é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

StateFuzz: System Call-Based State-Aware
Linux Driver Fuzzing

Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, and Ming Yuan,
Institute for Network Science and Cyberspace / BNRist, Tsinghua University;
Wenyu Zhu, Department of Electronic Engineering, Tsinghua University;
Zhihong Tian, Guangzhou University; Chao Zhang, Institute for Network Science
and Cyberspace / BNRist, Tsinghua University and Zhongguancun Lab

https://www.usenix.org/conference/usenixsecurity22/presentation/zhao-bodong

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

StateFuzz: System Call-Based State-Aware Linux Driver Fuzzing

Bodong Zhao', Zheming Li', Shisong Qin', Zheyu Ma', Ming Yuan', Wenyu Zhu?,
Zhihong Tian®, Chao Zhang"**

Unstitute for Network Science and Cyberspace / BNRist, Tsinghua University.
2Department of Electronic Engineering, Tsinghua University.
3Guangzhou University. *Zhongguancun Lab.

Abstract

Coverage-guided fuzzing has achieved great success in find-
ing software vulnerabilities. Existing coverage-guided fuzzers
generally favor test cases that hit new code, and discard ones
that exercise the same code. However, such a strategy is not
optimum. A new test case exercising the same code could be
better than a previous test case, as it may trigger new program
states useful for code exploration and bug discovery.

In this paper, we assessed the limitation of coverage-guided
fuzzing solutions and proposed a state-aware fuzzing solution
StateFuzz to address this issue. First, we model program
states with values of state-variables and utilize static analy-
sis to recognize such variables. Then, we instrument target
programs to track such variables’ values and infer program
state transition at runtime. Lastly, we utilize state informa-
tion to prioritize test cases that can trigger new states, and
apply a three-dimension feedback mechanism to fine-tune
the evolutionary direction of coverage-guided fuzzers. We
have implemented a prototype of StateFuzz, and evaluated
it on Linux upstream drivers and Android drivers. Evaluation
results show that StateFuzz is effective at discovering both
new code and vulnerabilities. It finds 18 unknown vulnerabil-
ities and 2 known but unpatched vulnerabilities, and reaches
19% higher code coverage and 32% higher state coverage
than the state-of-the-art fuzzer Syzkaller.

1 Introduction

Fuzzing has become the most popular and effective solution
for discovering vulnerabilities, and is widely studied by the
industry [20,27,40,53] and the academic community [22, 30,
31,51]. For example, the OSS-Fuzz project [41] by Google
continuously tests 35 open-source projects and has found
over 25,000 bugs' as of January 2021. In general, fuzzers
randomly generate test cases and execute target programs
with these test cases. To deal with intrinsic randomness, a

*Corresponding author: chaoz@tsinghua.edu.cn
Ihttps://google.github.io/oss-fuzz/#trophies

large number of fuzzers follow the steps of AFL [20, 53]
and utilize code coverage to guide the exploration process of
fuzzing. In general, they prioritize test cases that hit new code
(i.e., contribute to code coverage) and use them as starting
points for further exploration.

Despite the great success, coverage-guided fuzzing solu-
tions also have many limitations. The most critical limitation
is that such solutions are code-coverage-centric and are insen-
sitive to other feedback when exploring the test case space.
In practice, a large number of programs (including device
drivers and network services, etc.) have complicated internal
program states and will not continue execution or crash if a
specific state is not reached. For instance, a device will not
work if a specific status register is not set to an expected value.
To test such programs efficiently, a fuzzer should be aware of
program states and explore the state space smartly.

Recent works have shed light on exploring program states.
For instance, IJON [4] utilizes different forms of manually-
provided state representations (e.g., positions in a maze game)
to perform not only fuzzing but also gaming like Super Mario.
InsvCov [19] uses the likely invariants of programs as bound-
aries to partition the program state space. AFLNet [38] uses
servers’ response code as program states to drive network pro-
tocol fuzzing. In addition, StateAFL [32] identifies program
states by performing locality-sensitive hashing on specific
process memory. More research efforts are needed in this di-
rection. In general, there are three questions to answer when
developing a state-aware fuzzing solution.

First, what are program states? Essentially, a program state
is the execution context of a program, including values of all
program variables (from the perspective of software) and
values of all memory and registers (from the perspective of
hardware). However, the number of such states is overwhelm-
ingly large, and it is hard to track all of them in practice. Thus,
a practical fuzzer has to focus on a subset of program states,
as IJON and AFLNet did. Moreover, which states are crucial
for fuzzing and how to reduce the state space are still open
questions.

Second, how to recognize program states and track them

USENIX Association

31st USENIX Security Symposium 3273

during fuzzing? IJON relies on manual annotations to mark
states and manual program instrumentation at proper locations
to track states. AFLNet infers program states by resolving
response code from servers’ response messages, which are
not always available. They are either not automated or not
generic. InsvCov uses heavyweight instrumentation to track
values of many variables to infer invariants and estimate pro-
gram state transition. StateAFL needs to compute hashes
of some specific long-lived variables in the runtime to map
each in-memory state as a unique protocol state. They both
introduce significant overhead and reduce the efficiency of
fuzzing. Therefore, a state-aware fuzzer should automatically
recognize program states and track them in an efficient way.

Third, how to utilize program states to guide fuzzing?
IJON replaces the code coverage bitmap used by AFL with
manually-annotated state coverage. AFLNet tracks state (re-
sponse code) transitions in addition to code coverage. They
use one seed corpus to store both test cases of discovering
new code or new states, and favor test cases that increase code
coverage. It is worth exploring new feedback mechanisms to
utilize program states better.

In this paper, we propose a new state-aware fuzzing ap-
proach StateFuzz to complement traditional code coverage
guided fuzzers. StateFuzz utilizes critical variables to repre-
sent program states. These critical variables have the follow-
ing features: they have a long lifetime; they can be updated
(i.e., state transition) by users; they can affect the program’s
control flow or memory access pointers. We denote these
critical variables as state-variables. The combination of all
state-variables’ values forms a program state, which is coarse-
grained but useful for fuzzing.

Further, StateFuzz utilizes static analysis to recognize
state-variables. We notice that rich-state programs (e.g., de-
vice drivers) always require multiple or multi-stage inputs.
Different stages of inputs will trigger different program ac-
tions. Target programs have to track program states across
program actions for synchronization and coordination, and
as a result, state-variables are usually shared and accessed by
different program actions. For example, the state-variables
related to the login state are supposed to be shared by login
request and logout request. We use static analysis to recognize
program actions and state-variables from shared variables ac-
cessed by them. To efficiently track the program states, we
reduce the number of state-variables used in the composition
of a program state and the value space of each state-variable.
First, we model a program state with relevant state-variable
pairs rather than a combination of all state-variables. Second,
for each state-variable, we recognize the set of values (or value
ranges) it could take, where different value choices represent
different states. And then, we divide each state-variable’s
value space into several ranges and track whether each range
is hit during fuzzing.

Lastly, in addition to code coverage, we apply two new
types of feedback and design a three-dimension feedback

mechanism to guide the fuzzing process. The first type of
feedback is that an input is interesting if it could hit a new
value range combination of two variables and these two vari-
ables are both in a relevant state-variable pair. The second
type of feedback is that an input that changes the upper or
lower value bound of a state-variable so far is also interesting.
This feedback still applies when the first feedback mechanism
fails, i.e., when the value ranges of state-variables cannot be
determined.

We have implemented a prototype of StateFuzz for sys-
tem call-based Linux driver fuzzing, based on the fuzzing tool
Syzkaller [27]. We evaluate StateFuzz on drivers in both the
MSM-4.14 kernel used by Android Pixel-4 phones and the
Linux upstream kernel v4.19. The evaluation result shows that
StateFuzz is effective at discovering new vulnerabilities and
new code. StateFuzz in total has discovered 2 known but
unpatched vulnerabilities and 18 new vulnerabilities, among
which 15 have been assigned CVE IDs or bug bounty rewards.
Compared to state-of-the-art approaches, StateFuzz could
find much more vulnerabilities and hit 19% more edges. We
will release the source code of StateFuzz after publication”.

In this paper, we make the following contributions:

* We propose a new fuzzing solution StateFuzz for rich-
states programs, e.g., drivers, to promote fuzzing efficiency
by incorporating program states as feedback.

* We propose to model program states with state-variables
and automatically recognize states using static analysis and
symbolic execution.

* We design a new three-dimension feedback mechanism
to help fuzzers efficiently explore program states while
increasing code coverage.

* We implemented a prototype of StateFuzz and evaluated
it on real-world drivers, and found 18 new vulnerabilities
in drivers while achieving much higher code coverage than
existing approaches.

2 Background

2.1 POSIX Driver Fuzzing

In recent years, many fuzzing solutions have been proposed to
find vulnerabilities, such as IMF [25] for the Mac OS kernel,
iofuzz [18], ioctlfuzzer [16], ioctlbf [8], and ioattack [15] for
the Windows kernel. Syzkaller [27] uses grammar-based tem-
plates to generate test cases to interact with the kernel by sys-
tem call interface and utilizes KCOV [28] and KASAN [26]
to track code coverage and detect memory bugs, respectively.

Everything is a file in the Linux kernel, and so are hardware
devices. The POSIX standard provides a unified abstraction of
hardware to user-space applications. Each file in the directory
/dev represents a hardware device in Linux, which can be
used by user-space programs just like a regular file. For exam-
ple, a user-space application needs to obtain a file descriptor

Zhttps://github.com/vul337/StateFuzz

3274 31st USENIX Security Symposium

USENIX Association

of a device and then interacts with it via read and write
system calls. In addition, a special system call with the pro-
totype of int ioctl(int fd, unsigned long request,

.) is provided for user-space applications to support cus-
tomized hardware behaviors according to the request.

In general, Linux drivers have two attack surfaces, one for
hardware devices and the other for system calls. As a result,
there are two dimensions to fuzzing Linux drivers. The first
dimension is fuzzing drivers by injecting inputs from the
hardware device side through configurations or I/O channels
such as Port I/O, MMIO, and DMA. For example, to fuzz
the probe routine of the USB drivers, USBFuzz [36] utilizes
a generic USB device to match with the drivers and sends
malicious USB descriptors to them. PeriScope [43] injects
fuzzing data into the MMIO of the drivers via hooking page
fault handlers.

The second dimension is from system calls. It is challeng-
ing to generate valid test cases since the arguments of system
calls are diverse. For example, a valid ioctl() system call
usually takes a complicated structure and a command (typi-
cally a big integer) as arguments. Syzkaller relies on human
efforts to extract system call interfaces, to trigger drivers’ ac-
tions. DIFUZE [14] applies static analysis to extract supported
request types and associated arguments from customized
interfaces of device drivers, which helps fuzzers to generate
valid test cases.

