
Provably-Safe 
Multilingual 

Software Sandboxing 
using WebAssembly

Jay Bosamiya, Wen Shih Lim, and Bryan Parno
Carnegie Mellon University



Untrusted Code is Everywhere

Plugins/Extensions
3rd Party Libraries
Modern CDNs
Edge Computing
Smart Contracts
The Web
…

2

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Star Wars: Episode II—Attack of the Clones



Intra-Process Sandboxing

Sandbox 1 Sandbox 2 Runtime

Host Process
Kernel 

API

Syscalls

3

Safety

Performance Ease of Use

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



Sandboxing on the Web

Source 
Languages

Sandboxed
Code Execution

4

WebAssembly: Promises lightweight, safe & fast execution of untrusted code, 
on the Web

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



Sandboxing on the Web, and Beyond

Source 
Languages

Sandboxed
Code Execution

5

WebAssembly: Promises lightweight, safe & fast execution of untrusted code, 
on the Web 
(and beyond)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



But Promise Only as Strong as Implementation

Our Contributions

Explore two distinct techniques to achieve provably-safe sandboxing

vWasm: formally verified, machine-checked proofs of safety

rWasm: provable safety with competitive performance, without writing formal proofs

6

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



Brief Tangent: Formal Verification

Mathematical guarantees about software

Tools: F*, Dafny, Lean, Coq, …

Specify properties as pre/post conditions, and dependent types

Machine-checked proofs

Assertions checked statically, not at run-time
7

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



Traditional vs. Sandboxing Verified Compiler

8

Machine Code

Input Code

Semantically Equivalent

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



9

Safe Machine Code

Safe Input Code

Traditional vs. Sandboxing Verified Compiler

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Semantically Equivalent



10

Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



11

Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



12

Safe Machine Code

Safe Input Code Unsafe/Malicious 
Input Code

???

Traditional vs. Sandboxing Verified Compiler

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



vWasm: Top Level Theorem Statement (simplified)

13

Starting from any “ok” state, 
running any number of steps (of the compiled code)

leads to an “ok” state

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Only perform explicitly allowed behavior

Prevents:
• OOB memory accesses
• Writing to RO memory
• Calls to unsafe APIs
• …



vWasm: Sandboxing Proof

14

3500+ Lines of Code + Proofs
For Just Sandboxing

(Overall: 15k+)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



vWasm: Sandboxing Proof Sketch

15

Coarse-Grained Control Flow Integrity

Statically Sized Sandbox

Runtime SFI Checks for Linear Memory, Tables, …

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



Guarantees w/o Tedium of Formal Proofs

16

Untrusted Code

Type/Memory-Safe Language

Predictable 
Performance

#![forbid(unsafe)]

Safe Machine Code

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

CompileLif
t



rWasm Sandboxing

17

Memory Safety of Type-Safe Language ⇒ Safe Sandboxing

Static/Dynamically-Sized Sandbox

SFI Checks for Linear Memory, Tables, …
Optimized away at compile-time, whenever possible by rustc

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



rWasm: Runtime Extensions

18

Inline Reference Monitors

Tracers/Sanitizers

Optimized by rustc in tandem with code

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs



rustcrWasm

rWasm Compilation Example

19

Compute ∑!"#$ 𝑖

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Optimized

Naïve/unoptimized
483 Lines of x86-64

Lift



vWasm and rWasm are Competitive

20

Normalized Slowdown
(Log Scale)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Interpreters Compilers



vWasm and rWasm are Competitive

21

Normalized Slowdown
(Log Scale)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Interpreters Compilers



vWasm and rWasm are Competitive

22

Normalized Slowdown
(Log Scale)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Interpreters Compilers



vWasm and rWasm are Competitive

23

Normalized Slowdown
(Log Scale)

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Interpreters Compilers



24

Qualitative Comparison

vWasm rWasm

Static Property Extensibility
Inlined Runtime Extensions

Better Execution Speed

Portable Across Architectures “For Free”

~1 person-month~2 person-years

Software Sandboxing WebAssembly vWasm rWasm Evaluation Tradeoffs

Formally Verified w/ Traditional TCB



Provably-Safe Multilingual Software Sandboxing 
using WebAssembly

vWasm and rWasm explore two concrete compelling points in design 
space, with various tradeoffs

High-performance and strong safety are not mutually exclusive goals

Interesting space for further exploration

https://github.com/secure-foundations/{rWasm,vWasm,wasm-semantics-fuzzer,provably-safe-sandboxing-wasm-usenix22}

25
jaybosamiya@cmu.edu / https://www.jaybosamiya.com/

https://github.com/secure-foundations/rWasm
https://github.com/secure-foundations/vWasm
https://github.com/secure-foundations/wasm-semantics-fuzzer
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://www.jaybosamiya.com/

