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Untrusted Code is Everywhere

Plugins/Extensions
3rd Party Libraries
Modern CDNs
Edge Computing
Smart Contracts
The Web
…
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Star Wars: Episode II—Attack of the Clones



Intra-Process Sandboxing

Sandbox 1 Sandbox 2 Runtime

Host Process
Kernel 

API

Syscalls
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Safety

Performance Ease of Use
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Sandboxing on the Web

Source 
Languages

Sandboxed
Code Execution
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WebAssembly: Promises lightweight, safe & fast execution of untrusted code, 
on the Web
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Sandboxing on the Web, and Beyond

Source 
Languages

Sandboxed
Code Execution
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WebAssembly: Promises lightweight, safe & fast execution of untrusted code, 
on the Web 
(and beyond)
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But Promise Only as Strong as Implementation

Our Contributions

Explore two distinct techniques to achieve provably-safe sandboxing

vWasm: formally verified, machine-checked proofs of safety

rWasm: provable safety with competitive performance, without writing formal proofs
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Brief Tangent: Formal Verification

Mathematical guarantees about software

Tools: F*, Dafny, Lean, Coq, …

Specify properties as pre/post conditions, and dependent types

Machine-checked proofs

Assertions checked statically, not at run-time
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Traditional vs. Sandboxing Verified Compiler
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Machine Code

Input Code

Semantically Equivalent
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Safe Machine Code

Safe Input Code

Traditional vs. Sandboxing Verified Compiler
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Semantically Equivalent
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Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler
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Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler
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Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



vWasm: Top Level Theorem Statement (simplified)
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Starting from any “ok” state, 
running any number of steps (of the compiled code)

leads to an “ok” state
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Only perform explicitly allowed behavior

Prevents:
• OOB memory accesses
• Writing to RO memory
• Calls to unsafe APIs
• …



vWasm: Sandboxing Proof
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3500+ Lines of Code + Proofs
For Just Sandboxing

(Overall: 15k+)
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vWasm: Sandboxing Proof Sketch
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Coarse-Grained Control Flow Integrity

Statically Sized Sandbox

Runtime SFI Checks for Linear Memory, Tables, …
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Guarantees w/o Tedium of Formal Proofs
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Untrusted Code

Type/Memory-Safe Language

Predictable 
Performance

#![forbid(unsafe)]

Safe Machine Code
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CompileLif
t



rWasm Sandboxing
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Memory Safety of Type-Safe Language ⇒ Safe Sandboxing

Static/Dynamically-Sized Sandbox

SFI Checks for Linear Memory, Tables, …
Optimized away at compile-time, whenever possible by rustc
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rWasm: Runtime Extensions
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Inline Reference Monitors

Tracers/Sanitizers

Optimized by rustc in tandem with code

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



rustcrWasm

rWasm Compilation Example
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Compute ∑!"#$ 𝑖
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Optimized

Naïve/unoptimized
483 Lines of x86-64

Lift



vWasm and rWasm are Competitive
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Normalized Slowdown
(Log Scale)
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vWasm and rWasm are Competitive
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vWasm and rWasm are Competitive
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Normalized Slowdown
(Log Scale)
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Interpreters Compilers
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Qualitative Comparison

vWasm rWasm

Static Property Extensibility
Inlined Runtime Extensions

Better Execution Speed

Portable Across Architectures “For Free”

~1 person-month~2 person-years
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Formally Verified w/ Traditional TCB



Provably-Safe Multilingual Software Sandboxing 
using WebAssembly

vWasm and rWasm explore two concrete compelling points in design 
space, with various tradeoffs

High-performance and strong safety are not mutually exclusive goals

Interesting space for further exploration

https://github.com/secure-foundations/{rWasm,vWasm,wasm-semantics-fuzzer,provably-safe-sandboxing-wasm-usenix22}
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