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Abstract
Secure multi-party computation (MPC) is an essential tool for
privacy-preserving machine learning (ML). However, secure
training of large-scale ML models currently requires a pro-
hibitively long time to complete. Given that large ML inference
and training tasks in the plaintext setting are significantly accel-
erated by Graphical Processing Units (GPUs), this raises the
natural question: can secure MPC leverage GPU acceleration?
A few recent works have studied this question in the context
of accelerating specific components or protocols, but do not
provide a general-purpose solution. Consequently, MPC devel-
opers must be both experts in cryptographic protocol design
and proficient at low-level GPU kernel development to achieve
good performance on any new protocol implementation.

We present Piranha, a general-purpose, modular platform
for accelerating secret sharing-based MPC protocols using
GPUs. Piranha allows the MPC community to easily leverage
the benefits of a GPU without requiring GPU expertise.
Piranha contributes a three-layer architecture: (1) a device
layer that can independently accelerate secret-sharing
protocols by providing integer-based kernels absent in current
general-purpose GPU libraries, (2) a modular protocol
layer that allows developers to maximize utility of limited
GPU memory with in-place computation and iterator-based
support for non-standard memory access patterns, and (3)
an application layer that allows applications to remain
completely agnostic to the underlying protocols they use.

To demonstrate the benefits of Piranha, we implement 3
state-of-the-art linear secret sharing MPC protocols for secure
NN training: 2-party SecureML (IEEE S&P ’17), 3-party Fal-
con (PETS ’21), and 4-party FantasticFour (USENIX Security
’21). Compared to their CPU-based implementations, the same
protocols implemented on top of Piranha’s protocol-agnostic
acceleration exhibit a 16−48× decrease in training time. For
the first time, Piranha demonstrates the feasibility of training
a realistic neural network (e.g. VGG), end-to-end, using MPC
in a little over one day. Piranha is open source and available at
https://github.com/ucbrise/piranha.

1 Introduction
Applications like machine learning (ML) have enjoyed tremen-
dous success in automating tasks such as biometric authentica-
tion, personalized ad recommendation, or detecting fraudulent
financial transactions [13,65,66]. However, these models come
at a significant privacy cost, as the data underlying them can be
highly sensitive, ranging from medical data to online behavior

and financial records. This has incentivized the development
of privacy-preserving approaches to ML [32, 37, 91].

Secure Multi-Party Computation (SMC/MPC) has
emerged as a promising tool for privacy-preserving compu-
tation [12, 39, 91]. MPC enables a group of entities to perform
a joint computation without revealing their inputs to the
computation. Thus, when data is sensitive, MPC can enable a
the group of entities to generate insights from this data (such as
training ML models or performing inference) without ever dis-
closing the data in plaintext to the other parties involved. MPC
has shown tremendous progress in the past few years, making
significant algorithmic improvements [15,16,57,59] as well as
robust, efficient, and versatile implementations [7, 21, 45, 72].
However, despite these advances, the overhead of MPC
remains prohibitive when considering large computations. For
instance, secure training of large machine learning models is
over 4 orders of magnitude slower than plaintext training [88].

In the plaintext setting, large ML inference and training
tasks are made practical by the use of GPUs – many-core hard-
ware accelerators that support highly-parallelizable workloads.
Individual operations, or kernels, are tiled across the many
GPU processor threads to minimize execution time over large
input data. For example, the use of GPUs can improve the
training times of commonly used ML models by 10−30× [77],
making them an essential tool in today’s ML infrastructure.
A few recent works [35, 42, 57, 79] have utilized GPUs to
accelerate MPC computation. However, their GPU usage is
limited to accelerating individual operations or a specific MPC
protocol. Delphi [57], for example, only accelerates convo-
lution operations before continuing computation on the CPU,
while CryptGPU [79] designs a specific 3-party protocol for its
application. As a result, any new protocol must re-implement
the same basic GPU support, a difficult task in general.
Requiring MPC developers to develop domain-specific
knowledge of GPU task scheduling and memory hierarchy
to implement efficient kernels raises the barrier to entry and
impedes the development of practical MPC-based systems.

1.1 Challenges and Insights
Supporting efficient secure computation on the GPU
faces a few core problems. Plain-text ML computation is
straightforward and can be done directly in floating point
with reasonable memory constraints, while the equivalent
multi-party computation can be accomplished using any
number of different protocols, operating over integer types,
with significantly higher available memory requirements. We
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Figure 1: Piranha’s three-layer architecture in blue, with
components implemented on top in white. On the device
layer, we contribute low-level GPU kernels accelerating local,
integer-based data shares. At the protocol layer, we implement
functionality for three different linear secret-sharing (LSSS)
MPC protocols at the protocol layer: SecureML [60] (2-party),
Falcon [88] (3-party), and FantasticFour [23] (4-party). At
Piranha’s application layer, we provide a protocol-agnostic
neural network library that can be executed by any of the
protocols. Piranha is modular in that it can support additional
components beyond what we provide.

design Piranha to address these challenges while providing a
general-purpose platform for MPC development, with support
for linear secret-sharing schemes (LSSS), encompassing a
large (and growing) number of state-of-the-art protocols for
secure computation [18, 23, 56, 64, 69, 86, 88].

Challenge: Protocol-independent acceleration. As even
simple multi-party operations such as multiplications may
be computed using a wide variety of approaches based on
the protocol used, how can a platform efficiently provide
acceleration support to each of them? While entire MPC
computations are quite different, they are almost always
decomposed into individual operations over local data shares
mixed with communication between the parties to obtain
the final result. Thus, accelerating local operations over
local shares can yield significant performance benefits while
remaining entirely protocol-independent. Piranha uses vector
shares as the basic unit of computation over individual values,
as it ensures that any protocol or application implemented
using them will inherently take advantage of the GPU’s
parallelism. With a shared abstraction for local data, Piranha
can transparently manage data transmission and memory
allocation, keeping data on the GPU for the entirety of the
computation while minimizing data transfer from the CPU.

Challenge: Enabling integer-based GPU computation.
Data representation is an important consideration for secure

computation libraries. There is a tension between supporting
high-precision real values required by applications such as NN
training (e.g. float datatypes) and structured algebraic proper-
ties required by the secret sharing schemes (e.g. int datatypes).
State-of-the-art secure computation libraries and frameworks
resolve this tension by using fixed-point datatypes, encoding
real values with a fixed precision into a large integral datatype
(typically 64-bits). Unfortunately, GPUs primarily focus on
accelerating floating-point computation with extremely effi-
cient kernel implementations, targeting plaintext graphics and
ML workloads. This has resulted in a dearth of GPU kernels
for large bitsize (32- and 64-bit) integer computations [3]. We
argue that the lack of integer kernels in existing GPU libraries
significantly hampers simple acceleration for MPC protocols;
Piranha explicitly provides for integer-based shares and match-
ing GPU integer kernels to accelerate common operations.