2.2 Motivation Example

Code coverage is the most widely used feedback by fuzzers.
Fuzzers get a reward signal when the test case hits new code
(e.g., basic blocks, edges, or paths), and then they preserve
this test case for future exploration. Coverage-guided fuzzing
has been proven to be effective at exploring new code and vul-
nerabilities. Recent kernel fuzzing solutions or driver fuzzing
solutions generally fall into this category. However, the code
coverage feedback is limited for the following reasons.

First, some vulnerabilities could only happen under the
premise of some prerequisite states. However, test cases that
explore new code paths sometimes have a very limited con-
tribution to exploring the program’s state space. Therefore,
coverage-centric fuzzers may waste computing resources on
test cases useless for exploring more states and hurt the per-
formance of finding vulnerabilities.

Second, coverage-centric fuzzers may discard test cases
that trigger new states but not new paths since they do not con-
tribute to code coverage. Therefore, coverage-centric fuzzers
may miss the opportunity to find vulnerabilities under these
states. For instance, if a program has rich internal states, a
multi-stage input will fail to explore new code if the program
state is not set correctly in the early stage. Even though a
multi-stage input happens to set the program state in the early
stage properly, the fuzzer would discard it because no new
code is found in the early stage, and fails to use it as a starting

/* scull. ¢ :
’| char *buf;

3| enum state {MO=0, M1, M2, M3, M4, M5, M6, M7};

4| static enum state my_state_A=0;

5| static uint8_t my_state_B=0;

6| static int scull_open(struct inode *inode, struct file *file) {
7 if (!buf) {

¢ buf = kmalloc (0x3f, GFP_KERNEL); /*
if (!buf) return -ENOMEM;

source code file of the example driver. */

allocate memory */

10 }
return 0;
|}
3| static long scull_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg) {
14 int retval=0, num=0;
5 uint8_t ch;
6 retval = copy_from user(&ch, (uint8_t *)arg, 1);
switch (cmd) {
18 case 'V':
if (buf && my_state_A==M3) {

buf [my_state_B] = ch; /* O0OB bug here */

my_state_A = my_state_B = 0;
}
23 break;
case 'A’:
25 num = ch - '0";
6 if (num < 8 && num >= 0) my_state_A=num;
2 break;
2 case 'B’:
) ¢ if (ch > 0x3f) return -EINVAL;

my_state_B = ch;
break;

default: retval = -EINVAL; break;

}

return retval;

/* poc. ¢ : user-space program for triggering the OOB bug. */
38| void poc() {
39 char ch;
10 int fd = open("/dev/scull", O_RDWR, 0);
ch = ’3"; ioctl(fd, 'A’, &ch);
42 ch ='2"; ioctl(fd, ’'B’, &ch);
43 ioctl(fd, ’'V’, &ch);

Listing 1: A motivation example driver.

point to yield new qualified multi-stage inputs.

Listing | shows a motivation example. A coverage-
guided fuzzer could find an input, e.g., a program con-
taining system call ioctl (fd, cmd="A", *arg="0") oOr sys-
tem call ioctl (fd, cmd="B’, *arg='Db’), to explore certain
code in the fuzz target. But later, it will discard other in-
puts, e.g., programs with ioctl (fd, cmd="A’, *arg='3")
or ioctl (fd,cmd='B’, *arg='"?"), which do not hit new
code but instead hit new program states my_state_A=3 or
my_state_B=0x3f (i.e., my_state_B='?"). As a result, it
has a very small chance to yield new inputs (e.g., a pro-
gram containing ioctl (fd, cmd="A’ , *arg='3") along with
ioctl(fd,cmd='B’, *arg='?")) that could trigger these
two states individually or at the same time. In other words, a
coverage-guided fuzzer fails to trigger the vulnerability for a
long time. We have conducted a 48-hour fuzzing campaign
using Szkaller for this example driver program with KASAN
enabled, and we write system call templates (Appendix List-
ing 3) manually for the example driver. It takes Syzkaller 13
hours (14 million inputs generated) to find this vulnerability
(the code coverage trend is shown in Appendix Figure 9).

USENIX Association

31st USENIX Security Symposium 3275

Initial
inputs

3-Tiered
Corpus

Instrumented
Kernel

State-variable Tracking
Instrumentation

Code Coverage
Instrumentation

Figure 1: Overview of StateFuzz.

In summary, coverage-guided fuzzers will ignore test cases
that exercise the same code path, even though they have ex-
plored new states, and have trouble discovering new code or
vulnerabilities that depend on new states. Thus, it is crucial to
explore program states during fuzzing and prioritize test cases
that trigger new states even if they may not hit new code.

2.3 Program States

Essentially, a program state is the execution context of a pro-
gram, including everything the program currently operates on,
i.e., values of all program variables (from the perspective of
software) and values of all virtual memory and registers (from
the perspective of hardware). Exploring all potential program
states will reveal all potential vulnerabilities. However, it is
infeasible to track such program states during fuzzing due to
computing resource limitations.

Informally, a program state is a certain execution context
maintained by a program to remember preceding events or
user interactions. We have conducted an empirical study on
state-rich programs to learn how they represent program states.
Specifically, we collected 50 code commits from open source
projects containing the keyword "state machine", which indi-
cates the program is processing certain states. The 50 com-
mits consist of (1) all 14 Linux kernel commits in patchwork’
with matching keywords, (2) 21 commits from March 2019
to September 2020 in the MSM kernel*, and (3) 15 com-
mits from popular network protocol projects in Github, in-
cluding nfs-ganesha, curl, httpd, OpenSMTPD, OpenSSL and
OpenSMTPD. Then, we manually analyzed how these code
commits mark the program states. The result shows that, in
48 out of 50 commits, the states are represented by variables
of the boolean/integer or enumeration type (Table | describes
the sources of these 50 commits and shows several examples
of variables). For the other two commits, one uses function
pointers to represent states, and the other uses state code in
packets to represent states.

Thus, it is very common for programs to store valuable
program states into variables, and we can utilize variables that
hold critical information to represent program states.

3https://lore kernel.org/patchwork/
“https://source.codeaurora.org/quic/la/kernel/msm-4.19/

Table 1: Examples of variables that represent program states
in open source projects.

Project Example state-variables Variable Type
Linux Kernel agg->is_active bool
Linux Kernel rsclp->flags int

nfs-ganesha sigusrl_triggered int
curl conn->bits.do_more bool
OpenSMTPD s->state enum
openssl st->state enum
httpd session->state enum

3 Our Solution: StateFuzz

To address the limitation of code coverage guided fuzzers,
we propose a state-aware fuzzing solution StateFuzz for
system call-based Linux driver fuzzing. In this section, we
will present the design details of this solution.

3.1 Modeling of Program State

State-variable. We summarize the characteristics of vari-
ables used to represent program states as follows: First, these
variables have a long lifetime that can span different program
states to record state information. Second, they can be up-
dated (i.e., state transition) by users. Third, since the program
state always controls the program’s behavior, these variables
should be able to affect (directly or indirectly) the program’s
control flow or memory access pointers. We denote these
variables as state-variables.

Program State. Since every state-variables could hold criti-
cal program state information, a program state ideally should
contain combinations of all state-variables’ values. However,
the number of such combinations is too large, and it is imprac-
tical to track such states. We thus try to reduce the number of
combinations with two optimizations.

First, we only consider relevant state-variable pairs in a pro-
gram state, inspired by the fact that coverage-guided fuzzers
in general only track edge coverage (i.e., combinations of
two relevant blocks) rather than path coverage (i.e., combi-
nations of all blocks). We conduct experiments to support
this intuition, as described in Appendix A.l1. We mark two
state-variables as relevant if there are control flows or mem-

3276 31st USENIX Security Symposium

USENIX Association

ory access pointers that are affected (directly or indirectly) by
both of these two variables. For example, if two variables are
checked by two conditional statements respectively, and these
two conditional statements are nested, they are relevant.

Second, each state-variable’s value space is large (e.g.,
for a 32-bit variable), but it only takes a limited number of
values (or value ranges). Thus we propose to divide the state-
variable’s value space into several value ranges and track
whether each value range is hit during fuzzing.

Instead of tracking their values, we track value-range com-
binations of two variables for every relevant state-variable
pair during the fuzzing process. We denote such value-range
combinations as a value-range edge. Furthermore, we also
track extremum values of state-variables as a complement to
value-range tracking. We deem that we discover new program
states if we discover new value-range edges or new extremum
values of state-variables.

232

3.2 Overview

Figure | illustrates the overview workflow of StateFuzz.
It includes three major phases: program state recognition,
program instrumentation, and the fuzzing loop.

Program state recognition. We first analyze the source
code of Linux drivers to recognize program states by ex-
tracting state-variables, value choices of state-variables, and
the relevance between state-variables. Specifically, we uti-
lize static analysis to recognize program actions triggered
by different stages of inputs and identify shared variables
accessed by multiple program actions. To make tracking state-
variables practical, we further analyze their value (or value
range) choices. Then we utilize static symbolic execution to
collect the value constraints of each state-variable, and infer
its disjoint value-ranges.

Program instrumentation. We instrument the target pro-
gram (i.e., Linux drivers) to track the program state coverage,
along with code coverage (e.g., provided by KCOV [28]).
Specifically, given the identified state-variables, we first per-
form alias analysis with SVF [44] to recognize the alias of
state-variables. Then during compilation, StateFuzz checks
the destination pointer of each store instruction. If the desti-
nation pointer points to a state-variable or a state-variable’s
alias, the instruction is instrumented to keep track of the value
to store. More precisely, it will track value-range edges and
extremum values to yield program state coverage feedback.

Fuzzing Loop. We extend the fuzzing loop of code
coverage-guided fuzzers by applying the program state feed-
back to the process of seed input preservation and seed selec-
tion. Specifically, we will preserve inputs that discover new
value-range edges or new extreme values of a state-variable,
along with inputs that find new code. We then apply a delicate
selection strategy to select inputs for mutation from these dif-
ferent types of preserved seeds. More details will be described
in Section 3.4.

int hpet_open(..) {

1
2 .
3. devp->hd_hdwirg = gsi;
4
’—> =3 Action 1 m

£ = open("/dev/hpet”, ...);

state
variables

devp->hd_hdwirq
6. int hpet_ioctl(.... cmd, arg) {
7. switch (cmd) { LOADED
ioctl(fd, HPET_IE_ON, ...); 8. case HPET_IE ON:
9. if(ldevp->hd_ireqfreq)

1. if(devp->hd_hdwirq)

13 break: Action 2
ioctl(fd, HPET_IRQFREQ, ...); TE _'_CE ction
15 case HPET_IRQFREQ:
16.
17. devp->hd_ireqfreq =arg;
Action 3|

18, break;

LOADED

Figure 2: Example of state-variables in the hpet driver.

3.3 Program State Recognition

As the core of StateFuzz, it takes program states into consid-
eration in addition to code coverage feedback. In this section,
we will detail how to recognize program states.

