

Dos and Don'ts of Machine Learning in Computer Security

<u>**Daniel Arp</u>**, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, Konrad Rieck *USENIX Security 2022*</u>

Technische Universität Braunschweig

Machine Learning already solved many problems in computer security

Unfortunately not... 🥺

Motivation—Historical Examples

Network intrusion detection: The base rate fallacy

Android malware detection: Spatio-temporal bias inflating performance

Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM TISSEC, 2000. Pendlebury et al. TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time. USENIX Security, 2019.

• Intrusion detectors should have low false positive rates (FPR)

• 'Low' FPR often still corresponds to large number of false positives

• Models trained with access to 'future' information

• Unrealistic class balance inflates performance

Overview

This work should not be interpreted as a finger-pointing exercise. Any work mentioned as having pitfalls still has important contributions and we identify pitfalls in our own work also.

1. Identification of common pitfalls

- 10 subtle issues affecting ML for security
- Recommendations for avoiding them

2. Survey on the prevalence of pitfalls

- Review of 30 top papers in security
- Pitfalls are widespread

3. Case studies demonstrating impact of pitfalls

- Mobile malware detection
- Vulnerability discovery
- Source code authorship attribution
- Network intrusion detection

Important remark

ML Pipeline and Pitfalls

Data Collection and Labeling

- **P1** Sampling bias
- P2 Label Inaccuracy

System Design and Learning

• P3 Data snooping

- P4 Spurious correlations
- **P5** Biased parameters

Ż

Prevalence Study

2. Review Process

Pitfall is either...

present (but discussed) partly present (but discussed) not present unclear from text 3. Authors Feedback

Prevalence Study

Prevalence Study

Impact Analysis

Android Malware Detection

- P1: Sampling Bias
- **P4:** Spurious Correlations
- **P7:** Inappropriate Performance Measures

Authorship Attribution

P1: Sampling Bias

P4: Spurious Correlations

Vulnerability Discovery

- P2: Label Inaccuracy
- **P4:** Spurious Correlations
- **P6:** Inappropriate Baselines

Network Intrusion Detection

P6: Inappropriate baselinesP9: Lab-only evaluation

Impact Analysis

Android Malware Detection

- P1: Sampling Bias
- **P4:** Spurious Correlations
- **P7:** Inappropriate Performance Measures

Authorship Attribution

P1: Sampling Bias

P4: Spurious Correlations

Vulnerability Discovery

P2: Label Inaccuracy

P4: Spurious Correlations

P6: Inappropriate Baselines

Network Intrusion Detection

P6: Inappropriate baselines

P9: Lab-only evaluation

Impact Study: Mobile Malware Detection

What is the problem?

- Merging of data from different sources leads to sampling bias
- Different origins of malware and benign apps can introduce unwanted shortcuts

Allix et al. AndroZoo: collecting millions of Android apps for the research community. ACM MSR, 2016. Arp et al. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. NDSS, 2014.

- **P1:** Sampling Bias
- **P4:** Spurious Correlations

P7: Inappropriate Performance Measures

Impact Study: Mobile Malware Detection

What is the impact?

- Comparison on datasets <u>with</u> (D1) and <u>without</u> (D2) the artifact
- Training of SVM on two different feature sets

Results

- Experimental results show how sampling bias affects results (P1)
- The URL *"play.google.com"* is among top features in D1 (**P4**)
- Using Accuracy would have underestimated the presence of bias (P7)

Allix et al. AndroZoo: collecting millions of Android apps for the research community. ACM MSR, 2016. Arp et al. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. NDSS, 2014.

- **P1:** Sampling Bias
- **P4:** Spurious Correlations

P7: Inappropriate Performance Measures

Dos and Don'ts of Machine Learning in Computer Security We identify 10 subtle pitfalls affecting the field Find that they are prevalent throughout top research Demonstrate their impact through case studies

Updates on pitfalls and recommendations:

https://dodo-mlsec.org/ 🦤

Technische Universität Braunschweig