Challenge: Supporting large MPC problems in limited
GPU memory. While modern CPUs boast terabytes of RAM
for computation, present-day GPUs are constrained to a
severely limited pool of available memory – 12 or 16 GB for
commodity models. This is a salient issue for MPC, where
protocols often maintain duplicated copies of data in separate
secret shares, leading to a multiplicative increase in memory
requirements. When paired with ML model parameters whose
footprint can range in the gigabytes, even in plaintext, Piranha
must make as efficient use of its limited device memory as
possible. This can directly impact overall performance: in ML
training, memory availability limits the total batch size – i.e.
the number of data points processed in parallel – that can be
supported on a single GPU. To address this problem, we pri-
marily support in-place operations for local shares, performing
additional memory allocation only when a protocol explicitly
requests it. While applications like privacy-preserving ML
training will always require a baseline allocation, encouraging
protocols to reuse existing buffers minimizes temporary peaks
in total memory usage. Second, MPC protocols may exhibit
non-standard memory access patterns incompatible with the
integer kernels available. Naively copying data into the desired
layout before performing the computation unnecessarily limits
the problem sizes we can support, so to efficiently parallelize
some operations, Piranha’s insight is that memory-efficient
computation can be achieved with views over GPU memory,
allowing for in-place computation. In particular, this approach
precludes the need to manually modify GPU data layouts,
avoiding any temporary memory allocation or data transfer
overhead that the computation would normally require.

1.2 Evaluation Summary
Piranha addresses these issues with a modular, three-layer
GPU-based framework for secure computation (Figure 1)
whose structure we discuss in Section 2. We demonstrate the
practical use of Piranha in implementing three different LSSS
protocols for secure neural network training – the 2-party
SecureML [60], 3-party Falcon [88], and 4-party Fantastic
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Four [23] protocols. Piranha does not propose a new secure
multi-party protocol, rather, we focus on demonstrating how
the platform accelerates existing protocols. We plug these
protocols into a high-level neural network library to provide
GPU-assisted private training and inference of ML models.

Compared to state-of-the-art CPU implementation [28] of
computational building blocks such as matrix-multiplication,
convolutions, and comparisons, Piranha improves runtime
by 2 to 3 orders of magnitude. Thus, Piranha makes a big step
forward towards practical MPC training. For example, prior
work such as Falcon estimates that training a realistic neural
network like VGG16 using its 3-party protocol would require
14 days [88]. In comparison, Piranha can perform the same
training process in 33 hours, a 10× improvement.

One would expect that since Piranha accelerates general
LSSS-based MPC, Piranha would thus be slower than a
system like CryptGPU [79] that is tailored for a specific
MPC protocol. We show that in fact, we achieve generality
while demonstrating a 2-12× improvement in runtime and
supporting up to a 4× greater problem size on the same GPU
hardware. CryptGPU [79] only demonstrates full end-to-end
training on simple networks such as AlexNet [51], while only
micro-benchmarking single-layer training passes for larger
networks like VGG16 [78] which has twice as many param-
eters. In contrast, for the first time, Piranha demonstrates the
feasibility of training a realistic neural network like VGG [78],
end-to-end, using MPC in a little over one day.

2 System Architecture
Piranha contributes three distinct, modular layers that provide
a separation of concerns for GPU-accelerated secure compu-
tation (Figure 1): a device layer that abstracts GPU-specific
code from MPC developers; a protocol layer that implements
different MPC protocols, their secret-sharing schemes, and
adversarial models; and an application layer that uses these
protocols in an agnostic manner for high-level computation.

The device layer consists of two components. First, it
provides an abstraction of a GPU-based integer vector, which
represents a locally-held share of a vector whose values
are secret-shared among multiple parties. These shares live
on the GPU throughout the computation, minimizing data
transfer overhead. Communication is handled in a protocol-
independent manner: when necessary, the device layer copies
a share to the CPU before transmitting it over the network.
Second, the device layer maintains a set integer kernels that
implement commonly-needed functionality (e.g. elementwise
addition or matrix multiplication) over local share vectors. We
discuss how MPC operations are accelerated in Section 3.

The protocol layer allows MPC developers to compose
operations on local shares into a full protocol, benefiting from
GPU acceleration without developing expert knowledge or
re-implementing GPU support from scratch. Applications
rely on each protocol to provide an interface in the form of
a secret-shared vector and a set of functionalities that can

operate on them. Alongside individual protocol definitions, we
implement protocol functionality under the Arithmetic Black
Box Model that can be used to supplement any of the specific
protocols, demonstrating the benefit of Piranha’s modular
structure. In addition, MPC protocols can require intricate
computation that cannot be foreseen at the device layer;
Section 4 details how iterator-based views over local shares
on the GPU can be used to enable these operations while
remaining within the GPU’s limited memory constraints.

Finally, at the application layer, computation can focus
on solving domain-specific challenges such as secure neural
network training, without a dependency on any specific
protocol. The functionality set provided by each protocol
determines which applications can use a given protocol
without requiring modification.

To put Piranha in context, imagine implementing a simple
privacy-preserving neural network layer. Its core logic (e.g.
updating layer parameters during forward and backward
passes) remains untouched at the application layer. Instead
of using plaintext vectors, however, the layer makes use of a
vector secret-shared by an implementation at the protocol layer,
and operates on these secret shares using the corresponding
protocol functionality, for example, a privacy-preserving
matrix multiplication. In turn, the protocol decomposes its
multiplication into a series of local matrix multiplications,
which are accelerated by a protocol-independent integer
kernel in Piranha’s device layer.

Threat model. Piranha assumes that parties participating
in a protocol execution operate in separate trust domains,
using their dedicated GPUs (e.g. in a cloud provider of choice).
A GPU in Piranha communicates with another parties’ GPU
through their associated CPUs and across a normal Internet
connection. As such, Piranha can be used in both LAN and
WAN environments. Due to Piranha acting as a platform for
existing MPC protocols, parties executing an application with
Piranha inherit the security guarantees of the underlying MPC
protocol. For example, a protocol with semi-honest security
retains those guarantees while being executed by Piranha. We
implement and evaluate three such semi-honest protocols on
top of Piranha in Section 6.

3 Device layer

Effectively and easily interfacing with the GPU is a major
barrier to MPC developers who wish to accelerate their
protocols, but lack experience in programming optimized GPU
kernels. Thus, a flexible abstraction is needed to support a wide
array of MPC protocols while minimizing any domain-specific
knowledge required. In this section, we discuss how Piranha
addresses two primary challenges in providing extensible GPU
support for MPC protocols: managing vectorized GPU data
and supporting acceleration for integer-based computation.
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Listing 1 Sample DeviceData usage demonstrating its
key capabilities: transparently accelerating element-wise
operations (lines 7-8), using Piranha-implemented integer
kernels for computation such as matrix multiplication (line
11), communicating share contents with other parties (lines
14-15), and using iterators to define views of existing data
without performing a data copy (lines 18-21).
 // Device share initialization
 DeviceData<uint32_t> a = {1, 2, 3, 4, 5, 6};
 DeviceData<uint32_t> b = {1, 0, 1};
 DeviceData<uint32_t> c(2);


 // Vectorized element-wise operations
 a += 10;
 a *= 2;


 // GEMM call: a (2x3) * b (3x1) -> c (2x1)
 c = gpu::gemm(a, b, 2, 1, 3);


 // Communication with party id 1
 a.send(1);
 a.join();


 // Even (offset=0) or odd (offset=1) values
 DeviceData<uint32_t> d(
 stride(c,2).begin()+offset,
 stride(c,2).end()
 );

3.1 Data management on the GPU
Piranha provides access to GPU memory through a single
data abstraction we call a DeviceData buffer. A key property
thatDeviceDatas maintain is that their data resides only on the
GPU; no buffers are maintained in CPU memory to avoid data
transfer overhead when computing with GPU-based kernels.
In the context of MPC protocols, these buffers often logically
correspond to local copies of a secret share. A DeviceData
can be templated by integral C++ data types such as uint32_t
or uint64_t. Share vectors, not individual share values, are the
basic unit of computation in Piranha, and so the abstraction
is functionally equivalent to a std ::vector<> class, except that
the data remains on-device. Listing 1, lines 2-4 show a few
examples of how DeviceData vectors can be initialized.