Recognize Program Actions. Rich-state programs, e.g.,
drivers, usually require multiple or multi-stage inputs. Each
stage of input will trigger specific program actions. For Linux
device drivers, program actions are handler functions that can
be invoked via system calls.

Figure 2 illustrates several example program actions, which
are taken from the hpet driver’s code. First, many program
actions are initialized in global operation structures. For in-
stance, the hpet_open and hpet_read handlers initialized in
the global operation structure hpet_fops represent the open
and read actions, which can be triggered by certain inputs. Sec-
ond, the driver may take program actions via subcommands
of the ioctl interface. For example, statements from line 8
to line 13 represent one specific program action, which could
be triggered by user input of the command HPET_IE_ON.

Based on these conventions of Linux driver code, we utilize
static analysis to recognize program actions. For system calls
including read, write, open, poll and mmap, we analyze their
source code to locate initializers that assign function han-
dlers to global operation structures. These assigned function
handlers are entry points of program actions. For the ioct1l
system call, we extend the tool DIFUZE [14] to perform an
inter-procedural and path-sensitive analysis and recognize all
supported sub-commands. The code snippet associated with
each sub-command is a program action.

Recognize State-variables. Different program actions
sometimes have to coordinate program states via state-
variables. Thus state-variables are usually shared by multiple
program actions. For example, the state-variables related to
the login state are supposed to be shared by login request and
logout request. To recognize the state-variables, we analyze
the code of every program action based on a call graph and
recognize the accessed variables. If the variables can be back-
tracked to global variables or fields of structures, then we will
mark them as candidate state-variables since state-variables
are supposed to have a long lifetime. After analyzing all pro-
gram actions, we will filter all candidate state-variables. We

USENIX Association

31st USENIX Security Symposium 3277

only keep candidate state-variables that will be updated by
one program action and loaded by another program action
(i.e., variables will be discarded if not read by any actions
or not written by any actions). For instance, the variables
devp->hd_ireqgfreq and devp->hd_hdwirqg in Figure 2 are
both recognized as state-variables.

Infer State-variables’ Value Ranges. To infer the value
ranges of each state-variable, we perform an inter-procedural
and path-sensitive static symbolic execution on the abstract
syntax tree (AST) of the source code. To avoid path explo-
sion, it is notable that our symbolic execution analyzes only
a single source code file at a time (i.e., intra-module analy-
sis), which greatly reduces the number of paths. We could
locate state-variables in the AST by their type and names.
Then we explore each program path and recognize path con-
straints related to state-variables during the exploration. We
then identify two state-variables relevant if there is a path
whose constraints involve both of them. By consulting with
constraint solvers, we could infer critical values of the state-
variable, which would change the value of path constraint. We
then use these critical values as boundaries to split the value
space of the state-variable.

For example, in the driver code shown in Figure 2, the
state-variables devp->hd_ireqfreq and devp->hd_hdwirg
are checked against O in the Line 9 and Line 11 respectively.
The conditional statement in Line 9 leads to two branches,
and the extracted constraints of these two branches are
devp->hd_ireqfreq!=0 (i.e., devp->hd_ireqgfreq<=-1
or devp->hd_ireqfreg>=1) and devp->hd_ireqgfreq==0.
Therefore, we can get three boundary values: -1, 0, and 1.
We thus divide the value space of devp->hd_ireqfreq into
4 value ranges with these 3 numbers, i.e., [INT_MIN,-1],(-
1,01,(0,11,(1,INT_MAX]. The case in Line 11 is similar.

3.4 Fuzzing Loop

After instrumenting the driver to track state changes, the
fuzzer enters the main fuzzing loop. StateFuzz adopts a ge-
netic algorithm to guide the fuzzer to explore more program
states, as AFL does to increase code coverage. Specifically,
StateFuzz preserves and prioritizes seeds that discover ei-
ther new code or new states. In this section, we introduce
how StateFuzz fine-tunes the evolutionary through a novel
3-dimension feedback mechanism, seed preservation strategy,
and selection strategy.

3.4.1 Three-dimension Feedback Mechanism

StateFuzz adopts a novel three-dimension feedback mecha-
nism to guide state exploration, consisting of the following
three dimensions.

Code coverage dimension. StateFuzz reuses the code
coverage feedback as existing fuzzers (e.g., Syzkaller), which
issues a feedback signal whenever a test case hits new code.

Algorithm 1 Seed Preservation Algorithm

Input: s, the test case to be processed
Output: 77, tier 1 of corpus to store seeds discover new code edges
Output: 7>, tier 2 of corpus to store seeds discover new value-range edges
Output: 73, tier 3 of corpus to store seeds discover new extreme values
T=T=[. =1}
coverage, cfgPathHash <— execute(s)
if findNewCode(coverage) then
Ty« Tu {Y}
end if
if findNew ValueRangeEdge(coverage) then
if cfgPathHash IN 7 then
T»[cfgPathHash] < T>[cfgPathHash] U {s}
else
T>[cfgPathHash] = 0
T»[cfgPathHash] < T>[cfgPathHash] U {s}
end if
end if
if findNewExtremum(coverage) then
;T3 U {S}
T3 < minimize(73)
end if

This dimension of feedback enables the fuzzer to preserve
seeds that discover new code.

Value-range dimension. StateFuzz applies a novel
value-range dimension of feedback. If the input triggers a
new value-range edge, which means triggering a new state,
it issues a feedback signal. It enables the fuzzer to pre-
serve seeds that discover new program states, and enables
smart state-space exploration when working together with the
genetic algorithm. For example, in the driver code shown
in Figure 2, the state-variables devp->hd_ireqfreq and
devp->hd_hdwirqgboth have 4 value ranges, i.e., [INT_MIN,-
11,(-1,0],(0,1],(1,INT_MAX]. When devp->hd_ireqfreq
changes from O to 1, the value range shifts from (-1, 0] to (0, 1].
Thus, it will yield a new value-range of devp->hd_ireqfreq
and devp->hd_hdwirq.

Extreme value dimension. Note that sometimes we can-
not resolve the value ranges of certain state-variables, due to
missing constraints or unsolvable constraints. Besides, dis-
covering a new extremum value also means that the program
enters a new state. Thus, we provide another new feedback di-
mension that alternatively tracks state-variables’ extreme val-
ues. In detail, the fuzzer records the upper and lower bounds
of each state-variable in the testing history, and issues a feed-
back signal when a new test case sets a state-variable out of
its bounds. This dimension of feedback enables the fuzzer to
preserve test cases that trigger extreme values.

3.4.2 Seed Preservation and Selection Strategy

We design a three-tiered seed corpus to preserve seeds ac-
cording to the type of feedback signals each seed triggers.
With such a seed corpus, StateFuzz then periodically selects
seeds from different tiers to explore new code and new states.

Seed Preservation. Given the three different feedback
mechanisms, we thus provide a three-tiered seed corpus to

3278 31st USENIX Security Symposium

USENIX Association

Algorithm 2 Seed Selection Algorithm

Input: 77, tier 1 of corpus to store seeds discover new code edges
Input: 75, tier 2 of corpus to store seeds discover new value-range edges
Input: T3, tier 3 of corpus to store seeds discover new extreme values
Output: s, the selected seed
P.=3,P.=3
r = randInt(P,*P.)
if r < P, then
with probability 1/P,
s < Ti[randInt() % len(T})]
else if r < P,+P. then
with probability 1/P,
keys <— getMapKeys(7>)
pathHash < keys[randInt() % len(keys)]
bucket <— 7>[pathHash]
s < bucket[randInt() % len(bucket)]
else
with probability 1-1/P.-1/P.
s < T3[randInt() % len(73)]
end if

predefined probability hyper-parameters
generate a integer in [0, P,*P,) randomly

store seeds that discover new code, new value-range edges,
and new extreme values, respectively. A seed can be stored
in multiple tiers if it triggers multiple feedbacks at the same
time. Sometimes, seeds that discover new value-range edges
but execute similar code may fill up the queue, preventing the
fuzzer from exploring other code. To reduce such locality, we
use seeds’ paths to cluster seeds and we schedule not only
seeds but also clusters (i.e., buckets) in the later seed selection
stage. Algorithm | demonstrates how StateFuzz preserves
seeds in detail. After executing a test case, StateFuzz checks
whether feedback signals are generated, and puts the test case
into different tiers according to the feedback signals. First, if
the test case finds new code, it is added to Tier-1 of the seed
corpus. Second, if the test case discovers new value-range
edges, StateFuzz adds the test case to a specific bucket in
Tier-2, which is indexed by the hash of executed basic blocks’
addresses. If the path of this test case is new to StateFuzz,
StateFuzz creates a new bucket in Tier-2 and stores this test
case, otherwise, it stores this test case in an existing bucket.
Third, if the test case discovers new extreme values, it will be
added to Tier-3 of the seed corpus. Then StateFuzz updates
the record of extreme values, and removes previous seeds that
discover out-of-date extreme values to minimize the corpus.
Due to our minimization mechanism, the number of seeds in
Tier-3 is not very large, and we do not need to use buckets to
cluster seeds.

Seed Selection. Given the preserved three-tiered seed cor-
pus, StateFuzz further applies a special seed selection strat-
egy to improve the fuzzing efficiency. Algorithm 2 shows
the detail of how StateFuzz selects seeds from the corpus.
Firstly, StateFuzz chooses a tier of the seed corpus, accord-
ing to the predefined probability hyper-parameters P, and P,.
Here we just let the three tiers of the corpus have the same
probability of being selected (i.e., P,=3 and P.=3), which is
a naive design (we discuss how to choose the values of P,
and P, in Appendix A.2). After tier selection, StateFuzz se-

Table 2: Implementation details of StateFuzz.

Component Tool Lines of Code
State Recognition ~ DIFUZE, CRIX, CSA #2,500 (C++)
Instrumentation LLVM Sancov, SVF #500 (C++)
Fuzzing Loop Syzkaller #3,800 (Go)
Glue scripts - #1,000 (Python)
Total #7,800

lects a seed from the chosen tier. If Tier-1 or Tier-3 is chosen,
StateFuzz randomly selects a seed from the tier for further
mutation. If Tier-2 is chosen, StateFuzz first randomly se-
lects a bucket from this tier, and then selects a random seed
from this bucket for further mutation. In this way, different
buckets may get an equal opportunity to be selected. It avoids
a local optimum case, where seeds from one larger bucket get
selected more frequently than other seeds. Since each bucket
represents one control flow path, this seed selection strategy
will ensure different paths are explored thoroughly. Further,
within each bucket, there could be multiple seeds triggering
different states. This seed selection strategy will try to explore
different states when this bucket is chosen.

4 Implementation

StateFuzz has three major components, including program
state recognition, program instrumentation, and the fuzzing
loop. It also has several glue scripts. Table 2 summarizes the
components and their statistics.

