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Secure Two-party Computation (2PC)
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Intersection-related Data Analysis from 2PC

▶ COVID-19 contact tracing
▶ Alice: Health authority
▶ Bob: Client
▶ 𝑥alice: A set 𝑌 of (tokens of) infected patients
▶ 𝑥bob: A set 𝑋 of (tokens of) individuals in contact with
▶ 𝑦bob: |𝑋 ∩ 𝑌 |
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Intersection-related Data Analysis from 2PC

▶ Measurement of ad conversion revenue/lift
▶ Alice: Publisher
▶ Bob: Advertiser
▶ 𝑥alice: A table indexed by a set 𝑌 of (tokens of) individuals that click/view the ad
▶ 𝑥bob: A set 𝑋 of (tokens of) converted individuals
▶ 𝑦bob: Ad conversion revenue/lift from intersecting converted individuals, and |𝑋 ∩ 𝑌 |

5 / 27



Why Hide Intersection?

▶ From Bob’s view

Intersection ⇒ Each token’s membership regarding Alice’s set
⇒ Each individual’s relationship with Alice (∗)

▶ (∗): Linking a token to an individual is possible
▶ COVID-19 contact tracing: Physical contact & token exchange logs12
▶ Measurement of ad conversion revenue/lift: Sensitive tokens (e.g., email addresses,

IMEI numbers)

1Yaron Gvili. Security analysis of the COVID-19 contact tracing specifications by Apple Inc. and Google Inc. (IACR).
2https://www.wired.com/story/apple-google-contact-tracing-strengths-weaknesses/.
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Inference Attacks in 2PC

▶ 2PC does NOT protect what can be deduced from one party’s input and output!
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This Work

▶ Inference attacks in intersection-related analysis tasks
▶ COVID-19 contact tracing
▶ Measurement of ad conversion revenue
▶ Measurement of ad conversion lift

▶ Our observations
▶ Existing 2PC protocols for these tasks reveal intersection size
▶ These tasks need to be performed regularly

▶ More severe leakage if there is a non-weak set bias
▶ Set bias: Alice’s set tends to include individuals with certain features
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Set Membership Inference: Problem Definition

▶ Alice is the victim with a dynamic set {𝑌0, . . . , 𝑌𝑖 , . . . }
▶ Bob is the attacker with a fixed set 𝑋 of target individuals
▶ Bob can choose its set 𝑋𝑖 in each protocol invocation
▶ Bob aims to determine whether a target individual has been in 𝑌 = ∪𝑖𝑌𝑖
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A Toy Inference Attack

▶ Each 𝑋𝑖 contains only one target individual
▶ Learn its set membership from |𝑋𝑖 ∩ 𝑌𝑖 |
▶ Require |𝑋 | protocol invocations
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Our Baseline Attack

▶ Choose 𝑋𝑖 with binary-tree-based strategy
▶ Set 𝑋 as the root, and randomly divide a node into two equal-size child nodes
▶ Visit nodes via priority-based depth-first search (DFS), and set 𝑋𝑖 as the current node
▶ priority = intersection size (IS) / # target individuals in the node
▶ IS in right child = IS in parent − IS in left child

IS = 4, priority = 0.5

pushed into the priority queue

priority = 0.25

priority = 0.5

merge

IS = 3,
priority = 0.75IS = 2,

priority = 1
early termination
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Our Feature-aware Attack: Using Set Bias

▶ A stronger attacker with some features regarding set bias
▶ Same as baseline attack, except that a node is divided using feature-based clustering
▶ Intuition

▶ Clustering can put target individuals with similar features in the same sub-tree
▶ A non-weak set bias ⇒ many member individuals are with similar features

▶ Implement clustering with k-means
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Inferring a Dynamic Set of Victim

▶ No set membership change of target individuals ⇒ Perfectly correct result
▶ Otherwise, there may be false positives and false negatives
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Experimental Setup

▶ Public data sources
▶ COVID-19 contact tracing: COVID-19 dataset of tested individuals in Israel
▶ Measurement of ad conversion revenue: Taobao’s dataset of ad display/click records
▶ Measurement of ad conversion lift: Tencent’s dataset of ad display records

▶ Frequency of protocol invocation
▶ COVID-19 contact tracing: 5 / day
▶ Measurement of ad conversion revenue: 1 / hour
▶ Measurement of ad conversion lift: 1 / day
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Summaries of the Victim’s Set

▶ Set bias (higher mutual information ⇒ stronger set bias regarding a feature)

Scenario feature name (mutual information)

COVID-19 contact tracing fever (0.0168), cough (0.0099), gender (0.0004)

Measurement of ad conversion revenue age (0.0010), gender (0.0007), shopping_level (0.0002),
work (0.0002), consumption_ability (0.0001), city_level (0.0001)

Measurement of ad conversion lift
marriage_status (0.0013), education (0.0012),

consumption_ability (0.0012),
age (0.0009), work (0.0005), gender (0.0001)
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Summaries of the Victim’s Set

▶ Set size change
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(a) COVID-19 contact tracing.
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(b) Measurement of ad conversion revenue.
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(c) Measurement of ad conversion lift.
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Simulation of the Attacker’s Set

▶ Simulation parameters
▶ Size |𝑋 | of the attacker’s set
▶ Ratio 𝛽 of # target individuals in the victim’s initial set 𝑌0 to |𝑋 |

▶ Feature-aware attacker can only use easy-to-collect features
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Experimental Results

▶ Set membership leakage in COVID-19 contact tracing
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Experimental Results

▶ Set membership leakage in measurement of ad conversion revenue
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Experimental Results

▶ Set membership leakage in measurement of ad conversion lift
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Real-world Implications

▶ Set membership leakage does exist in the three scenarios
▶ COVID-19 contact tracing

▶ Set membership regarding health authority ⇒ Whether a target token belongs to a
COVID-19 patient

▶ Can be combined with known linkage attacks in non-2PC settings ⇒ Risk of patient
deanonymization

▶ Measurement of ad conversion revenue
▶ Set membership regarding publisher ⇒ Whether a target individual has clicked the ad ⇒

Personal interest
▶ Measurement of ad conversion lift

▶ Set membership regarding publisher ⇒ Whether a target individual has or would have
seen the ad ⇒ Personal interest

24 / 27



Possible Defenses

▶ Limiting the number of 2PC protocol invocations
▶ Auditing intersection size
▶ Auditing the size of the attacker’s set
▶ Applying differential privacy

▶ But there are also some challenges when using these defenses ...
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Conclusion

▶ Set membership inference problem in intersection-size-revealing 2PC protocols
▶ A baseline attack and a feature-aware attack, where the latter outperforms the former

given a non-weak set bias
▶ Evaluation in three scenarios with public datasets
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Thank You

Contact xiaojie.guo@mail.nankai.edu.cn for any questions
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