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How Tor Works

Anonymous Communication and Tor
• Separates identification from routing
• Provides unlinkable communication
• Promotes user safety and privacy online
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Deanonymizing Tor Users

Website fingerprinting attack
• Predict website visited by user
• Requires access to entry side only

predict website

?
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Deanonymizing Tor Users

predict website

?

Problem:
• Need labels to train ML classifiers 

for website prediction
• Genuine labels are encrypted

Website fingerprinting attack
• Predict website visited by user
• Requires access to entry side only

Encrypted by Tor
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Website Fingerprinting Threat Model

Step 1: gather data & labels
• Use automated browser 

(selenium) to crawl websites xyz.com

xyz.com
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Website Fingerprinting Threat Model

Step 1: gather data & labels
• Use automated browser 

(selenium) to crawl websites

Step 2: train ML classifier
• Use collected data & labels

Step 3: deploy against users
• Use ML model to predict website

cats.com
?

xyz.com

xyz.com

cats.com
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Criticisms of Website Fingerprinting Threat Model

Step 1: gather data & labels
• Use automated browser 

(selenium) to crawl websites

Step 2: train ML classifier
• Use collected data & labels

Step 3: deploy against users
• Use ML model to predict website

?

xyz.com

Synthetic à too simple & unrealistic!
• browser: version, config, location
• behavior: URL choice, tabs, order
• world: static, small, closed

cats.com

xyz.com

cats.com
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What is the threat of WF attacks in the real world?

Synthetic model
• Overly simple and 

unrealistic
• High ML accuracy 

in simple model

Stop using!!

Genuine model
• Consider genuine

data & labels from a 
Tor exit relay

Our new approach
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Key Insight: Exits Observe Genuine Data & Labels

Step 1: gather data & labels
• Run a Tor exit relay and use to 

to collect genuine Tor traffic

cats.com

Genuine labels: resolved domains

Genuine data: circuit traffic patterns

DNS
cats.com?
198.71.232.3

198.71.232.3

Exit can observe:
1. New circuit
2. DNS lookup
3. Website load
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Key Insight: Exits Observe Genuine Data & Labels

Step 1: gather data & labels
• Run a Tor exit relay and use to 

to collect genuine Tor traffic

cats.com

Genuine labels: resolved domains

Genuine data: circuit traffic patterns

DNS
cats.com?
198.71.232.3

198.71.232.3

Step 2: train ML classifier
• Use collected data & labels

?
cats.com

Step 3: deploy against users
• Use ML model to predict website
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1. New circuit
2. DNS lookup
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Evaluating Website Fingerprinting Attacks on Tor in the Real World  |  13U.S. Naval Research Laboratory

Key Insight: Exits Observe Genuine Data & Labels

cats.com

Genuine labels: resolved domains

Genuine data: circuit traffic patterns

DNS
cats.com?
198.71.232.3

198.71.232.3
?

cats.com

Exit can observe:
1. New circuit
2. DNS lookup
3. Website load

Benefits
• Captures real world 

diversity of browsers, 
behavior, world size, 
choice of pages

• Can stop trying to fix 
the synthetic model
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Key Insight: Exits Observe Genuine Data & Labels

cats.com

Genuine labels: resolved domains

Genuine data: circuit traffic patterns

Exit can observe:
1. New circuit
2. DNS lookup
3. Website load

DNS
cats.com?
198.71.232.3

198.71.232.3
?

cats.com

Caveats
• Train at exit, deploy at 

entry à noise
• Domain, not page label
• Need safe eval methods

Benefits
• Captures real world 

diversity of browsers, 
behavior, world size, 
choice of pages

• Can stop trying to fix 
the synthetic model
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Safe Evaluation using Online Learning

Our safe evaluation plan:
• Hash domain labels using keyed HMAC

− Never learn true labels

cats.com

DNS

ca
ts.

co
m?

198.71.232.3

data: (-1,+1,…)
label: HMAC(cats.com)
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Safe Evaluation using Online Learning

Our safe evaluation plan:
• Hash domain labels using keyed HMAC

− Never learn true labels

• Use online learning
− Adapted Triplet Fingerprinting [CCS’19]
− Compute means in real time, discard data
− Individual data items never stored

cats.com

DNS

ca
ts.

co
m?