In the first component, StateFuzz uses a modified ver-
sion of DIFUZE [14] to identify drivers’ program actions.
Besides, it recognizes state-variables shared and accessed by
different program actions with an LLVM pass, in which the
two-layer type-based indirect call analysis from CRIX [13]
is utilized to build call graphs. It collects state-variable con-
straints and infers the value ranges of each state-variable via
intra-module static symbolic execution through Clang Static
Analyzer (CSA) [1].

In the second component, to trace state-variables more
precisely, StateFuzz utilizes the points-to analysis tool SVF
[44] to find alias of state-variables, and trace accesses to these
aliases too. We mark the state-variables with names (for global
variables that are not in structure type) or their types (for
fields of structures) rather than the specific pointers, which
is a conservative solution and requires no complex pointer
analysis. And we utilize SVF to find state-variables’ alias that
cannot be recognized by names or types, as a complement
to state-variables. All coverage and program state tracing
instructions are instrumented with LLVM SanCov.

To track states, StateFuzz instruments target programs to
trace values of state-variables. Given the state-variable list
generated in Section 3.3. During compilation, StateFuzz
instruments tracing code after each store instruction if its
destination pointer points to a state-variable or its alias. For

USENIX Association

31st USENIX Security Symposium 3279

operations that write to state-variables by calling memory
copy functions like copy_from_user and memcpy, we parse
the type of destination memory of such functions to check if
state-variables are involved in destination memory according
to types.

The third component is based on the existing kernel fuzzing
engine Syzkaller [27]. Similar to Syzkaller, StateFuzz uti-
lizes three dictionaries to store coverage for the three dimen-
sions. For the value-range dimension, we splice the state-
variable ID and the hit range ID as a value-range unit of a
state-variable. Then for the two variables in a relevant state-
variable pair, we compute the hash of their value-range units
(i.e., the hash of two units) to represent a value-range edge.
The dictionary keys are value-range edges, and values are
the number of edges’ hit times. For the extremum dimension,
the dictionary keys are state-variable IDs and the dictionary
values are their extremums.

5 Evaluation

To demonstrate the effectiveness of StateFuzz, we first eval-
uate the variable-based state model. Then, we evaluate both
code coverage and state coverage of StateFuzz. Last and
most importantly, we evaluate StateFuzz’s capability of dis-
covering new vulnerabilities. We compare StateFuzz with
two state-of-the-art system call-based Linux kernel fuzzers:
Syzkaller and HFL [29]. HFL is a hybrid kernel fuzzer that
infers dependencies between system calls through symbolic
execution and performs very well in fuzzing the Linux driver
subsystem.
In summary, we aim to answer the following questions:

* RQI1: Are the state representation expressive and meaning-
ful? Is there any state explosion issue? (Section 5.2)

* RQ2: Can StateFuzz explore more states than existing
approaches? (Section 5.3)

* RQ3: Can StateFuzz achieve higher code coverage than
other existing approaches? (Section 5.4)

* RQ4: Can StateFuzz discover vulnerabilities in Linux
drivers? (Section 5.5)

¢ RQ5: How do different feedback dimensions affect
StateFuzz’s performance? (Section 5.6)

5.1 Fuzzing Evaluation Setup

We conduct fuzzing experiments for Linux drivers in two
environments: Linux upstream kernel v4.19 on gemu-system-
x86_64, and Qualcomm MSM-4.14 kernel on a Pixel-4, an
Android phone from Google.

In the first experiment (i.e., kernel v4.19), we test the kernel
running in QEMU on a server machine with 2 Intel Xeon CPU
E5-2695 v4 (2.10GHz) and 384GB RAM running Ubuntu
16.04 LTS. For Syzkaller and StateFuzz, we assign each
of them 8 VMs with two vCPUs per VM (i.e., 16 vCPUs
assigned). For HFL, for a fair comparison, it is assigned with

4 VMS with two vCPUs per VM (i.e., 8 vCPUs assigned) and
8 additional vCPUs for symbolic execution.

In the second experiment (i.e., MSM-4.14 kernel), we test
the MSM-4.14 kernel in a Pixel-4 phone rather than QEMU.
Many device drivers in MSM-4.14 rely on real phone periph-
erals that QEMU cannot emulate, preventing the MSM kernel
from booting on QEMU. As a result, HFL cannot be applied
to the MSM kernel, because its symbolic engine S2E [10]
relies on QEMU to perform dynamic binary translation. In-
stead, we conduct the phone fuzzing as follows: (1) build
and flash images for the phone as instructed by the Android
debug documentation’, (2) generate and execute test cases
(i.e., running syz-fuzzer and syz-executor) on the phone,
and (3) monitor the fuzzer (i.e., running syz-manager) on a
PC machine which is connected to the phone via USB debug-
ging, as instructed by the Syzkaller documentation®. The PC
machine runs Ubuntu 18.04 LTS with an Intel Core i7-8700
CPU (3.20GHz) and 32GB RAM.

In both environments, we utilize LLVM to compile the
kernel with KCOV and KCOV_ENABLE_COMPARISONS
enabled to collect code coverage, etc. We also enable KASAN
to detect bugs. All fuzzers involved in experiments apply the
same system call templates generated by DIFUZE, and only
system calls extracted by DIFUZE are enabled for fuzzing.
To distinguish from the original version of Syzkaller and
HFL, we use Syzkaller-D and HFL-D to refer to the origi-
nal Syzkaller applying DIFUZE system call templates and
the original HFL applying DIFUZE system call templates,
respectively. All the fuzzers involved in experiments are run
with empty initial seeds. To better demonstrate the perfor-
mance of fuzzers and get convergence results, we enlarge the
fuzzing time budgets. We fuzz the Linux upstream kernel
for 48 hours and fuzz the MSM kernel for 72 hours (since
the pixel-4 device has lower computing power, we give it a
bigger budget). All fuzzing time budgets do not include time
spent on the state model building. To reduce bias, we repeat
all experiments three times.

5.2 State Model Evaluation (RQ1)

Time cost. We conduct a pre-analysis in the aforemen-
tioned PC machine to build the state model. On average, the
pre-analysis phase of StateFuzz takes 15 hours. In detail,
state-variable recognition costs 6 hours, pointer analysis with
SVF takes 2 hours, and collecting constraints by static sym-
bolic execution costs 7 hours. We conduct intra-module sym-
bolic execution (via Clang Static Analyzer) on each source
code file for at most 1 hour. In our experiments, 43 out of
1401 files in the MSM kernel driver subsystem trigger time-
out, and 117 out of 2776 files in the Linux-4.19 kernel driver
subsystem trigger timeout. Note that, for a kernel under test,

Shttps://source.android.com/devices/tech/debug/kasan-kcov
Shttps://github.com/google/syzkaller/blob/master/docs/linux/setup_linux-
host_android-device_arm-kernel.md

3280 31st USENIX Security Symposium

USENIX Association

Table 3: Statistics of state-variables and their value ranges, as well as relevant state pairs.

Kernel # Program Actions # State-variables # Relevant Pairs # Value Ranges
Total Avg. Max
Linux-4.19 840 6055 25778 18921 3.12 157
MSM-4.14 1330 5037 18743 13332 2.65 193

Table 4: State-variable classification according to variable names. The result shows that about half of state-variables found
by StateFuzz are classified successfully. In Linux upstream kernel v4.19, we extract 2,299 variable names and successfully
category 48% among them. Specifically, of all variables, we find 4.3% in "explicit state", 14.6% in "mode" or "flag", 7.4%
in "boolean", 16.8% in "size", and 4.9% in "index". The remaining 52% of variables are in the "to be determined" category.
Similarly, we successfully extract 1,857 variable names in the MSM-4.14 kernel. Among these variables, we identify their
categories by name for 51% of state-variables. It is interesting that the results of MSM-4.14 kernel are very close to that of Linux
kernel v4.19, although MSM-4.14 kernel contains more customized Android drivers.

Kernel Category Amount Percentage Keywords in variables’ names Example
explicit state 100 4.3% state, status tnc_state
mode 146 6.4% mode, type sel_mode
flag 190 8.3% flag, mask c_cflag
Linux-4.19 size 387 16.8% len, size, cnt, count, num io_lock_cnt
index 113 4.9% index, idx, pos, offset, /*.*id/$ done_idx
boolean 170 7.4% done, /7. *ed/$, /. *ing/$, /N *able/$, /Nis_.*/$ pie_enabled
to be determined 1193 51.9% - cmd_opcode, height
explicit state 100 5.4% state, status r_state_current
mode 113 6.1% mode, type el2_mode
flag 119 6.4% flag, mask logging_mask
MSM-4.14 size 353 19.0% len, size, cnt, count, num client_count
index 97 5.2% index, idx, pos, offset, /. *id/$ table_index
boolean 173 9.3% done, /A.*ed/$, /" *ing/$, /N *able/$, /Nis_.*/$ is_mapped, is_complete
to be determined 902 48.6% - hdr_hdl, dirty

the pre-analysis only introduces a one-time cost, having a neg-
ligible impact on the fuzzing process, as discussed in §7.1.

State-related Statistics. For the Linux kernel v4.19,
StateFuzz extracts 840 program actions, shown in Ta-
ble 3. After discarding pointer type variables, StateFuzz
identifies 6,055 state-variables and 18,921 ranges. Each
state-variable is split into 3 ranges on average. Variable
sk_buff.len has the maximum number (i.e., 157) of ranges,
which stores the length of a socket’s data buffer and is widely
used in network communications. Followed the method in
Section 3.3, StateFuzz recognizes 25,778 relevant state-
variable-pairs. Thus, on average, one state-variable may
have about 4 relevant state-variables. For the MSM-4.14
kernel, 1330 program actions are identified by DIFUZE.
StateFuzz finds 5,037 state-variables, 18,743 value ranges
and 18,743 ordered relevant state-variable pairs. The vari-
able diag_md_session_t.peripheral_mask has the most
ranges, 193.

As the result shows, one state-variable has no more than
4 relevant state-variables on average. Although StateFuzz
tracks value-range combinations of two variables for every
relevant state-variable pair, the number of combinations is
acceptable, i.e., 25,778 and 18,743, respectively. Further, on
average, each state-variable has less than 4 (i.e., 3.12 or 2.65
respectively) value ranges. Therefore, there are less than 16

choices for each element in the program state bitmap on aver-
age. As aresult, it will not cause the state explosion issue.

Semantics of state-variables. We classify the extracted
state-variables by investigating the semantics of their names.
Empirically, those variables are divided into 6 categories,
which are "explicit state", "mode", "flag", "size", "index", and
"boolean". First, "explicit state" contains variables with ex-
plicit words "state" in their names. Second, variables in the
"mode" and "flags" categories are usually utilized to control
the behaviors of the program. Third, variables in the "size"
and "index" categories are often used to save the state of a
shared queue or buffer. As for "boolean", those variables are
often named using past tense or progressive tense of verbs to
represent program states. Variables from each category contain
specific keywords in their names.

