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Use-after-free (UAF): consistently popular
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Use-after-free (UAF): highly exploitable
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Root causes of UAF bugs

• UAF: use a dangling pointer after the referred object is freed

• (Illegally use) a dangling pointer after the referred object is freed

• dangling use

• DangNull [NDSS’15], pSweeper [CCS’18], ASAN [ATC’12], …

• Use a dangling pointer after the referred object is (illegally freed)

• premature free

• no existing work
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• Automatic diagnose premature-free caused UAF bugs

• identify reference miscounting as a common reason

• detect reference miscounting operations

• suggest possible patches

• Evaluations on large programs/systems

• 76 bugs from Linux/MacOS, Python/PHP, Chrome/Firefox/IE

• confirm 48 miscouting, 16 dangling usage

• complete analysis within 15 minutes

• 56 patch suggestions

Our work: FreeWill

5



Reference counting for memory management

• Associate a counter for each heap object

• Create a new reference                         =>         increase the counter

• Destroy an existing reference               =>        decrease the counter
• if counter reaches 0, free the object

struct kobject {
const char *name;
struct list_head       entry;
struct kobject        *parent;
…
struct kref kref;

};

Refcounting in Linux Kernel static inline void kref_get(struct kref *kref) {
refcount_inc(&kref->refcount);

}
INC

struct inline int kref_put(struct kref *kref) {
if (refcount_dec_and_test(&kref->refcount)) {

release(kref);     // free object
return 1;

}
return 0;

}

DEC
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Reference miscounting
• Miss decrements for destroyed references

• never free (memory leak)

• Miss increments for newly created references

• premature free (finally use-after-free)

Linux Kernel Commit-0711F0D7050
(2021-06-04) 7



Challenge of detection: not all missed refcounting are bad
• Refcounting brings performance overhead (up to 30%)

• Programmers intentionally omit refcounting operations

• complicated rules guiding the omission

• Which missed refcounting is at fault?
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Legal refcounting-omission rules

R2R1
+ -

overlapping rule

R2

R1
+ -

containing rule

RiR1
+ -

transmitting-overlapping rule

Rn
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• Safe to omit R1--, R2++

• Safe to omit R2++ & R2--

• Safe to omit R1--, Ri++, Ri--, Rn++

• Safe to omit R1--, Ri++ & Ri--, Rn++

overlapping-containing rule

RnR1
+ -

…

Ri



Bug diagnosis algorithm

Detailed explanations in paper
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Bug diagnosis

overlapping rule

containing rule

no rule applies

no rule applies
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✅

✅

✅ ✅

❌ ❌

❌



Challenges of binary-level diagnosis

• C1: identify reference/refcounting operations

• C2: correlate refcounting to reference creation/destruction
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Reference/refcounting detection (w/ source)

• Detecting with debug info and annotation

Reference Counting in Python 3.9
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Reference/refcounting detection (w/o source)

• (H1) fix-step changing 

• data-flow analysis

A Python Object Value Sequence

False Negatives (IE-CTreeNode Object) 

if (value == 0)
free(…);

14

• (H2) control-dependent free

• control-flow analysis



Refcounting & reference correlation

• Based on execution distance (ED)

• Based on wrapper distance (WD)
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FreeWill architecture
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Evaluation

• Q1:  accuracy of root cause diagnosis

• Q2:  efficacy of patch suggestion

• Q3:  accuracy of reference & refcounting detection

• 76 UAF bugs

• 32 from Chrome, Firefox and IE

• 21 from Linux and MacOS

• 23 from Python and PHP
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Q1: diagnosis (76 bugs)

• 48 bugs caused by reference miscounting

• 36 bugs - programmers fail to count the reference (no INC, no DEC)

• 12 bugs - only decrease but no increase (no INC, has DEC)

• 18 bugs caused by dangling use

Dataset
Web Browser (32) Kernel (21) Script Engine (23)

IE Chrome Firefox Linux MacOS Python PHP

no INC, no DEC 14 0 0 6 2 10 4

no INC, has DEC 0 0 0 6 3 2 1

dangling use 4 6 4 2 1 0 2

null-deref 0 0 1 1 0 3 0
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Q2: patch suggestions

• 56 out of 71 patch suggestions matched with official ones

Patch Suggestion (CVE-2014-1776)
Official patch: call AddRef() and Release() to increase and 
decrease the refcount of argument
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Diagnose: PUSH creates a new reference, but no refcounting.

Patch: add increment and decrement to argument



Q3: reference & refcounting detection

• On average, each UAF object has 2000 references

• Along one trace, 543 objects created, 65 refcounted

• Accuracy of counter detection
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• Diagnosing UAF bugs due to premature free

• identify reference miscounting as a common reason

• automatically detect reference miscounting

• suggest possible patches

• Evaluation on large programs/systems

• complete analysis within 15 minutes

• 56 patch suggestions

Conclusion: FreeWill
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Thanks	&	Questions

heliang@iscas.ac.cn honghu@psu.edu
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