Element-wise operations over collections of secret-shared
values are common in secure computation. As a result, they
are prime targets to accelerate in parallel, enabling the GPU
to naturally improve protocol performance. As an added
benefit, by using vectorized DeviceData shares, developers
at the protocol layer inherently parallelize their protocol
implementation. Piranha’s device interface supports a variety
of local operations on individual share vectors; as a simple
example, lines 7 and 8 of Listing 1 perform an accelerated
element-wise scalar addition and multiplication, with each
value modified in parallel by a different GPU kernel thread.

A primary insight Piranha makes is that, independent of the
specific protocol, MPC functionalities over secret-shared data
decompose into a common set of local arithmetic operations. It
is this narrow waist that the device layer targets for acceleration
in a way that can benefit every MPC protocol. Consider a
widely used primitive, secure matrix multiplication, that
decomposes into simple matrix multiplications and additions
over local data in a protocol-agnostic way. To this end,Piranha
provides integer kernels for performing general matrix multi-
plication (GEMM) over theDeviceData class, which we use to
build secure matrix multiplication protocols (cf. Section 4 for
an example). An individual GEMM call is shown in Listing 1,
line 11. In Section 6, we evaluate how these kernels improve
the performance of secure matrix multiplication by up to
200× over a CPU-based implementation.
A note on communication. Currently, support for direct
GPU-GPU communication over the network is nascent and not
widely available. Thus, in Piranha, communication between
GPUs is bridged via the CPU, incurring a data copy overhead
for each round of communication. Given that GPU-CPU data
transfer speeds are significantly faster than communication
over the network, this overhead is not significant in the
applications we consider. We manage communication by
abstracting this complexity away from MPC developers by
providing simple data transmission functions. A sample
communication round to a different machine is shown at
Listing 1, lines 14 and 15. In the background, Piranha copies
the values in DeviceData a to a temporary CPU buffer, and
transmits it over the network. The protocol execution can
then wait until the buffer has been successfully sent by calling
join() to synchronize protocol execution.

3.2 Iterator-based operations
Another key design criteria for Piranha’s device share abstrac-
tion is memory efficiency. While CPU-based protocols have
enjoyed “effectively” unlimited memory availability, realistic
GPU-based MPC computation is restricted to commercially-
available GPUs that generally have around 16 GBs of memory.
Given the increase in memory consumption required by secret-
shared protocols, the result of inefficient memory usage is to
unnecessarily limit application problem sizes. Furthermore,
the overhead of data allocation, particularly for vectors of large
sizes, forms a significant portion of the total overhead of using
GPUs. To address this issue, we seek to avoid any redundant
temporary data allocation used to transform data into a
specific layout for kernel execution. We achieve this using an
iterator-based abstraction in our DeviceData class, as follows.
Piranha’s iterators allow the developer to traverse data

vectors in a program-defined order, applying operations over
a “view” of GPU memory decoupled from the actual physical
data layout. For instance, a common operation requires
pairwise operation over elements of a vector (cf Section 4
for details), i.e., operations over vec[2i],vec[2i+1] for a given
vector vec and over all indices i. A naïve approach would
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either require copying the odd and even components of the
vector or to allocate new memory for storing the result. Our
iterator-based approach allows us to define odd and even
views over the same vector that effectively allow the GPU
to interpret the memory with a stride of 2. This abstraction
enables memory efficient code design by allowing us to view
a given memory allocation in different ways. Hence, this
approach encourages limited additional memory allocation
– performing in-place element-wise operations as well as
storing the computation result in existing memory.

Lines 18-21 of Listing 1 demonstrate this concept. The two
DeviceData vectors even and odd hold a view of all the values
in c at a stride of 2, or put otherwise, skipping every other
value (odd starts at index 1). Note that this is simply a “view”,
i.e., even,odd operate on the same physical memory held by
the original DeviceData c. Creating this view for every other
indexed value allows a pairwise computation to be performed
with no additional memory allocation required.

3.3 Integer kernels
The MPC protocols we implement in Section 4.4 operate on
additive secret sharing over 32- or 64-bit ranges. As discussed
in Section 1, there is a lack of kernel implementations for these
data types [3], because prior work has focused on improving
the performance for floating point data types. Some integer
kernels are implemented for 8-bit matrix multiplications into
32-bit accumulators, for example, but the lack of support for
larger integer types can be attributed to concerns of overflow
in the product. Thus, there are two ways to benefit from GPUs
for large bit-width integer types.

The first is to decompose large integers into multiple values
of smaller width, such as 16 bits, representing the original
value x = x3248 + x2232 + x1216 + x0. Computation can then
be performed over each 16-bit sub-value x3, x2, x1, x0 by
embedding them into 64-bit floating point types. Note that a
large slack is required, as the result of multiplying matrices of
16-bit values will often exceed 32 bits in size and floating point
computation does not have the same modular overflow as for
integers. The problem with this approach is that it requires
multiple individual floating point kernel calls over 16-bit
values to compute one 32- or 64-bit integer result.

The second approach, which we take, is to directly imple-
ment kernels over integer data types. Piranha directly adds
support for full-size integer matrix multiplication and convo-
lution kernels at the device layer. We use the general-purpose
templated matrix multiplication and convolution kernels in
CUTLASS [4] to support 32- and 64-bit integer types.

While we cannot use existing, highly optimized floating-
point GPU kernels such as those provided by cuBLAS [3],
there are two benefits to our approach: (1) Piranha’s modular
structure allows independent improvement of kernels, and thus
future hardware support for large integer operations on GPUs
can be easily integrated and benefit all pre-existing protocols,
and (2) the ability to directly compute integer results in a

single call to a GPU kernel yields a better performance overall
than multiple calls to a more efficient floating point kernel. We
demonstrate these gains in Section 6 and Appendix B.

4 Protocol layer

Piranha provides a framework for implementing various MPC
protocols leveraging the benefits of GPU acceleration. We first
describe how we use Piranha’s DeviceData class to imple-
ment MPC protocols, then highlight how complex protocols
can be parallelized in a memory-efficient manner, and finally,
how Piranha allows for functionality reuse between protocols.

