

Distinguished Paper Award, Internet Defense 2nd Prize!

Online Website Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real World

Giovanni Cherubin, Alan Turing Institute Microsoft Research Rob Jansen, U.S. Naval Research Laboratory Carmela Troncoso, EPFL SPRING Lab

Rob Jansen, Ph.D. Computer Security Research Scientist Center for High Assurance Computer Systems U.S. Naval Research Laboratory

31st USENIX Security Symposium Boston, MA, USA August 10th, 2022

How Tor Works

Anonymous Communication and Tor

- Separates identification from routing
- Provides unlinkable communication
- Promotes user safety and privacy online

Tor Browse Privately. Explore Freely.

Defend yourself against tracking and surveillance. Circumvent censorship.

U.S. NAVA

ABORATOR'

Deanonymizing Tor Users

Website fingerprinting attack

- Predict website visited by user
- Requires access to <u>entry side only</u>

Deanonymizing Tor Users

Website fingerprinting attack

- Predict website visited by user
- Requires access to <u>entry side only</u>

Problem:

- Need <u>labels</u> to train ML classifiers for website prediction
- Genuine labels are <u>encrypted</u>

Website Fingerprinting Threat Model

Step 1: gather data & labels

Use automated browser
(selenium) to crawl websites

Website Fingerprinting Threat Model

Step 1: gather data & labels

Use automated browser
(selenium) to crawl websites

Step 2: train ML classifier

• Use collected data & labels

Website Fingerprinting Threat Model

U.S.NAVAL RESEARCH LABORATORY

Criticisms of Website Fingerprinting Threat Model

What is the threat of WF attacks in the real world?

Our new approach

Step 1: gather data & labels

• Run a Tor exit relay and use to to collect genuine Tor traffic

Step 2: train ML classifier

• Use collected data & labels

U.S. Naval Research Laboratory

Benefits

- Captures real world diversity of browsers, behavior, world size, choice of pages
- Can stop trying to fix the synthetic model

Benefits

- Captures real world diversity of browsers, behavior, world size, choice of pages
- Can stop trying to fix the synthetic model

Caveats

- Train at exit, deploy at entry → noise
- Domain, not page label
- Need safe eval methods

Safe Evaluation using Online Learning

Our safe evaluation plan:

- Hash domain labels using keyed HMAC
 - Never learn true labels

Safe Evaluation using Online Learning

Our safe evaluation plan:

- Hash domain labels using keyed HMAC
 - Never learn true labels
- Use online learning
 - Adapted Triplet Fingerprinting [CCS'19]
 - Compute means in real time, discard data
 - Individual data items never stored

Safe Evaluation using Online Learning

Our safe evaluation plan:

- Hash domain labels using keyed HMAC
 - Never learn true labels
- Use online learning
 - Adapted Triplet Fingerprinting [CCS'19]
 - Compute means in real time, discard data
 - Individual data items never stored
- Other safety precautions
 - Never deanonymizes Tor users
 - Destroyed models, HMAC key after eval
- Tor Safety Board reviewed plan
 - See paper for details!

Train and evaluate at exit relay

- No noise from transferring to entry
- Upper bound on attack accuracy

Details

- 1 week evaluation
 - 3.9M data sequences, 671k unique sites
- Multi-class classification
 - predict a monitored site, or 'unmonitored'
- Performance metric
 - instant accuracy (i.e., moving average)
 - # correct / # total predictions (10k window)

Train and evaluate at exit relay

- No noise from transferring to entry
- Upper bound on attack accuracy

Details

- 1 week evaluation
 - 3.9M data sequences, 671k unique sites
- Multi-class classification
 - predict a monitored site, or 'unmonitored'
- Performance metric
 - instant accuracy (i.e., moving average)
 - # correct / # total predictions (10k window)

Train and evaluate at exit relay

- No noise from transferring to entry
- Upper bound on attack accuracy

Details

U.S.NAVA

ABORATOR'

