
Automatically Diagnosing Use-after-free Bugs via
Reference Miscounting Detection on Binaries

Liang He Hong Hu Purui Su Yan Cai Zhenkai Liang

Use-after-free (UAF): consistently popular

2Matt Miller. Trends, Challenges, And Strategic Shifts In The Software Vulnerability Mitigation Landscape. BluHat IL. 2019

Matt Miller. Trends, Challenges, And Strategic Shifts In The Software Vulnerability Mitigation Landscape. BluHat IL. 2019

Use-after-free (UAF): highly exploitable

3

Root causes of UAF bugs

• UAF: use a dangling pointer after the referred object is freed

• (Illegally use) a dangling pointer after the referred object is freed

• dangling use

• DangNull [NDSS’15], pSweeper [CCS’18], ASAN [ATC’12], …

• Use a dangling pointer after the referred object is (illegally freed)

• premature free

• no existing work

4

• Automatic diagnose premature-free caused UAF bugs

• identify reference miscounting as a common reason

• detect reference miscounting operations

• suggest possible patches

• Evaluations on large programs/systems

• 76 bugs from Linux/MacOS, Python/PHP, Chrome/Firefox/IE

• confirm 48 miscouting, 16 dangling usage

• complete analysis within 15 minutes

• 56 patch suggestions

Our work: FreeWill

5

Reference counting for memory management

• Associate a counter for each heap object

• Create a new reference => increase the counter

• Destroy an existing reference => decrease the counter
• if counter reaches 0, free the object

struct kobject {
const char *name;
struct list_head entry;
struct kobject *parent;
…
struct kref kref;

};

Refcounting in Linux Kernel static inline void kref_get(struct kref *kref) {
refcount_inc(&kref->refcount);

}
INC

struct inline int kref_put(struct kref *kref) {
if (refcount_dec_and_test(&kref->refcount)) {

release(kref); // free object
return 1;

}
return 0;

}

DEC

6

Reference miscounting
• Miss decrements for destroyed references

• never free (memory leak)

• Miss increments for newly created references

• premature free (finally use-after-free)

Linux Kernel Commit-0711F0D7050
(2021-06-04) 7

Challenge of detection: not all missed refcounting are bad
• Refcounting brings performance overhead (up to 30%)

• Programmers intentionally omit refcounting operations

• complicated rules guiding the omission

• Which missed refcounting is at fault?

8

0.6
0.8
1
1.2
1.4
1.6
1.8
2

co
mp
res
s
jes
s db

jav
ac

mp
eg
au
dio mt

rt
jac
k

av
ror
a
blo
at
ch
art

ec
lip
se fop

hs
qld
b

lui
nd
ex

lus
ea
rch pm

d

su
nf
low xa

lan

pjb
b2
00
5
mi
n
ma
x
me
an

ge
om
ea
n

Rifat Shahriyar, Stephen M. Blackburn,
and Daniel Frampton. Down For The

Count? Getting Reference Counting Back
In The Ring. In ACM SIGPLAN Notices,
volume 47, pages 73–84. ACM, 2012.

Legal refcounting-omission rules

R2R1
+ -

overlapping rule

R2

R1
+ -

containing rule

RiR1
+ -

transmitting-overlapping rule

Rn

9

• Safe to omit R1--, R2++

• Safe to omit R2++ & R2--

• Safe to omit R1--, Ri++, Ri--, Rn++

• Safe to omit R1--, Ri++ & Ri--, Rn++

overlapping-containing rule

RnR1
+ -

…

Ri

Bug diagnosis algorithm

Detailed explanations in paper

10

Bug diagnosis

overlapping rule

containing rule

no rule applies

no rule applies

11

✅

✅

✅ ✅

❌ ❌

❌

Challenges of binary-level diagnosis

• C1: identify reference/refcounting operations

• C2: correlate refcounting to reference creation/destruction

12

Reference/refcounting detection (w/ source)

• Detecting with debug info and annotation

Reference Counting in Python 3.9

13

Reference/refcounting detection (w/o source)

• (H1) fix-step changing

• data-flow analysis

A Python Object Value Sequence

False Negatives (IE-CTreeNode Object)

if (value == 0)
free(…);

14

• (H2) control-dependent free

• control-flow analysis

Refcounting & reference correlation

• Based on execution distance (ED)

• Based on wrapper distance (WD)

15

FreeWill architecture

16

Evaluation

• Q1: accuracy of root cause diagnosis

• Q2: efficacy of patch suggestion

• Q3: accuracy of reference & refcounting detection

• 76 UAF bugs

• 32 from Chrome, Firefox and IE

• 21 from Linux and MacOS

• 23 from Python and PHP

17

Q1: diagnosis (76 bugs)

• 48 bugs caused by reference miscounting

• 36 bugs - programmers fail to count the reference (no INC, no DEC)

• 12 bugs - only decrease but no increase (no INC, has DEC)

• 18 bugs caused by dangling use

Dataset
Web Browser (32) Kernel (21) Script Engine (23)

IE Chrome Firefox Linux MacOS Python PHP

no INC, no DEC 14 0 0 6 2 10 4

no INC, has DEC 0 0 0 6 3 2 1

dangling use 4 6 4 2 1 0 2

null-deref 0 0 1 1 0 3 0

18

Q2: patch suggestions

• 56 out of 71 patch suggestions matched with official ones

Patch Suggestion (CVE-2014-1776)
Official patch: call AddRef() and Release() to increase and
decrease the refcount of argument

19

Diagnose: PUSH creates a new reference, but no refcounting.

Patch: add increment and decrement to argument

Q3: reference & refcounting detection

• On average, each UAF object has 2000 references

• Along one trace, 543 objects created, 65 refcounted

• Accuracy of counter detection

20

• Diagnosing UAF bugs due to premature free

• identify reference miscounting as a common reason

• automatically detect reference miscounting

• suggest possible patches

• Evaluation on large programs/systems

• complete analysis within 15 minutes

• 56 patch suggestions

Conclusion: FreeWill

21

Thanks	&	Questions

heliang@iscas.ac.cn honghu@psu.edu

22