We modify the Clang static analyzer to extract state-
variable names from declaration statements in the AST. Then
we check if those variable names contain any keywords and
split them into the categories mentioned above. In detail, the
keywords used are shown in Table 4. We check the variable
names using keywords in the list from top to bottom. Table
4 shows the classification result. The result shows that about
half of state-variables found by StateFuzz contain these key-
words.

USENIX Association

31st USENIX Security Symposium 3281

Table 5: Validation results of program action recognition and state-variable recognition. StateFuzz successfully recognizes 99%
of program actions and 90% of state-variables. Compared to the approach that checks whether their names contain state-related
keywords, StateFuzz can recognize 49% more state-variables.

Program Action

State-variable

State-variable

Kernel Driver (StateFuzz) (Keyword-match) # Declared Variable
TP FP FN TP FP FN TP FP FN

1 OSS Sequencer 64 0 0 45 46 1 18 15 28 2673
2 Linux-4.19 PPP 26 1 0 29 44 9 25 48 13 6430
3 e TUN 35 0 0 29 93 0 25 2 4 1700
4 UINPUT 24 0 2 15 24 1 9 2 7 388
5 Ashmem 15 0 0 8 30 1 6 4 3 173
6 TAxxx Cell 49 0 0 17 13 0 7 47 10 227
7 MSM-4.14 NPU 13 0 0 30 42 8 26 76 12 2528
8 SMClInvoke 6 0 0 24 7 4 16 10 12 332

Total 232 1 2 197 299 24 132 224 89 14421

False positives and false negatives. To evaluate the accu-
racy of our static analysis, we randomly select 4 drivers for
verification from Linux-4.19 and MSM-4.14, respectively.

Accuracy of program action recognition. We manually iden-
tify all program actions for these drivers to construct a ground
truth and then validate the program actions recognized by
StateFuzz. As shown in Table 5, among all 234 actions of
the 8 drivers, StateFuzz successfully recognizes 99% of ac-
tions with only 1 false positive and 2 false negatives. The
false positive is caused by DIFUZE treating a condition state-
ment as an ioctl command check. On the other hand, DIFUZE
misses two sub-commands when recognizing ioctl commands,
resulting in 2 false negatives.

Accuracy of state-variable recognition. We evaluate the
state-variables recognized by StateFuzz. Unfortunately, it
is not feasible to manually validate all variables and iden-
tify state-variables in these drivers, because there could be
thousands of variables declared in a driver (e.g., there are
2673 variables in the OSS sequencer driver according to
our AST analysis). Instead, we only collect the variables
whose names contain the keywords mentioned above and
the candidate state-variables recognized by StateFuzz, and
manually verify these collected variables to construct an ap-
proximate ground truth. As a result, 659 variables are col-
lected, of which 303 are collected by StateFuzz, 163 by
the keyword-matching method, and 193 by both. We manu-
ally verify all of these 659 variables and identify 221 final
state-variables according to our definition of state-variables
in Section 3.1. StateFuzz successfully recognizes 197 state-
variables, accounting for 90% of the total, 49% more than the
keyword-matching method.

The false positives are introduced for three reasons: first,
a driver usually communicates with other parts of the kernel
(e.g., file system, network) by reading and writing variables
like inode.i_size declared outside the driver. StateFuzz
may wrongly mark these variables as state-variables though
they do not represent states of the driver. Second, since
StateFuzz traverses instructions and collects state-variables
based on the call graph, incorrect callees in the call graph

could lead to false positives. Third, some candidate state-
variables are only utilized for debugging, output, or sending
back to userspace. These state-variables do not affect the
control flow and data flow of the driver. Of the 299 false posi-
tives produced by StateFuzz, 141 are introduced by the first
reason, 13 by the second, and 145 by the third.

We have tried to mitigate false positives introduced by the
first reason. Specifically, we first try to recognize common
utility functions that are shared by different drivers and the
kernel, and then remove their instructions from the execu-
tion traces of program actions. As a result, variables only
accessed in common utility functions will not be marked as
state-variables. We heuristically mark functions that are called
by more than MAX_NUM functions as utility functions. To pre-
vent side effects like false negatives, we conservatively set the
heuristic threshold MAX_NUM to 300, since core driver func-
tions are unlikely to get called by more than 300 functions.

We also further investigate the impact of these false-
positive state-variables on StateFuzz’s fuzzing campaigns
for Linux-4.19 and MSM-4.14. We find that 54 (18%)
false-positive state-variables are never accessed throughout
a fuzzing campaign, so no fuzzing inputs are preserved in
StateFuzz’s corpus for these variables. Other 155 (52%)
variables have no inferred value ranges, so these variables can
not introduce fuzzing inputs to the corpus for discovering new
value-range edges. As a result, 209 of 299 (i.e., 70%) false
positives introduce a negligible impact on the fuzzing cam-
paigns. Overall, the effect of false positives in state-variable
recognition is acceptable in the fuzzing campaigns.

The main reason for false negatives are summarised as fol-
lows: First, when building LLVM bitcode files, related func-
tions are not linked if they are located in different modules,
resulting in lacking analysis of the load and store instructions
inside the functions. Second, the lack of target callees of in-
direct calls in the call graph can also lead to false negatives.
Third, the state-variables read or written through wrappers are
ignored by StateFuzz. For example, the atomic_inc func-
tion is often used to update reference counts. Note that, we
did not find false negatives introduced by our aforementioned

3282 31st USENIX Security Symposium

USENIX Association

1.0

0.8

0.6

N ’___‘_,-—-/
0.0

00 01 02 03 04 05 06 07 08 09 10

Figure 3: CDF curve of X/(X+Y). X is the count of an indi-
vidual value range hit by StateFuzz, and Y is the count of
an individual value range hit by Syzkaller-D. For more than
80% of ranges, (X/X+Y) is greater than 1/2, meaning that
StateFuzz hits the range more frequently than Syzkaller-D.

Table 6: The number of value-range edges found by
StateFuzz and Syzkaller-D-col.

Kernel StateFuzz Syzkaller-D-col

20507 (100%)

Linux-4.19 27117 (132%)

utility function filtering strategy, showing the conservative
threshold for MAX_NUM is reasonable.

In summary, StateFuzz can recognize 99% of program ac-
tions and identify about 90% of state-variables, demonstrating
the effectiveness of our static analysis.

5.3 State Coverage Evaluation (RQ2)

To demonstrate the capability of StateFuzz at exploring pro-
gram states, we first compare it with a modified version of
Syzkaller-D, in which we only apply additional state-variable
tracking instrumentation to collect values of state-variables.
We note it as Syzkaller-D-col. We do not introduce any new
feedback mechanism in Syzkaller-D-col, and the instrumenta-
tion is only utilized for logging. We perform this experiment
on the Linux upstream kernel of the 4.19.113 version.

Hit Count of Value Ranges. We then collect hit times
of each individual value range for both StateFuzz and
Syzkaller-D-col. For better demonstration, we compute the ra-
tio of two fuzzers’ accessing times for every value range
R. Suppose R is accessed X times by StateFuzz and Y
times by Syzkaller-D-col. If X/(X+Y) > 0.5, it means that
StateFuzz accesses the range R more often than Syzkaller-
D-col. Therefore, we sort values of X/(X+Y) for all state-
variable ranges. The result can be presented with a cumulative
distribution function (CDF) curve in Figure 3. It shows that,
more than 80% of ranges’ ratio exceeds 0.5, which means
that StateFuzz accesses more times than Syzkaller-D-col
for 80% of ranges. Besides, about 20% of ranges’ ratio is
greater than 0.9, which shows that StateFuzz accesses these
ranges 9 times more than Syzkaller-D-col. The result shows
that StateFuzz can explore states that are rarely accessed.

Hit Count of Value-range Edges. Table 6 shows the num-
ber of distinct value-range edges found by StateFuzz and

45000 47500

42500 45000

40000 42500
& 37500 é’\ 40000
T 35000 g 37500
M o 35000
£ 32500 2 22500
S 30000 S

& 30000
* 57500 = StateFuzz * 37500

25000 = HFL-D 25000
22500 = Syzkaller-D 22500

20000 20000
4 8 12 16 20 24 28 32 36 40 44 48

time (hour)

+—— StateFuzz
= Syzkaller-D

0 6 12 18 24 30 36 42 48 54 60 66 72
time (hour)

(a) Linux-4.19 (b) MSM-4.14

Figure 4: Code coverage. The first 20,000 code edges are
hidden, as all the fuzzers discover them in 10 minutes.

Syzkaller-D-col. In the Linux upstream 4.19 kernel, Syzkaller-
D-col discovers 20,701 value-range edges while StateFuzz
discovers 27,117 value-range edges, 32% more than Syzkaller-
D-col. As shown above, StateFuzz can explore not only
value ranges that are rarely accessed but also more value-
range edges, which means StateFuzz can explore more states
with the guidance of our state model.

5.4 Code Coverage Evaluation (RQ3)

To verify whether StateFuzz is capable of exploring more
code in the same time budget, we compare it with HFL and
Syzkaller. This experiment is performed in both Linux kernel
v4.19 and MSM-4.14 kernel. Since HFL does not support
fuzzing real Android devices, we only use HFL-D to fuzz the
Linux upstream kernel with QEMU.

As Figure 4 shows, our approach StateFuzz shows an ad-
vantage of code edge coverage. In Linux-4.19, StateFuzz dis-
covers 19% more code edges than Syzkaller-D and 15% more
code edges than HFL-D, while in MSM-4.14 StateFuzz dis-
covers 7% more code edges than Syzkaller-D. The result
shows that StateFuzz can achieve higher code coverage than
the state-of-the-art kernel fuzzers in the same time budget.

5.5 Vulnerability Discovery Evaluation (RQ4)

We intermittently fuzzed the Linux-4.19 kernel and the MSM-
4.14 kernel with StateFuzz over two months. In summary, a
total of 20 vulnerabilities are found by StateFuzz, of which
7 are found in Linux-4.19 and 13 are found in MSM-4.14. All
vulnerable drivers found in MSM-4.14 rely on Qualcomm
SoCs or specific peripherals of Google Pixel phones, and their
code is not included in the Linux upstream kernel. We re-
ported all of these 20 vulnerabilities to developers, and 19 of
them are confirmed. Table 7 shows the vulnerabilities found
by StateFuzz. For security concerns, we hide function names
and file names for vulnerabilities that are not fixed yet. Among
the 19 confirmed vulnerabilities, 14 are assigned CVE IDs, 3
are in a pending state, and the other 2 have been discovered
by developers internally’. Specifically, 9 confirmed vulnera-
bilities have been assigned bug bounty rewards by Google or
Qualcomm.

7But patches have not been applied to the latest open-source code when
we submitted reports.

USENIX Association

31st USENIX Security Symposium 3283

& ED

(a) Linux-4.19 (b) MSM-4.14

Figure 5: The number of vulnerabilities discovered in 3
fuzzing campaigns for the Linux upstream kernel and the
MSM kernel (HFL-D is only used in the Linux kernel fuzzing
campaign).