4.1 MPC protocol implementation

Any protocol implemented in Piranha specifies two things:
the secret sharing base, including the adversarial model, and
operations over this secret sharing base. For example, suppose
a MPC developer seeks to implement a 3-party protocol using
replicated secret sharing for an honest majority of semi-honest
corruptions (for instance [9, 88]). In this setting, a secret value
x is composed of 3 shares x≡ x0+x1+x2, where each party
holds only 2 of the 3 shares. Thus, the class for such a protocol
will contain two DeviceData objects, one per share. Simple
operations such as additions can be specified component-wise,
leveraging the underlying GPU layer as shown in Listing 1.

To multiply two secret matrices x,y, if the first party holds
shares (x0,x1), and (y0,y1), the output can be computed by
regrouping the terms of the product as [9]:

x·y=(x0+x1+x2)·(y0+y1+y2)

=(x0 ·y0+x0 ·y1+x1 ·y0)+(...)+(...)
(1)

Thus the computation can be split such that the first term can be
computed locally by the first party (and similarly for the other
parties). Leveraging the device layer for each individual local
GEMM computation (cf. Listing 1 line 11), the overall secure
matrix multiplication protocol can be easily implemented
as shown in Listing 2. This example shows the ease of
implementing various MPC functionalities in Piranha’s
protocol layer by building over the local functionality at the
device level. In Section 6, we directly evaluate the performance
benefit of this implementation against a similar CPU-based
protocol for secure matrix multiplication.

Randomness generation. We assume that the parties main-
tain secure point-to-point communication channels and share
pairwise AES keys to generate common randomness. Recent
works have looked at efficiently generating randomness on
the GPUs [10, 54, 89]. While CPU cores outperform GPU
cores for smaller amount of randomness, it becomes desirable
to generate randomness using GPUs for large scale random
number requirements [10]. Such random number generation
can be easily added to the protocol layer in Piranha.
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Listing 2 A replicated secret-sharing protocol class (3-party
setting) implemented at the Piranha protocol layer. The
protocol specifies the secret-sharing base: each party has two
local DeviceData shares templated by type T. The matmul
functionality is performed for this class by implementing a
secure matrix multiplication based on Eq. 1.
 // Replicated secret sharing class
 class RSS<T> {
 DeviceData<T> shareA, shareB;
 }


 void RSS<T>::matmul(RSS<T> a, RSS<T> b,
 RSS<T> c, ...) {
 DeviceData<T> localC;


 localC += gpu::gemm(a.shareA, b.shareA, ...);
 localC += gpu::gemm(a.shareA, b.shareB, ...);
 localC += gpu::gemm(a.shareB, b.shareA, ...);
 // Reshare and truncate localC to c
 }

4.2 Memory-efficient protocols
Section 3 demonstrates an iterator-based implementation for
DeviceData buffers. In this section, we showcase how this
abstraction can be used to perform efficient in-place memory
computations. As an example, we consider a CarryOut pro-
tocol, that securely computes the carry bit for binary addition
i.e., given the bitwise sharing (ak−1,··· ,a0) and (bk−1,...,b0)
of two k-bit vales a,b, the goal is to compute the carry bit at the
MSB ck. This primitive forms the backbone of nearly every
state-of-the-art comparison protocol [24, 34, 56, 59]. In the
case of the neural network library we discuss in Section 5,
comparisons enable standard activation functions and pooling
operations including ReLU and Maxpool.

The computation proceeds in log2k rounds by emulating a
simple carry-lookahead adder [5]. As part of the computation,
at round i∈{1,2,···,log2k}, the CarryOut computes the AND
between adjacent propagating bits, i.e., p′j = p2 j∧p2 j+1 where
p j are propagation bits at round i and p′j are the propagation
bits for the next round. At the end of log2k rounds, the final
bit is the result of CarryOut.

A naïve implementation of the above will suffer from two
major inefficiencies. First, bitwise expansion requires that each
secret-shared bit be stored separately, increasing the memory
footprint on the GPU. Second, using contiguous allocations
to separate pairwise bits results in non-trivial overhead from
additional memory use and data copies. Figure 2a shows 3
rounds of this CarryOut operation implementation where the
propagating p bits are combined. Unfortunately, due to the
vectorized nature of data computation on the GPU, half of p
must be copied at each step to a different memory allocation
before the next round can be evaluated (red-outlined in
Figure 2a). During one execution of this particular CarryOut
implementation, log(n) additional data copies are performed.

Figure 2: Comparison of a memory-inefficient naive carryout
implementation Figure 2a and our iterator-based in-place
computation Figure 2b. In the former approach, new memory
allocations and data copy – highlighted in red – are done to
split pairwise elements into contiguous vectors for parallel
GPU processing. The ability to define iterators and execute
kernels over non-contiguous memory allows Piranha to avoid
any additional memory allocation.

In contrast, Piranha uses iterator-based views to allow
access to non-contiguous data elements in strides. Figure 2b
demonstrates an memory-optimized version of CarryOut
leveraging this ability. For each round, the protocol defines
two iterators, one for every even element (yellow values),
and one for every odd element (blue values), and uses those
as the basis for executing a kernel computing the next
values of the propagation bit. The iterators are input to a
pairwise comparison kernel that would otherwise expect data
marshalled into a specific contiguous layout, allowing for
efficient computation entirely without data movement.

Furthermore, we can reuse the first iterator to store the re-
sults in the original allocated buffer, resulting in no additional
data copies or memory allocation. Since the entire bitwise vec-
tor is allocated until the end of the protocol, we continue to use
(increasingly less of) it to store intermediate results until the
final carry bit is calculated. Finally, templating allows the bit-
vectors to use smaller datatypes (say uint8_t) compared to the
datatypes used in the secure computation (say uint64_t), thus
minimizing the memory footprint they require on the GPU.

4.3 Reusable protocol components
The structure of Piranha supports reusing protocol implemen-
tations, so that protocols can build on other implementations
in a number of ways. For instance, a new protocol for
secure comparison that operates in the same setting as
another implemented protocol in Piranha can focus solely on
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implementing the secure comparison functionality and inherit
the rest from the existing share type in Piranha. This also
helps in maintaining the compatibility at the application layer.

Another reusable component of Piranha is the implemen-
tation of share agnostic functionalities. For example, this in-
cludes protocols that have been proven secure in the arithmetic
black box model FABB [26]. Such protocols are specified ag-
nostic to the specific adversarial model and remain the same as
long as the basic operations are performed securely in the spe-
cific adversarial model. A number of cryptographic primitives
and functionalities are proven secure in this model [34, 52, 56].
Piranha allows such methods to be generically implemented
once at the protocol level, alongside protocol-specific function-
ality, and can then be inherited by any other implementation.
As two examples, we implement a state-of-the-art comparison
protocol by Makri et. al. [56] and a protocol for approximate
square-root and inverse computation based on [88].