- 1 week evaluation
 - 3.9M data sequences, 671k unique sites
- Multi-class classification
 - predict a monitored site, or 'unmonitored'

0.6

0

500

10000.0

0.5

1.0

1.5

- Performance metric
 - instant accuracy (i.e., moving average)
 - # correct / # total predictions (10k window)

2.0

Network traces

2.5

3.0

3.5

 $\times 10^{6}$

Train and evaluate at exit relay

- No noise from transferring to entry
- Upper bound on attack accuracy

Details

U.S.NAVA

ABORATOR'

- 1 week evaluation
 - 3.9M data sequences, 671k unique sites
- Multi-class classification
 - predict a monitored site, or 'unmonitored'
- Performance metric
 - instant accuracy (i.e., moving average)
 - # correct / # total predictions (10k window)

Genuine vs. Synthetic Data

Offline phase

- Crawl 'synthetic' list of domains
 - <u>Synthetic</u>: use crawl to train a classifier offline

Online phase

- Train two classifiers online
 - <u>Hybrid</u>: update copy of synthetic classifier with genuine data
 - <u>Real</u>: train new classifier on genuine data only
- 1 week evaluation
 - 1.2M data sequences
 - observed 183 of 1,074 'synthetic' domains
- Binary classification
 - monitored set contains 5 sites
 - predict either 'monitored' or 'unmonitored'

Genuine vs. Synthetic Data

Offline phase

- Crawl 'synthetic' list of domains
 - <u>Synthetic</u>: use crawl to train a classifier offline

Online phase

- Train two classifiers online
 - <u>Hybrid</u>: update copy of synthetic classifier with genuine data
 - <u>Real</u>: train new classifier on genuine data only
- 1 week evaluation
 - 1.2M data sequences
 - observed 183 of 1,074 'synthetic' domains
- Binary classification
 - monitored set contains 5 sites
 - predict either 'monitored' or 'unmonitored'

Genuine vs. Synthetic Data

Offline phase

- Crawl 'synthetic' list of domains
 - <u>Synthetic</u>: use crawl to train a classifier offline

Online phase

- Train two classifiers online
 - <u>Hybrid</u>: update copy of synthetic classifier with genuine data
 - <u>Real</u>: train new classifier on genuine data only
- 1 week evaluation
 - 1.2M data sequences
 - observed 183 of 1,074 'synthetic' domains
- Binary classification
 - monitored set contains 5 sites
 - predict either 'monitored' or 'unmonitored'

synthetic data does not improve model over genuine data 1.0 0.8Precision 0.6 Real (AP: 0.52) Synthetic + Real (AP: 0.52) Synthetic (AP: 0.03) 0.40.20.00.20.40.6 0.8 1.0Recall synthetic classifier performs poorly against genuine data

Training and Testing on Opposite Ends

Fully synthetic evaluation

- Crawled 1k URLs 10x each
- Pinned entry and exit on each circuit
- Collected data sequences in both positions on each circuit
- Closed-world batch classification
 - 50%-50% train-test split

Monitored set size:	5	50	750
Frain and test on <u>exit</u>	91.2%	76.2%	52.2%
Train on <u>exit</u> , test on <u>entry</u>	86.4%	65.1%	34.1%
Loss in accuracy:	4.8%	11.1%	18.1%
loss in accuracy is low for feasible			
(i.e. small) monitored sets			

Insights

U.S.NAVA

- WF can be feasible with genuine data and small monitored sets, online learning can mitigate concept drift
- Synthetic data is not useful when the adversary deploys in the real world
- Simple defenses may be more effective than we thought
 - Adversary has to simulate defense on top of undefended exit data

Contact

- rob.g.jansen@nrl.navy.mil
- robgjansen.com
- @robgjansen

Future Research Areas

- Improve accuracy when training on genuine data
- Reduce distortion when transferring models from exit to entry
- Defenses that make it harder to learn from genuine data, increase distortion