To further demonstrate StateFuzz’s efficiency of vulnera-
bility discovery, we use Syzkaller-D, HFL-D, and StateFuzz
to fuzz our targets, and compare the number of vulnerabil-
ities discovered by the three fuzzers. Since HFL does not
support fuzzing real Android devices, we only use HFL-D for
Linux-4.19. We repeat each fuzzing campaign three times and
accumulate the count of vulnerabilities together. We use the
same time budgets as mentioned in Section 5.1. The result is
shown in Figure 5. In this experiment, StateFuzz discovers
19 of 20 reported vulnerabilities, 46% more than Syzkaller-
D. Specifically, StateFuzz discovers all 7 vulnerabilities in
Linux-4.19, where HFL-D discovers 6, and StateFuzz dis-
covers 12 vulnerabilities in the MSM kernel. The only missing
vulnerability (the out-of-bounds writing in MSM diagnostic
driver) is also not found by Syzkaller-D in this experiment.
Besides, StateFuzz discovers all 13 vulnerabilities found
by Syzkaller-D and HFL-D in this experiment, showing that
StateFuzz is effective at discovering vulnerabilities.

We further investigate the 5 vulnerabilities only discovered
by StateFuzz in MSM-4.14. Out of these 5 vulnerabilities,
4 vulnerable code pieces are discovered by both StateFuzz
and Syzkaller-D. It demonstrates that StateFuzz can better
discover program states to trigger vulnerabilities after discov-
ering vulnerable code. HFL relies on the emulator and fails
to test MSM-4.14 on the phone.

5.6 How do different feedback dimensions af-
fect StateFuzz’s performance? (RQS5)

To understand how StateFuzz works and evaluate the contri-
bution of each feedback dimension, we compile three variants
of StateFuzz by disabling each feature. Then we perform
fuzzing campaigns in the Linux-4.19 kernel with variants.
We only enable the code coverage feedback to implement
a baseline variant named "C". The variant C-R enables the
feedback dimension of value-range tracking and code cover-
age. Another variant C-E enables the feedback dimension of
extremum tracking along with code coverage, while our com-
plete approach C-R-E enables all three feedback dimensions.

Figure 6 demonstrates both extremum tracking and value-
range tracking can contribute to code coverage. C-E achieves
9% higher code edge coverage than baseline C, and C-R
achieves 10% higher. C-R-E achieves the highest growth
of 17%, which means that the three feedback dimensions

Em #Code Edge HE #Value-range Edge
50000

45000
40000
35000
30000
25000
20000
15000
10000
5000
0

Figure 6: The number of discovered code edges and value-
range edges for the Linux-4.19 kernel. C is the baseline with
enabling only code coverage; C-E enables the extremum di-
mension along with code coverage; C-R enables the value-
range dimension and code coverage; C-R-E indicates the
variant that enables all three feedback dimensions.

/ global variable, controlled by user through ioctl TIOCLINUX
2| static int s_delta;

the parameter "lines" is equal to s_delta

4| static void vgacon_scrolldelta(struct vc_data *c, int lines) {
int start, end, count, soff;

v_cur->restore = 0;
start = v_cur->cur + lines;

10 if (start > v_cur->cnt)
start = v_cur->cnt;

if (end > v_cur->cnt)
14 end = v_cur->cnt;
15 v_cur->cur = start;
count = end - start;

soff = v_cur->tail - ((v_cur->cnt - end) * c->vc_size_row);
8 soff -= count * c->vc_size_row;
19 if (soff < 0)

20 soff += v_cur->size;

// out of bounds read when soff < 0
memcpy (d, v_cur->data + soff, copysize);

Listing 2: A simplified code snippet of CVE-2020-28097

could promote each other in discovering more code. Figure 6
also demonstrates that C-R discovers 47% more value-range
edges than baseline C, while C-E discovers only 16% more.
Compared to C-R, the value-range edge coverage of C-R-
E barely increases even with enabling additional extremum
tracking. This experiment shows that value-range tracking
contributes the most to increasing value-range edge coverage.

5.7 Case Study: CVE-2020-28097

Listing 2 demonstrates a simplified out-of-bound mem-
ory read vulnerability in the VGA console driver, which is
only discovered by StateFuzz. The variable s_delta is a
global variable which represents the scroll state of vga console.
s_delta and struct v_cur can be controlled by user through
ioctl, and the value of s_delta will be copied to the parame-
ter lines of function vgacon_scrolldelta. The root cause
of this vulnerability is that the offset sof £ of memcpy’s source
buffer can be negative, leading to an out-of-bounds memory

3284 31st USENIX Security Symposium

USENIX Association

Table 7: Vulnerabilities found by StateFuzz. Status Confirmed® indicates that the vulnerability has been confirmed and
assigned a bug bounty reward by the vendor. Status Con firmed* means that the vulnerability has been found by developers
internally, but the patch was not released or merged when we reported the vulnerability. Function and file names of non-fixed

vulnerabilities are hidden for security concerns.

Kernel File Function Vulnerability Type Status CVEID

1 drivers/input/keyboard/sunkbd.c sunkbd_reinit Use-after-free Confirmed & Fixed CVE-2020-25669
2 drivers/staging/speakup/spk_ttyio.c spk_ttyio_ldisc_close Null-pointer Dereference Confirmed & Fixed CVE-2020-28941
3 drivers/staging/speakup/spk_ttyio.c spk_ttyio_receive_buf2 Null-pointer Dereference Confirmed & Fixed CVE-2020-27830
4 Linux-4.19 drivers/video/console/vgacon.c vgacon_scrolldelta Out-of-bounds Read Confirmed & Fixed CVE-2020-28097
5 drivers/md/dm-ioctl.c list_devices Out-of-bounds Write Confirmed & Fixed CVE-2021-31916
6 drivers/bluetooth/ Use-after-free Reported

7 drivers/tty/vt/ Deadlock Confirmed

8 drivers/mfd/adnc/iaxxx-module.c iaxxx_core_sensor_change_state Out-of-bounds Read Con firmedB & Fixed CVE-2021-0461
9 drivers/platform/msm/ipa/ipa_v3/ipa_utils.c ipa3_counter_remove_hdl Out-of-bounds Read Confirmed & Fixed CVE-2021-30265
10 drivers/char/diag/diag_pcie.c diag_pcie_write Out-of-bounds Write Confirmed® & Fixed ~CVE-2021-30298
11 drivers/char/diag/diag_dci.c diag_send_dci_pkt_remote Out-of-bounds Write ConfirmedB & Fixed CVE-2021-30324
12 drivers/char/diag/diag_dci.c extract_dci_pkt_rsp Out-of-bounds Write Confirmed® & Fixed ~CVE-2021-30325
13 drivers/mfd/adnc/iaxxx-btp.c iaxxx_btp_write_words Out-of-bounds Read Confirmed® & Fixed ~CVE-2021-39717
14 MSM-4.14 drivers/misc/faceauth_hypx.c hypx_create_blob_dmabuf Use-after-free Confirmed® & Fixed ~CVE-2022-20183
15 drivers/misc/ipu/ipu-core-jqs-msg-transport.c ipu_core_jqs_msg_transport_kernel_write_sync Use-after-free Confirmed® & Fixed ~CVE-2022-20155
16 drivers/mfd/abc-pcie.c abc_pcie_enter_el2_handler Use-after-free Confirmed” & Fixed CVE-2022-20185
17 drivers/nfc/ Use-after-free Confirmed®

18 drivers/char/diag/ Out-of-bounds Read Confirmed

19 drivers/platform/msm/ipa/ipa_v3/ipa_odl.c ipa3_replenish_rx_cache User-after-free Confirmed* & Fixed
20 drivers/char/adsprpc.c get_args Null-pointer Dereference ~ Confirmed* & Fixed

read from a negative offset at Line 23. When the value of
s_delta is set to a small negative number and v_cur->cnt
is set to a large positive number, soff will be a negative
integer after a series of computations.

We observe that Syzkaller-D can easily cover all the rele-
vant code with the guidance of code coverage feedback. But
Syzkaller-D fails to find a proper test case to trigger this vul-
nerability, since the probability of setting these two variables
to proper values is quite low. However, StateFuzz success-
fully identifies the variable s_delta as a state-variable, and
preserves the seed which hits the negative value range of
s_delta for future mutation. As a result, StateFuzz has
more chances to execute the vulnerable code with a program
state in which s_delta is negative and thus can trigger this
vulnerability much easier. In all 3 of our 48-hour experiments,
according to our log, on average StateFuzz enters this spe-
cial state (i.e., s_delta is negative) for 5400 times, while
Syzkaller-D only enters this state for 16 times. It implies that
StateFuzz can guide fuzzer to explore different program
states and discover potential vulnerabilities.

6 Related Work

State Model Building State models have been widely stud-
ied in research about network protocols. Recent work builds
the protocol state model based on network traffic or dynamic
taint analysis [13,23,24]. In addition, recent works also uti-
lized state protocol fuzzing to infer TLS/DTLS protocol state
models for verifying whether the implementation of a protocol
is secure [7,11,17,21,42]. Ferry [54] dynamically recognizes
those variables that determine condition branches and are
influenced by inputs as state-describing variables. Compared
to StateFuzz, Ferry focuses on exploring state-related code
branches, while StateFuzz tries to explore more value ranges

of state-related variables during fuzzing. Besides, these meth-
ods based on dynamic analysis are limited by completeness.

State-aware Fuzzing Memlock [48] uses the extremum
value of the program’s allocated memory size as an additional
feedback dimension for grey-box fuzzing to discover mem-
ory leaks. But Memlock ignores the non-extremum value
ranges and can not track fine-grained states inside programs.
IJON [4] proposed an annotation mechanism involving human
analysis to guide the fuzzer to learn the program’s internal
state and track specific variables. However, since annotation
requires prior knowledge about the target program, it con-
sumes additional manual efforts. Instead, InvsCov [19] tracks
all variables if they are involved in memory access instructions
or if they represent return values. Then InvsCov infers im-
mutable boundaries for tracked variables by detecting invari-
ants from traces of pre-acquired corpus, and send additional
feedback when tracked variables violate these boundaries.
StateFuzz recognizes state-variables more accurately by us-
ing static analysis to mine programs’ semantic information.
StateFuzz does not need any corpus, and StateFuzz can
update the boundaries via our extremum feedback mechanism
as the exploration advances.

In state-aware protocol fuzzing, AFLNet [38] and SGP-
Fuzz [52] identified states based on response codes in network
packets to achieve state-aware fuzzing. RESTler [5] infers
execution states of inputs according to the response code of
REST API. However, response code is not common and not
available in most scenarios. StateAFL [32] proposes to use
locality-sensitive hashing on runtime memory to represent
program states in protocol fuzzing. It utilizes expensive post-
execution analysis to maintain the map between memory and
states during fuzzing, thus reducing the fuzzing efficiency.
KiF [2], SNOOZE [6] and these open-source tools [3,35,37]
require prior knowledge of the protocol state model to per-

USENIX Association

31st USENIX Security Symposium 3285

form stateful fuzzing, leading to a lack of scalability. Mobile
device fuzzer Vulcan [50] needs to collect application logs
to build an explicit state machine. StateFuzz can track pro-
gram states in a lightweight way and does not rely on response
codes or prior knowledge.