Secure comparison. We use secure comparison as an example
of implementing a method in the arithmetic black box model.
The comparison protocol uses edaBits [34] as preprocessing
material to efficiently compute a comparison of secret values.
An edaBit is a secret sharing of a random value and the bit
decomposition of the same value as boolean shares i.e.,

edaBit : [r]M,[r0]2,[r1]2,···,[rm]2 where r $←−ZM (2)

where m+ 1 = log2 M. The protocol for generating this can
be found in [34]. The problem of secure comparison over
arithmetic secret-sharing can then be converted to a secure
comparison over boolean secret-sharing using the edaBit.
The latter can then be implemented efficiently using bitwise
operations such as CarryOut [5]. Details of this operation are
presented in Section 4.2.

Approximate computations. The privacy-preserving neural
network application we implement requires a pair of specific
protocols for the normalization layers: secure integer division
and secure computation of a square root. MPC protocols for
these primitives typically require approximate computation
using Newton’s methods. We write a generic functionality
based on the protocols from [74, 88] where we find the
nearest power of two for each input value and then evaluate
a fixed-point Taylor series polynomial approximation. We
use a simple Python script to compute polynomials of a given
degree that approximate each target function, in this case, sqrt
and inverse. These functionalities are then implemented and
used across different protocols. Specifically, Piranha uses the
following approximations:

sqrt(x)=0.424+0.584(x)

1/x=4.245−5.857(x)+2.630(x2)
(3)

These approximations achieve an L1 error of 0.00676 and
0.02029, respectively, for x between 0.5 and 1.

4.4 MPC protocols
We implement three different MPC protocols to demonstrate
Piranha’s generality at the protocol layer: a 2-party implemen-
tation based on SecureML [60], a 3-party implementation built
upon Falcon [88], and a 4-party protocol [23]. We briefly de-
scribe each of these protocols below, and prefix them with “P-”
to indicate they are implementations accelerated by Piranha.

Two-party protocol (P-SecureML). In 2017, Mohassel and
Zhang [60] proposed a 2-party (and a trusted third party
variant) protocol for privacy-preserving machine learning,
using a 2-out-of-2 arithmetic secret sharing as the basis for
its functionality. The linear layers are computed using Beaver
triples and the non-linear layers are evaluated with garbled
circuits. In our implementation, we replace the expensive
GC-based evaluation of ReLUs with a more recent and
efficient comparison protocol using edaBits [34, 56].

Three-party protocol (P-Falcon). We build a 3-party
protocol using the work of Wagh et. al. [88]. It uses a
2-out-of-3 replicated secret-sharing as the basis for its
functionality. The linear layers are performed using local
multiplications and resharing, a technique used in many
other 3PC frameworks [9, 36, 59]. The non-linear layers are
computed using a specialized comparison protocol building
upon [86]. Once again, we replace the comparison protocol
using the more efficient work by Makri et. al. [56].

Four-party protocol (P-FantasticFour). Our 4-party imple-
mentation follows the work of Dalskov et. al. [23]. It uses
3-out-of-4 replicated secret sharing: linear layers are per-
formed using a generalization of the replicated secret sharing
approach, thus using a combination of local multiplications
and resharing (known as joint message passing and INP in
the work and similar to [49]). For comparison (probabilistic
truncation), the protocol uses a combination of [33] and [49].

5 Application Layer
Our final layer of abstraction is the neural network layer. This
interface is guided by the types of the deep learning archi-
tectures we wish to support. Currently, Piranha implements
protocol-agnostic versions of the following layers in full
generality [6, 11]:

(1) Linear layers: Convolution and fully-connected layers

(2) Pooling operations: Maxpool and averagepool

(3) Activation functions: ReLU

(4) Normalization: Layer normalization

Layers use the popular Kaiming weight initialization [40].
Any neural network architecture that is composed of these
layers can be run using Piranha. This covers a large class
of popular networks used in computer vision - from simple
multi-layer perceptrons like SecureML [60] to more complex
convolutional neural networks such as AlexNet [51] and
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matmul(...) Matrix multiplication of two matrices.

convolution(...) Convolution of two tensors.

maxpool(...) Compute the maximum of set of values.

truncate(...) Truncate i.e., divide shares by power of 2.

reconstruct(...) Opening of secret shares.

selectShare(...)
Select one out of two shares given a

boolean secret shared value.

comparison(...) Compare two shares.

sqrt(...) Compute an approximate square root.

inverse(...) Compute an approximate fixed-point inverse.

Table 1: Functionalities required by the NN training applica-
tion, implemented by each class in Piranha’s protocol layer.

VGG16 [78]. In our evaluation in Section 6, we compare
Piranha to the networks used in prior works [79, 88].

5.1 Interfacing the neural network library
As discussed in Section 5, we focus on the secure evaluation
of neural network models as our target application. To support
the neural network library over multiple MPC protocols, we
require each MPC protocol to implement a common set of
functionalities. Once this set is implemented, the protocol
can support training and inference over any neural network
architecture constructed with the supported layers. This
required set of MPC functionalities is given in Table 1.

Listing 3 shows a simplified look at the forward pass of a
fully connected layer. The functionality simply takes a batch
of inputs, multiplies them with the layer weights and adds
the layer’s bias to compute the activations. The forward pass
implementation is protocol-agnostic in that it can be templated
with any given Share type (e.g. from Listing 2’s RSS share)
and requires only that the required functionality matmul be
implemented by that protocol.

5.2 Secure training of neural networks
Training neural networks, especially larger and deeper
networks presents a number of challenges. In order to
demonstrate learning, we face three major challenges:

(1) Back propagation gradients are frequently much smaller
than the remaining activations and must be preserved by
the finite precision available in fixed-point integers.

(2) The quality of the gradients can also significantly affect
the training process. Ensuring that the final layer gradient
computation is accurate has a significant impact on how
well the network trains. Inaccuracies are compounded by
linear layers, which yield approximate values due to each
multiplication performed with finite precision arithmetic.

(3) Closely related to the previous issue is the stability
of the final layer gradients. As the network trains, the
magnitudes of the final layer activations grow in size.

Listing 3 Protocol-agnostic implementation of a fully-
connected neural network layer. Any protocol class, such as
theRSS class in Listing 2, that implements the desiredmatmul
functionality can be used to compute the forward pass.
 // Fully connected layer forward pass
 template<typename Share>
 void FCLayer<Share>forward(Share input) {
 matmul(input, this->weights,
 this->activations, ...);
 this->activations += this->bias;
 }

Figure 3: Our new approximate computation of last layer
gradients that stabilize the learning process.

Softmax [31] computations to generate the needed
gradients (which involve an exponentiation) can quickly
exceed the size of the data type, yielding an overflow and
destabilizing the learning process.

We showcase in Section 6 that privately training neural net-
works is indeed possible for large networks with over 100
million parameters. We use fixed-point arithmetic to encode
real numbers for neural network experiments. For private infer-
ence, we observe that the neural network can be run over 32-bit
data-types with a fixed-point precision of 13 bits. However, for
private training, to retain the gradients with sufficient precision,
we use 64-bit data types with 20 or more bits of fixed-point pre-
cision, with deeper network depths requiring higher precision
(Section 6.4). Finally, to address latter challenges, we propose a
new gradient computation function. Our gradient computation
has two main advantages: it is more stable to large activations,
and it is MPC-friendly. The first is achieved because we approx-
imate the exponential with a function that does not increase the
magnitude of the secret-shared values. The second is achieved
by using only comparisons, which significantly reduces the
round complexity of the computation.