198.71.232.3

data: (-1,+1,…)
label: HMAC(cats.com)

HMAC(cats.com)
correct?
yes or no

triplet feature extractor

?
1. predict label

2. update k-nn mev

k-nn model
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Safe Evaluation using Online Learning

Our safe evaluation plan:
• Hash domain labels using keyed HMAC

− Never learn true labels

• Use online learning
− Adapted Triplet Fingerprinting [CCS’19]
− Compute means in real time, discard data
− Individual data items never stored

• Other safety precautions
− Never deanonymizes Tor users
− Destroyed models, HMAC key after eval

• Tor Safety Board reviewed plan
− See paper for details!

cats.com

DNS

ca
ts.
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m?

198.71.232.3

data: (-1,+1,…)
label: HMAC(cats.com)

HMAC(cats.com)
correct?
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triplet feature extractor

?
1. predict label

2. update k-nn mev
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Evaluation

Train and evaluate at exit relay
• No noise from transferring to entry
• Upper bound on attack accuracy

Details
• 1 week evaluation

− 3.9M data sequences, 671k unique sites

• Multi-class classification
− predict a monitored site, or ‘unmonitored’

• Performance metric
− instant accuracy (i.e., moving average)
− # correct / # total predictions (10k window)
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Evaluation

Train and evaluate at exit relay
• No noise from transferring to entry
• Upper bound on attack accuracy

Details
• 1 week evaluation

− 3.9M data sequences, 671k unique sites

• Multi-class classification
− predict a monitored site, or ‘unmonitored’

• Performance metric
− instant accuracy (i.e., moving average)
− # correct / # total predictions (10k window)

accuracy above 95% when monitoring ≤ 5 sites

accuracy quickly falls below 80% 
when monitoring ≥ 25 sites
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Genuine vs. Synthetic Data

Offline phase
• Crawl ‘synthetic’ list of domains

− Synthetic: use crawl to train a classifier offline

Online phase
• Train two classifiers online

− Hybrid: update copy of synthetic classifier with 
genuine data

− Real: train new classifier on genuine data only

• 1 week evaluation
− 1.2M data sequences
− observed 183 of 1,074 ‘synthetic’ domains

• Binary classification
− monitored set contains 5 sites
− predict either ‘monitored’ or ‘unmonitored’
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Genuine vs. Synthetic Data

Offline phase
• Crawl ‘synthetic’ list of domains

− Synthetic: use crawl to train a classifier offline

Online phase
• Train two classifiers online

− Hybrid: update copy of synthetic classifier with 
genuine data

− Real: train new classifier on genuine data only

• 1 week evaluation
− 1.2M data sequences
− observed 183 of 1,074 ‘synthetic’ domains

• Binary classification
− monitored set contains 5 sites
− predict either ‘monitored’ or ‘unmonitored’

synthetic classifier performs poorly 
against genuine data

synthetic data does not improve 
model over genuine data
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Training and Testing on Opposite Ends

loss in accuracy is low for feasible 
(i.e. small) monitored sets

Fully synthetic evaluation
• Crawled 1k URLs 10x each

• Pinned entry and exit on each circuit

• Collected data sequences in both 
positions on each circuit

• Closed-world batch classification
− 50%-50% train-test split

Monitored set size: 5 50 750
Train and test on exit 91.2% 76.2% 52.2%
Train on exit, test on entry 86.4% 65.1% 34.1%

Loss in accuracy: 4.8% 11.1% 18.1%
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Main Takeaways

Insights
• WF can be feasible with genuine data and 

small monitored sets, online learning can 
mitigate concept drift

• Synthetic data is not useful when the 
adversary deploys in the real world

• Simple defenses may be more effective 
than we thought

− Adversary has to simulate defense 
on top of undefended exit data

Contact
− rob.g.jansen@nrl.navy.mil
− robgjansen.com
− @robgjansen

Future Research Areas
• Improve accuracy when training on 

genuine data

• Reduce distortion when transferring 
models from exit to entry

• Defenses that make it harder to learn 
from genuine data, increase distortion

Read
the 

paper!