Linux kernel and driver fuzzing Syzkaller [27] is an en-
gine deployed by google for fuzzing kernel with system calls.
Developers manually added a bunch of system call templates
for Linux drivers. DIFUZE [14] focuses on automatically
extracting ioctl entry points, corresponding structures, and
device names for Linux driver fuzzing. Ex-vivo [39] extracts
ioctl entries and implements a kernel to fuzz Android drivers
without real devices. Periscope [43] and USBFuzz [36] are
fuzzers aiming to fuzz Linux drivers by executing test cases
from the hardware side. Unlike StateFuzz, Periscope and
USBFuzz inject inputs through configuration files or multiple
I/O channels such as MMIO and DMA, rather than system
calls. Charm [45] proposed a system solution for running
device drivers of mobile systems in a virtual machine to en-
able existing analysis solutions, such as fuzzing. NTFuzz [12]
performs static binary analysis to infer system call types for
system call-based Windows kernel fuzzing. IMF [25] aims
to infer explicit input dependencies between system calls
by tracking system call traces on MacOS. MoonShine [34]
focuses on retrieving the dependencies of system calls by
statically analyzing the parameters and accessing global vari-
ables. SyzVegas [46] dynamically and automatically adapts
Syzkaller’s task scheduling along with seed selection to im-
prove code coverage by leveraging multi-armed-bandit algo-
rithms and a novel reward assessment model. HFL [29] is
a hybrid kernel fuzzer based on Syzkaller, and HFL infers
dependencies of system calls with dynamic symbolic execu-
tion. However, they all lack further analysis of program states
Krace [49] utilized a two-dimension coverage mechanism to
fuzz the Linux file system for concurrency bugs.

7 Discussion
7.1 Performance Impact of Pre-analysis

To better guide fuzzing, it is a common practice to perform
pre-analysis to extract useful knowledge before fuzzing [9,
14,33,34,47]. Although the pre-analysis (i.e., state model
building by StateFuzz) introduces time cost, we believe the
performance impact to fuzzing is negligible for two reasons.
First, StateFuzz only needs to perform pre-analysis once for
one target kernel, and the results are saved as files and can
be reused by further fuzzing. Second, fuzzing campaigns usu-
ally last for days or even months, especially in kernel-space
fuzzing. As fuzzing campaigns last longer, the computing
resource spent on pre-analysis becomes less significant. In
summary, we believe that such a pre-analysis is meaningful
for improving fuzzing and the overhead is acceptable.

7.2 Effects of Static Analysis Accuracy

StateFuzz’s performance can be affected by the accuracy
of the static analysis. Specifically, program action recogni-
tion and state-variable recognition are key factors in con-
ducting state-aware fuzzing, and program action recognition
dominates the range of the state-variable recognition. False
negatives of state-variables lead to poor feedback about pro-
gram states during fuzzing, thus reducing the performance
contributed by the value-range dimension and the extremum
dimension. False positives of state-variables cause many use-
less test cases to fill up the seed corpus, wasting computing
resources. Since we mark state-variables with types or names
rather than specific pointers, we do not differ pointers with
the same types. Such a conservative way benefits two aspects.
First, it avoids many false negatives caused by imprecise
pointer analysis. Second, value-ranges from different source
code files are merged according to state-variables’ types or
names, avoiding the false negatives caused by intra-module
analysis’s limited range. Similar to state-variable recogni-
tion, false positives caused by intra-module analysis and alias
analysis also lead to many useless test cases and a waste of
computing resources.

7.3 Limitations and Future Work

Soundness and Completeness. Thanks to the fast execu-
tion, fuzzing can tolerate some false positives caused by the
program state recognition. We believe that the complete-
ness is more worthy of consideration since the number of
StateFuzz’s recognized state-variables is insignificant. In
the future, we will work to address the issues of incomplete
linkage and wrapper function identification.

Fuzzing other targets. The prototype of StateFuzz
mostly focuses on system call-based Linux driver fuzzing.
On the one hand, Linux drivers are stateful, and most of them
interact with user space in the same manner (i.e., through sys-
tem calls). Besides, the fuzzing framework Syzkaller can be
utilized to quickly implement a prototype of our approach. On
the other hand, for targets like network protocols, few handy
fuzzing frameworks can provide feedback transmission and
synchronize stages between client and server. We believe the
effort of building such a framework is orthogonal to our work.

Some Linux drivers (such as USB) could interact with
users through multiple I/O channels rather than system calls.
StateFuzz should be extended to recognize the program ac-
tions, which do not follow conventions of system calls. Specif-
ically, we can trace the value-flow of inputs by lightweight
instrumentation to dynamically find the entry functions that
handle our inputs.

StateFuzz is applicable to fuzz programs supporting se-
quential interaction events (e.g., network protocols, system
calls, GUI message loops, event loops, smart contracts in the
blockchain). For instance, vulnerabilities in smart contracts in
general rely on a sequence of interactions to trigger. Each invo-

3286 31st USENIX Security Symposium

USENIX Association

cation to the smart contract will change certain states, which
eventually leads the contract to a vulnerable state. StateFuzz
could recognize such critical states and interfaces that can al-
ter the states, which guides the fuzzer to efficiently discover
vulnerabilities in them.

8 Conclusion

In this paper, we assessed the limitation of coverage-guided
fuzzing solutions, and proposed a state-aware fuzzing solu-
tion StateFuzz. It utilizes static analysis to recognize shared
variables that are accessed by multiple program actions, and
use them as state-variables to characterize program states.
By tracing values of state-variables and using a combination
of two state-variables as feedback, StateFuzz can explore
states efficiently during fuzzing while increasing code cov-
erage. We implemented a prototype of StateFuzz for Linux
and Android driver testing. It has discovered 20 vulnerabili-
ties in Linux upstream drivers and Android drivers. Moreover,
StateFuzz can achieve higher code coverage and state cov-
erage than existing driver fuzzing approaches.

Acknowledgements

We would like to sincerely thank all the anonymous reviewers
and our shepherd, Dr. Suman Jana, for their valuable feedback
that greatly helped us to improve this paper. This work was
supported by the National Key Research and Development
Program of China (2021 YFB2701000), National Natural Sci-
ence Foundation of China (U20B2046, 61972224), Beijing
National Research Center for Information Science and Tech-
nology (BNRist) under Grant BNR2022RC01006.

References

[1

[2] Humberto J Abdelnur, Radu State, and Olivier Festor. Kif: a stateful sip
fuzzer. In Proceedings of the 1st international conference on Principles,
systems and applications of IP telecommunications, pages 47-56, 2007.

Clang static analyzer. https://clang-analyzer.llvm.org/.

[3

[t

P. Amini. A pure-python fully automated and unattended fuzzing
framework. https://github.com/OpenRCE/sulley.

[4

=

Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten
Holz. Ijon: Exploring deep state spaces via fuzzing. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1597-1612. IEEE,
2020.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler:
Stateful rest api fuzzing. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), pages 748-758. IEEE, 2019.

[5

=

[6] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth,
Richard Kemmerer, and Giovanni Vigna. Snooze: toward a stateful
network protocol fuzzer. In International Conference on Information
Security, pages 343-358. Springer, 2006.

[7

—

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union:
Taming the composite state machines of tls. In 2015 IEEE Symposium
on Security and Privacy, pages 535-552. IEEE, 2015.

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. brun. Windows kernel drivers fuzzer.
koutto/ioctlbf.

https://github.com/

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Tao Wei, and Long Lu. Savior: Towards bug-driven hybrid
testing. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1580-1596. IEEE, 2020.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A
platform for in-vivo multi-path analysis of software systems. In ACM
SIGARCH Computer Architecture News, volume 39, pages 265-278.
ACM, 2011.

Chia Yuan Cho, Domagoj Babi ¢, Eui Chul Richard Shin, and Dawn
Song. Inference and analysis of formal models of botnet command
and control protocols. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 426439, 2010.

Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. Ntfuzz:
Enabling type-aware kernel fuzzing on windows with static binary
analysis. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 677-693. IEEE, 2021.

Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel,
and Engin Kirda. Prospex: Protocol specification extraction. In 2009
30th IEEE Symposium on Security and Privacy, pages 110-125. IEEE,
2009.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: In-
terface aware fuzzing for kernel drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2123-2138, 2017.

Microsoft Corporation. How to perform fuzz tests
with iospy and ioattack. https://docs.microsoft.
com/en-us/windows-hardware/drivers/devtest/
how-to-perform-fuzz-tests-with-iospy-and-ioattack.

Cré4sh. Ioctl fuzzer - windows kernel drivers fuzzer. https://github.
com/Crdsh/ioctlfuzzer, 2011.

Joeri De Ruiter and Erik Poll. Protocol state fuzzing of {TLS} im-
plementations. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 193-206, 2015.

debasishm89. A mutation based user mode (ring3) dumb in-
memory kernel driver (ioctl) fuzzer/logger. https://github.com/
debasishm89/iofuzz, 2014.

Andrea Fioraldi. Program state abstraction for feedback-driven fuzz
testing using likely invariants. arXiv preprint arXiv:2012.11182, 2020.

Andrea Fioraldi, Dominik Maier, Heiko EiBfeldt, and Marc Heuse.
{AFL++}: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter,
Konstantinos Sagonas, and Juraj Somorovsky. Analysis of {DTLS}
implementations using protocol state fuzzing. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 679-696. IEEE, 2018.

Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp,
and Konrad Rieck. Pulsar: Stateful black-box fuzzing of proprietary
network protocols. In International Conference on Security and Privacy
in Communication Systems, pages 330-347. Springer, 2015.

Serge Gorbunov and Arnold Rosenbloom. Autofuzz: Automated net-
work protocol fuzzing framework. IJCSNS, 10(8):239, 2010.

HyungSeok Han and Sang Kil Cha. Inferred model-based fuzzing. In
Proceedings of the ACM Conference on Computer and Communications
Security, pages 2345-2358, 2017.

Google Inc. Kerneladdresssanitizer (kasan). https://github.com/
google/kasan.

USENIX Association

31st USENIX Security Symposium 3287

https://clang-analyzer.llvm.org/
https://github.com/OpenRCE/sulley
https://github.com/koutto/ioctlbf
https://github.com/koutto/ioctlbf
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-perform-fuzz-tests-with-iospy-and-ioattack
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-perform-fuzz-tests-with-iospy-and-ioattack
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-perform-fuzz-tests-with-iospy-and-ioattack
https://github.com/Cr4sh/ioctlfuzzer
https://github.com/Cr4sh/ioctlfuzzer
https://github.com/debasishm89/iofuzz
https://github.com/debasishm89/iofuzz
https://github.com/google/kasan
https://github.com/google/kasan

[27]

[28]

[29]

[30]

[31]

[32]

[33

=

[34]

[35
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43

[t

[44]

[45]

[46]

Google Inc. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller.

kernel.org. kcov: code coverage for fuzzing. https://www.kernel.
org/doc/html/v5.9/dev-tools/kcov.html.

Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Insik Shin, Yeongjin
Jang, and Byoungyoung Lee. Hfl: Hybrid fuzzing on the linux kerne. In
Network and Distributed System Security Symposium (NDSS). Internet
Society, 2020.

Caroline Lemieux and Koushik Sen. Fairfuzz: a targeted mutation
strategy for increasing greybox fuzz testing coverage. In the 33rd
ACM/IEEE International Conference, 2018.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. {MOPT}: Optimized mutation schedul-
ing for fuzzers. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 1949-1966, 2019.

Roberto Natella. Stateafl: Greybox fuzzing for stateful network servers.
arXiv preprint arXiv:2110.06253, 2021.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. {ParmeSan}: Sanitizer-guided greybox fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2289-2306, 2020.

Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Op-
timizing {OS} fuzzer seed selection with trace distillation. In 27k
{USENIX} Security Symposium ({USENIX} Security 18), pages 729~
743, 2018.

PeachTech. Peach fuzzer. https://www.peach.tech/.

Hui Peng and Mathias Payer. Usbfuzz: A framework for fuzzing {USB}
drivers by device emulation. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 2559-2575, 2020.

J. Pereyda. boofuzz: Network protocol fuzzing for humans. https:
//github.com/jtpereyda/boofuzz.

Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. Afinet:
A greybox fuzzer for network protocols. In Proc. IEEE International
Conference on Software Testing, Verification and Validation (Testing
Tools Track), 2020.

Ivan Pustogarov, Qian Wu, and David Lie. Ex-vivo dynamic analysis
framework for android device drivers. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1088-1105. IEEE, 2020.

Kostya Serebryany. Libfuzzer: A library for coverage-guided fuzz
testing (within llvm).

Kostya Serebryany. OSS-Fuzz - google’s continuous fuzzing service for
open source software. In 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, August 2017. USENIX Association.

Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis,
and Suman Jana. Hvlearn: Automated black-box analysis of hostname
verification in ssl/tls implementations. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 521-538. IEEE, 2017.

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul
Na, Stijn Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre
Seifert, and Michael Franz. Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. In NDSS, 2019.

Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference
on compiler construction, pages 265-266. ACM, 2016.

Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Fa-
cilitating dynamic analysis of device drivers of mobile systems. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
291-307, 2018.

Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V
Krishnamurthy, and Nael Abu-Ghazaleh. {SyzVegas}: Beating kernel
fuzzing odds with reinforcement learning. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2741-2758, 2021.

[47] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu,
Shengchao Qin, Hongxu Chen, and Yulei Sui. Typestate-guided fuzzer
for discovering use-after-free vulnerabilities. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 999—
1010. IEEE, 2020.

[48] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu,
Zhiwu Xu, Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu.
Memlock: Memory usage guided fuzzing. In 42nd International Con-
ference on Software Engineering. ACM, 2020.

[49] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data race fuzzing for kernel file systems. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1643-1660. IEEE, 2020.

[50] Edgardo Barsallo Yi, Heng Zhang, Amiya K Maji, Kefan Xu, and
Saurabh Bagchi. Vulcan: Lessons on reliability of wearables through
state-aware fuzzing. In Proceedings of the 18th International Confer-
ence on Mobile Systems, Applications, and Services, pages 391-403,
2020.

[51] Wei You, Xuegiang Wang, Shiging Ma, Jianjun Huang, Xiangyu Zhang,
XiaoFeng Wang, and Bin Liang. Profuzzer: On-the-fly input type
probing for better zero-day vulnerability discovery. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 769-786. IEEE, 2019.

[52] Yingchao Yu, Zuoning Chen, Shuitao Gan, and Xiaofeng Wang. Sgp-
fuzzer: A state-driven smart graybox protocol fuzzer for network pro-
tocol implementations. IEEE Access, 8:198668-198678, 2020.

[53] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.
cx/afl/, 2014.

[54] Shunfan Zhou, Zhemin Yang, Dan Qiao, Peng Liu, Min Yang, Zhe
Wang, and Chenggang Wu. Ferry: State-aware symbolic execution for
exploring state-dependent program paths.

A Appendix

A.1 Design choices of state-variable pairs

Like code-coverage-guided fuzzing, we mainly consider the
trade-off between sensitivity and size of the seed corpus to
choose what combination to track. Specifically, if we track
the combination of all state-variables, due to too many seeds
being preserved, maintaining a seed corpus can be expensive,
and most seeds have a slight chance of being selected. On
the other hand, tracking only one state-variable would miss
many potential states for the coarse-grained feedback. We
conduct a 48-hour fuzzing experiment in the Linux-4.19 ker-
nel to evaluate the performance of StateFuzz with a different
granularity of value-range feedback. Table 8 demonstrates
that the fuzzing process achieves the highest code coverage
and finds the most value ranges when tracking combinations
of two relevant state-variables (i.e., state-variable pairs). The
result also shows that the number of seeds in the corpus grows
rapidly as the feedback granularity becomes finer. It is not
feasible to track combinations of all state-variables due to
corpus explosion.

A.2 Values of P, and P,

To evaluate the effects of different P, and P, utilized in Algo-
rithm 2, we conduct an extra 48-hour fuzzing experiment in
the Linux-4.19 kernel. First, we consider the situation where

3288 31st USENIX Security Symposium

USENIX Association

https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/v5.9/dev-tools/kcov.html
https://www.kernel.org/doc/html/v5.9/dev-tools/kcov.html
https://www.peach.tech/
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Table 8: Results of fuzzing with tracking different combina-

tion types of relevant state-variables.

Combination # Code Edge # Value Range # Seed in Corpus
Monuple 41563 3282 6339
Pair 44359 3439 10808
Triple 41793 3252 29075
Quadruple 32450 2799 38604

#Code Edge (6=1.2%)
P=2 P=3 Pe4 P=5 | P2 P3 P4 PSS
99.1% 97.2% OIS 97.9% | 992% 97.7% | 99:1% 98.9%
98.1% | 100.0% 99.5% 97.8% | 96.8% | 100.0% 984% 98.6%
99.8% 97.0% 98.6% 99.5% | 965% 95.5% | 98.6% 98.1%
98.8% 99.2% 96.8% | 99.5% |199150| 964% 94.1% 97.4%

#Value-range Edge (6=1.6%)

o

[V VO)

Figure 7: The number of code edges and value-range edges
discovered by StateFuzz in the Linux-4.19 kernel when P,
and P, traverse the range from 2 to 5. To better demonstrate
the degree of change, we convert all numbers to percentages of
the case where P,=3 and P.=3. The standard deviation of code
edges is 1.2% and of value-range edges is 1.6%, which means
that the performance of StateFuzz is close when using these
configurations.

the first two tiers of the corpus are selected with similar high
probabilities. We set P, and P. to be the integers ranging from
2 to 5, respectively. As shown in Figure 7, the performance
of StateFuzz is close in these cases.

Second, we make the first two tiers of the corpus have
a much smaller probability of being selected (e.g., 1/100),
respectively. The result in Figure 8 shows the performance of
StateFuzz declines significantly compared to the case where
P, and P, are integers ranging from 2 to 5. Based on the above
results, we naively apply the configuration of P,=3 and P.=3,
with which StateFuzz performs well in both discovering
code edges and value-range edges. As for how to find the
optimal values for P, and P, (i.e., how to assign energy to the
three tiers of corpus), we believe this is an interesting topic
worthy of further study, and we leave it to future work.

A.3 Fuzzing the motivation example driver

We fuzz the motivation example driver mentioned in Section
2.2 with both Syzkaller and StateFuzz. In these fuzzing
campaigns, we replace all system call templates of the fuzzers
with our manually written templates shown in Listing 3, to
help the fuzzers dispatch all program actions of the example
driver. The code coverage trend of Syzkaller is shown in

Figure 9). It takes Syzkaller 13 hours to find the first crash.

And it still takes Syzkaller 4 hours to trigger the crash after
discovering all relevant code. However, StateFuzz triggers
the first crash in less than 5 minutes in our experiments.

Code Edge Value-range Edge

45000 28000
44000 27500
43000
42000 27000

41000 26500

40000
26000
39000

38000 25500

37000 25000
36000

35000 24500

34000 24000

Figure 8: Either the number of code edges or the number of
value-range edges discovered by StateFuzz declines signifi-
cantly when P,=100 or P,=100.

syz_open_dev$dev_scull (dev ptr64[in, string["/dev/scull"]], id

intptr, flags flags[open_flags]) fd_scull

2| ioctl$dev_scull_A(fd fd_scull, cmd const[0x41], arg ptré64[inout,
string])

3| ioctl$dev_scull_B(fd fd_scull, cmd const[0x42], arg ptr64[inout,
string])

4| ioctl$dev_scull_C(fd fd_scull, cmd const[0x43], arg ptr64[inout,
string])

5| ioctl$dev_scull_V(fd fd_scull, cmd const[0x56], arg ptr64[inout,
string])

Listing 3: System call templates for the example driver.

800 3

600

#Code Edge
S
o
o
#Crash

200 —— Code Edge

—— Crash

0 4 8 12 16 20 24 28 32 36 40 44 48
Time (hour)

Figure 9: It takes Syzkaller 13 hours to find the first crash
while fuzzing the motivation example driver. It is notable that
it takes Syzkaller 4 hours to trigger the crash after covering
all relevant code. Our solution StateFuzz triggers the out-
of-bounds vulnerability with only 30,000 test cases being
executed in less than 5 minutes.

USENIX Association

31st USENIX Security Symposium 3289

	Introduction
	Background
	POSIX Driver Fuzzing
	Motivation Example
	Program States

	Our Solution: StateFuzz
	Modeling of Program State
	Overview
	Program State Recognition
	Fuzzing Loop
	Three-dimension Feedback Mechanism
	Seed Preservation and Selection Strategy

	Implementation
	Evaluation
	Fuzzing Evaluation Setup
	State Model Evaluation (RQ1)
	State Coverage Evaluation (RQ2)
	Code Coverage Evaluation (RQ3)
	Vulnerability Discovery Evaluation (RQ4)
	How do different feedback dimensions affect StateFuzz's performance? (RQ5)
	Case Study: CVE-2020-28097

	Related Work
	Discussion
	Performance Impact of Pre-analysis
	Effects of Static Analysis Accuracy
	Limitations and Future Work

	Conclusion
	Appendix
	Design choices of state-variable pairs
	Values of Pr and Pc
	Fuzzing the motivation example driver