Gradient Computations. In order to compute the gradients
for the backward propagation [41], we apply a softmax
coupled with the cross-entropy loss function. Suppose the
output of the last layer is x=(x0,···,x9), and y=(y0,···,y9) is
a one hot encoding of the true label, then the loss function (per
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image) is given by:

`=−∑
i

yilogpi where pi=
exi

∑ jex j
(4)

The gradient is then given by:

∇i=
∂`

∂xi
= pi−yi (5)

While there are a few different ways to compute this
gradient [48], they do not solve the challenges mentioned
above, which are critical when training is performed on larger
networks and datasets. Note that the softmax function remains
the same if the logits pi are computed using the activations
xi− xmax where xmax = max(x1,··· ,xk) if k is the number of
classes. In other words,

pi=
exi−xmax

∑
k
j=1ex j−xmax

(6)

We propose a new function computation to approximate the
above computation (Eq. 6):

pi≈appExp(xi−xmax)/
k

∑
j=1

appExp(x j−xmax) (7)

where appExp(·) is the approximate exponential function
as shown in Fig. 3. We compute the inverse in plaintext
using a functionality similar to FALCON. To preserve the
long tail of the exponential, we add a small bias of 10−3 to
each component of appExp(·). Note that this function is (1)
relatively easy to compute within MPC, and (2) preserves (i.e.,
does not increase) the magnitude of the activations. These
factors make the gradient computations using this function
stable from the machine learning perspective.

6 Evaluation
In our evaluation, we answer the following questions:

(1) In comparison to state-of-the-art, CPU-based prior work,
how well does Piranha accelerate the same computation
tasks? (Section 6.2)

(2) Can Piranha be used to successfully and securely train
large neural networks (e.g. over 100 million parameters)
in a reasonable amount of time? (Sections 6.3 and 6.4)

(3) What are Piranha’s computation and communication
costs in LAN and WAN environments? (Section 6.5)

(4) How well does Piranha manage constrained GPU
memory and how well does its memory-conscious design
improve scalability at the application layer? (Section 6.6)

(5) How does the runtime performance of privacy-preserving
inference and training, supported by Piranha’s protocol-
agnostic acceleration, compare with prior work on
targeted protocols? (Section 6.7)

6.1 Evaluation set-up
We run our experiments over similar hardware and networking
environments as prior works [23, 60, 88]. For CPU-based
implementations, we use Azure F32s_v2 instances with Intel
Xeon Platinum 8272CL @ 3.4GHz processors and 64 GB
of RAM. Networked experiments are executed in a LAN
setting with a bandwidth of 10 Gbps and ping time of 0.2 ms.
GPU-based experiments are run on Azure NC6s_v3 instances
with 6-core Intel Xeon E5-2690 v4 CPUs with 112 GB RAM
and Nvidia Tesla V100 GPUs with 16 GB RAM.

We add matrix multiplication and convolution kernels for
large integer types by building on CUTLASS [4], at commit
0f10563, to which we add support for 32- and 64-bit integer
matrix multiplication and convolution. We use the default
tiling parameters, while element-wise kernels are parallelized
using Thrust [62].

Baseline. As a baseline, we compare against protocol
implementations from MP-SPDZ [28, 45] at commit e6dbb4.
MP-SPDZ is a state-of-the-art open-source secure com-
putation platform with over 34 protocols and represents a
CPU-based analog to Piranha. For each MPC protocol that we
implement, we choose a state-of-the-art protocol implemented
by MP-SPDZ in the same setting: individual operations are
benchmarked in Section 6.2 with the 2-party semi2k, 3-party
replicated-ring, and 4-party rep4-ring protocols. Each of these
implementations operate on a single CPU core. We focus eval-
uating Piranha’s performance in the data-dependent “online”
phase, as offline generation of data-independent components
such as Beaver triples [60] or edaBits [34] can be easily
parallelized independently from a particular computation.

Models and Datasets. We evaluate our high-level neural
network library with four neural network architectures:
SecureML [60], a simple 3-layer network, and LeNet [53],
a 5-layer convolutional network, over MNIST [58], and
AlexNet [51], an 8-layer convolutional network, and
VGG16 [78], a 16-layer convolutional network, over the
CIFAR10 dataset [50]. While Piranha fully supports the use
of maxpool layers in these architectures, as in CryptGPU [79],
we substitute them with averagepool layers to maintain
comparative accuracy. Notably, averaging operations are
significantly less expensive than max operations in each
Piranha-accelerated protocol, as summation requires only
a locally-computed linear combination of secret shares
while oblivious comparison incurs a logarithmic number of
communication rounds among the parties.

6.2 Comparison vs. CPU Implementations
In this section, we compare the performance of Piranha with
state-of-the-art CPU-based protocols over a set of MPC work-
loads. For each protocol discussed in Section 4.4, we execute
individual operations commonly used by a secure neural
network application – matrix multiplications, convolutions,
and ReLU comparisons – and compare against the same
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Matrix Multiplication

Convolution

ReLU

Figure 4: The figures benchmark secure protocols for matrix multiplication, convolutions, and ReLU across 2-, 3-, and 4-party
protocols for various sizes of these computations. Piranha consistently improves the run-time of these computations, with
improvements as large as 2-4 orders of magnitude for larger computation sizes.

operations computed using MP-SPDZ [28] with protocols
in the same setting, as described in Section 6.1. In general,
our results find that Piranha’s acceleration can improve
performance by 2-3 orders of magnitude for these important
MPC functionalities. Figure 4 summarizes the results for each
these operations as a function of various problem sizes.

We evaluate matrix multiplication performance by multiply-
ing two N×N matrices for logarithmically-increasing values
of N. Considering small matrices of dimension N=10, where
platform overhead such as data transfer to the GPU is most
likely to have an out-sized impact on overall performance, we
find that using Piranha results in a performance benefit of 6
to 60× in the four- or two-party settings, respectively. Like-
wise, as the problem size increases, so does the impact of GPU
acceleration on runtime. For the largest matrix multiplication
benchmarks with N=300, Piranha’s 3- and 4-party protocols

improve on the CPU-based MP-SPDZ implementations by 2 or-
ders of magnitude, while P-SecureML shows a 4 order of mag-
nitude improvement over MP-SPDZ’s semi2k implementation.

