐺𝐺.
 1 noisy edge (𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘) causes 2 incorrect noisy triangles       .  Large estimation error.
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 Selective DL Strategies (ARROneNS and ARRTwoNS)
 Make the two triangles less correlated with each other by adding independent noise.
 In ARROneNS, 𝑣𝑣𝑖𝑖 downloads noisy edge (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘) s.t. (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑘𝑘) is a noisy edge.
 In ARRTwoNS, 𝑣𝑣𝑖𝑖 downloads noisy edge (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘) s.t. (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) and (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑘𝑘) are noisy edges.

Variance of the estimate
(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: maximum degree) 𝑂𝑂 𝑛𝑛𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚3 𝑶𝑶 𝒏𝒏𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐 𝑶𝑶 𝒏𝒏𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐



Double Clipping
 Laplacian Noise
 [Imola+, UseSec21] added Lap 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

𝜀𝜀
(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: maximum degree) at the 2nd round.

 But the sensitivity of #noisy triangles is much smaller than 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 because:
(1) User 𝑣𝑣𝑖𝑖 ’s degree 𝑑𝑑𝑖𝑖 is much smaller than 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚.
(2) noisy edges are sparse.  #noisy triangles involving (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) is much smaller than 𝑑𝑑𝑖𝑖.

 Double Clipping
 Dramatically reduces sensitivity by (1) edge clipping and (2) noisy triangle clipping.
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Double Clipping
 Edge Clipping
 Add the Laplacian noise (+ non-negative value) to user 𝑣𝑣𝑖𝑖’s degree 𝑑𝑑𝑖𝑖.
 If 𝑑𝑑𝑖𝑖 exceeds the noisy degree �̃�𝑑𝑖𝑖, remove edges to ensure 𝑑𝑑𝑖𝑖 ≤ �̃�𝑑𝑖𝑖.
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 Noisy Triangle Clipping
 If #noisy triangles exceeds a threshold 𝜅𝜅𝑖𝑖, reduce it to ensure #noisy triangles ≤ 𝜅𝜅𝑖𝑖.
 We set 𝜅𝜅𝑖𝑖 s.t. the triangle excess probability is very small, e.g., 10−6. 

We use 𝜿𝜿𝒊𝒊 (≪ 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎) as the sensitivity.
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 Gplus (Google+ Dataset)
 Social graph with 107614 nodes (users).
 Average degree = 113.7.

 IMDB (Internet Movie Database)
 Graph with 896308 nodes (actors).
 Average degree = 63.7. More sparse than Gplus.

Datasets



 Result 1: Relative Error vs. DL Cost
 Our proposals download user IDs for 1 (edges). 
 [Imola+, UseSec21] downloads 0/1 for each user-pair  6G (Gplus) and 400G (IMDB).
 In IMDB, our proposals achieve 160M bits with high accuracy (relative error ≪ 1).

Experimental Results
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 Result 2: Full DL vs. Selective DL
 Selective DL significantly outperforms Full DL. 
 ARROneNS outperforms ARRTwoNS.  In ARRTwoNS, all noisy triangles have noisy 

edge (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) in common and the sensitivity is not effectively reduced by double clipping.

Experiments
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 This Work
 We proposed communication-efficient triangle counting under LDP with 

new algorithmic ideas: asymmetric RR, selective DL, and double clipping.

 Future Work: 1-Round Triangle Counting
 We showed that this is possible in the shuffle model: https://arxiv.org/abs/2205.01429
 We would like to investigate whether this is possible under the local model.

Conclusions

400 Gbits (6 hours)  160 Mbits (8 seconds)

https://arxiv.org/abs/2205.01429


Thank you for your attention!

Q&A
jimola at eng.ucsd.edu, takao-murakami at aist.go.jp
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