For the convolutions, we benchmark problems in order
of increasing complexity. Each convolution layer is param-
eterized by a [iw, cin, cout, f ] tuple, where iw is the input
image dimension, cin and cout are the number of input and
output channels, respectively, and f is the filter size. We
use the total number of multiplications as a proxy for layer
complexity (the complexity of the resulting unrolled matrix
multiplication). The specific convolutions we compute are
listed in Figure 4, ranging in complexity from 1.47×107 to
1.86×109 multiplications. Similar to the matrix multiplication
benchmarks, Piranha shows a significant improvement in
performance, performing on average 175 and 73× better in
the 3- and 4-party setting, respectively. Piranha is much faster
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Network
(Dataset) Protocol Time

(min)
Comm.
(GB)

Accuracy

Train (%) Test (%)

SecureML
(MNIST)

P-SecureML 12.99 49.55 97.37 96.56
P-Falcon 7.51 22.84 97.37 96.56
P-FantasticFour 23.39 33.01 97.37 96.56

LeNet
(MNIST)

P-SecureML 87.55 683.18 96.78 96.80
P-Falcon 71.56 485.90 96.88 97.10
P-FantasticFour 219.20 676.13 96.88 97.11

AlexNet
(CIFAR10)

P-SecureML 156.01 740.50 40.74 40.47
P-Falcon 110.66 382.18 40.59 40.71
P-FantasticFour 296.57 533.74 40.97 40.14

VGG16
(CIFAR10)

P-SecureML 3822.84 35454.91 55.02 54.35
P-Falcon 1979.92 17235.35 55.13 54.26
P-FantasticFour 7697.54 29106.24 55.02 54.35

Table 2: Time and communication costs for completing 10
training iterations over four neural network architectures, for
each of Piranha’s MPC protocol implementations. We are
the first work to demonstrate end-to-end secure training of
VGG16, a network with over 100 million parameters.

than the MP-SPDZ 2-party semi2k implementation, achieving
a speed up of 3 orders of magnitude, on average.

Finally, ReLU operations are benchmarked over N-element
vectors of logarithmically increasing size. For small vectors
of N = 10 vectors, Piranha improves on each CPU-based
protocol by between 1.3 and 5.5×, again seeing modest gains
due to overhead dominating the relatively simple computation.
For large vector sizes, we show extensive gains by applying
GPU acceleration. Figure 4 shows between a 300 and 1380×
speedup across MPC protocols over large ReLU inputs, com-
pleting 90 second CPU-based operations in less than a second.

6.3 Secure Training of Neural Networks
No prior work has successfully trained, within secure
computation, a network such as VGG16, which over CIFAR10
has over 100 million learnable parameters. While existing
work has estimated the time to train such a network, the
training times are prohibitively large – over 14 days [88] to
complete 10 training epochs. This work is the first to securely
train such a neural network, in less than a day and a half: our
results are detailed in Table 2.

We train each network with each protocol Piranha currently
supports for 10 epochs with 128-image batches. For each
training run, we report the total training time and per-party
communication. Every training pass used the MPC-friendly
softmax replacement we propose in Section 5; over every
network architecture we evaluate, our approximation remains
stable and allows the networks to train successfully. To
ensure that even small gradients can backpropogate through
each networks and train a useful model, we vary the level of
fixed-point precision: we train the shallow SecureML with 20
bits of fixed-point precision, LeNet and AlexNet with 23 bits,
and VGG16 with 26 bits of precision. We further discuss how
fixed-point precision impacts model accuracy in Section 6.4.

On a small dataset like MNIST, Table 2 shows thatPiranha’s

neural network training library can quickly train SecureML
and LeNet, achieving greater than 96% test accuracy in no
more than 2 hours with P-Falcon and P-SecureML, compared
to approximately 97% and 98% accuracy, respectively, when
trained in plaintext. For larger networks, the cost of privacy-
preserving matrix multiplication dominates the overall run-
time [88]. This explains why P-FantasticFour generally takes 2
to 3× longer for the same training pass, because the 4-party pro-
tocol requires 7 local matrix multiplication operations for every
privacy-preserving matrix multiplication, compared to only 3
local multiplications for the 3-party P-Falcon implementation.

On the larger CIFAR10 dataset, training times increase
significantly but remain feasible. Over AlexNet, all protocols
can successfully complete their training runs in under 5 hours,
achieving 40% test accuracy over that time. We observed a
59% accuracy when training the same model in plaintext (note
that an untrained network/random guessing achieves a 10%
accuracy given that there are 10 classes). When considering
VGG16, the largest network Piranha trains over, training
times are considerable: P-SecureML and P-FantasticFour
require 2 and 5 days, respectively, to complete. Importantly,
however, we can complete 3-party VGG16 training in only 33
hours with 54% test accuracy (compare to 67% test accuracy
in plaintext on the same model), which prior work estimated
to take 14 days but did not actually execute the training [88].

These training times are only possible due to two main
factors. First, improved computation times (through the
use of GPU-accelerated kernels) reduces the overhead of
matrix multiplication and convolution, whose costs grow
super-quadratically with their dimensions, and are a significant
part of the total runtime. The second is the ability to train over
large batch sizes. Large batch sizes improve the efficiency of
the stochastic gradient descent algorithm, and runtime scales
better with batch sizes. Thus, a batch size of 128 has a lower
run-time than computing over two 64-image batches.

6.4 Impact of Fixed-point Precision
For deeper networks, we observe that gradients reaching the
initial layers routinely approach 2−20, and are further reduced
by the current learning rate. If the fixed-point precision used by
the network is not selected carefully, parameter update gradi-
ents will approach the minimum value Piranha can represent,
yielding imprecise results and barring the model from training
correctly. Figure 5 quantifies what precision is necessary
to train each network, showing the final test accuracy after
10-epoch P-Falcon training runs at increasing amounts of pre-
cision from 10 to 26 bits. There is a clear distinction between
precisions at which each network fails to train and those that
allow the networks to do better than random guessing. While
13 bits of precision are sufficient for private inference, even
SecureML cannot begin to train until more than 14 bits of pre-
cision are used. For the deeper networks, AlexNet and VGG16,
which see very small gradients by the end of backpropagation,
a higher precision (at least 22 and 24 bits, respectively) is
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Figure 5: Test accuracy as the fixed-point precision increase
for each network architecture, after 10 training epochs using
P-Falcon. The dashed line indicates the baseline accuracy
when randomly guessing. Sharp increases in training accuracy
indicate that the model now has enough precision to fully
backpropagate gradients.

needed. More importantly, these results indicate that computa-
tion over 64-bit integers is not just desirable for secure training
of large networks but in fact, necessary. In addition, as the size
and depth of MPC-trained models increases, the amount of
fixed-point precision necessary will likely grow as well, or
the use of adaptive fixed-point computation may be necessary.

6.5 Computation and Communication Cost

We measure Piranha’s ratio of computation time (time spent
performing GPU-accelerated local computation) to network
overhead (time spent waiting for other parties) in Figure 6 for
both LAN and WAN settings. In the LAN setting, all parties
executed on GPUs in the same datacenter, with approximately
1.5 ms of observed latency, while in the WAN setting, we run
the parties in datacenters in different geographic locations
with 60ms of latency in between. When the network is fast,
so is the end-to-end runtime: Piranha completes training
iterations over each network architecture in∼3 seconds or less
over LAN but takes up to 40 seconds over WAN to perform
a 4-party training iteration for VGG. We note that the raw time
spent on local computation is the same in both settings, but
the computation-communication ratio is very different. We
observed that parties in the LAN setting spent between 15%
and 60% of the time on compute (on Secure ML and VGG16,
respectively), while in comparison, parties in the WAN setting
never spent more than 6% of their time on computation.
Piranha inherits its communication behavior from the protocol
that it is accelerating, and so it does not fundamentally alter
the network overhead that would be observed. It is likely that
future protocols performing increased computation in favor of
minimizing communication [83, 84] would see a large benefit
from executing on Piranha in a WAN setting.

Figure 6: Computation and communication overhead for
private training iterations in LAN and WAN settings. Piranha
significantly accelerates local computation on a GPU, resulting
in communication costs dominating overall runtime as latency
between parties and network size increases.

Network
(Dataset)

k Memory usage for Private Training (MB)

P-SecureML P-Falcon P-FantasticFour

SecureML
(MNIST)

1 319 325 331
64 321 327 335

128 325 331 339

LeNet
(MNIST)

1 437 461 481
64 535 577 651

128 661 749 897

AlexNet
(CIFAR10)

1 507 603 675
64 531 649 743

128 585 689 805

VGG16
(CIFAR10)

1 629 847 1027
64 3017 3927 5481

128 5505 7207 10197

Table 3: The maximum memory usage of a secure training
pass (forward and backward pass) for various MPC protocols
and network architectures. Piranha’s memory efficient design
enables running large networks such as VGG16 with a batch
size of 128 where prior works have been limited to 32 [79].

6.6 Memory Efficiency
Commodity GPUs, including those we use to evaluatePiranha,
are commonly constrained to 16GB of memory. We evaluate
how effectively Piranha manages this memory constraint by
tracking peak memory usage over training passes. When all
other parameters are the same (protocol, computational task,
and GPU hardware), prior work can only execute over batch
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(a) (b) (c)

Figure 7: Memory footprint over a VGG16 forward pass. Each point is a snapshot of the total GPU memory allocation (in MB)
at each memory operation (allocation or de-allocation). Figure 7a corresponds to a naive GPU implementation, Figure 7b measures
the footprint after iterator-based optimizations, and Figure 7c after efficiently sizing bit-containing data structures.

sizes of 32 [79]. This section shows how careful memory
management directly translates to executing neural network
training over significantly larger batch sizes on a single GPU
than has been previously possible.

We illustrate the benefits of two main memory-based mod-
ifications we discussed in Section 4.2 in reducing our memory
footprint. We consider threePiranha versions: (1) a naive com-
putation approach with large uniform data types and minimal
in-place computation, (2) an iterator-based implementation
that seeks to avoid memory allocation when at all possible,
and (3) a version that correctly sizes data types to minimize
wasted memory (e.g. in the case of secret-shared bits). For
each version, Figure 7 tracks on-GPU memory usage for
P-Falcon, updated after every (de)allocation, during a VGG16
forward pass with an input batch size of 4. We also measure
the maximum VGG16 batch size that Piranha can support
with on-GPU memory, and total runtime and peak memory
footprint with a batch size of 32 to compare between versions.
Peak memory footprint indicates the amount of temporary
allocations necessary at runtime, which can significantly strain
the GPU’s available memory and preclude larger batch sizes.

Figure 7a shows the memory allocation trace for the
naive P-Falcon implementation described in Figure 2(a),
which requires a significant amount of data allocation while
executing ReLU comparisons, where secret-shared values are
expanded into bitwise format. Driven by the initial network
layers with larger inputs, the peak GPU memory load is 2.28
GB, a 7× increase over the allocation required for the network
itself (345 MB). The total number of memory operations is
high: almost 16,000 such allocations and frees are performed
over the course of the computation. During a 32 batch size run,
this approach can complete a training iteration in 27 seconds
with a peak memory footprint of 14.9 GB, or 93% of available
GPU memory.

Figure 7b shows the results of an improved iterator-based
implementation that operates over views of already-allocated
shares, without incurring additional memory load. In-place
computation yields significant memory savings: for batches

of 4 images, the iterator-based Piranha version requires only
1.38 GB at its peak compared to the base implementation
of Figure 7a. The number of GPU memory operations also
drops, resulting in almost 4× less allocations and frees during
the network’s inference pass. However, even with these
optimizations, the measured peak memory usage of over 1 GB
in Figure 7b would not support training runs over 128-image
batches. Similar to the naive implementation, the maximum
batch size the iterator-based version can train with is 32, but
only incurs a maximum memory footprint of 8.9 GB, an
approximately 60% improvement. Execution time increases
slightly to 35 seconds per pass, which we suspect is due to the
inherent cost of non-contiguous and indirect memory access.

In Figure 7c, we evaluate the impact of sizing memory
appropriately for data at the protocol layer. In the previous
versions analyzed above, the bitwise expansion used in our
ReLU comparison protocol remained a major source of
memory blowup, as bit values were each stored into a full
64-bit values. Modifying Piranha protocols to closely match
the size of allocated values with their logical sizes significantly
cuts the peak memory usage in Figure 7c by a factor of 2, to
581 MB, or only 250 MB above the baseline model memory
requirements. This has an outsized effect on training execution
time, as smaller data types require less communication overall:
with this change,Piranha can support P-Falcon-based training
iterations with a batch size of 256 in just 7.6 seconds, with a
maximum memory footprint of 1.8 GB.

Finally, Table 3 shows peak GPU memory usage forPiranha
over all networks as it performs training passes using the proto-
cols we implemented on Piranha. For SecureML in particular,
the baseline memory used by the network parameters domi-
nates any temporary memory requirements, as the peak mem-
ory use only grows by 6 MB between runs over batches of 1
image and 128 images. As expected, P-FantasticFour exhibits
larger increases in peak memory use as batch size increases,due
to the increased number of local shares it must maintain for each
secret-shared value, proportionally increasing memory load.
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Model
(Dataset)

Private Inference Private Training

Falcon CryptGPU P-Falcon Falcon CryptGPU P-Falcon

Ti
m

e
(s

)

LeNet
(MNIST) 0.038 0.380 0.031 14.9 2.21 0.888

AlexNet
(CIFAR10) 0.110 0.910 0.131 62.37 2.910 1.419

VGG16
(CIFAR10) 1.440 2.140 0.469 360.83 12.140 7.473

C
om

m
.(

G
B

) LeNet
(MNIST) 2.29 3 2.492 0.346 1.14 0.417

AlexNet
(CIFAR10) 4.02 2.43 1.960 0.621 1.37 0.581

VGG16
(CIFAR10) 40.05 56.2 88.39 1.78 7.55 4.261

Table 4: We compare the run-times for private training
and inference of various network architectures with prior
state-of-the-art works over CPU and GPU. Falcon and
CryptGPU values are sourced from [79] Table I. Private
inference uses batch size of 1, training uses 128 for LeNet,
AlexNet and 32 for VGG16. For smaller computations (private
inference), Piranha provides comparable performance to
CPU-based protocols. However, for larger computations
(private training), Piranha shows consistent improvement
between 16−48×, a factor that improves with scale.

6.7 Comparison with Prior Work
Finally, we compare the runtime and communication overhead
of Piranha relative to state-of-the-art protocols for neural
network training: a CPU-based implementation, Falcon [88],
and a GPU-based implementation, CryptGPU [79]. Both
protocols are fixed to a 3-party setting, while Piranha is
designed to support a general class of LSSS protocols. In this
section, we compare the performance of existing protocols
with Piranha’s equivalent 3-party P-Falcon implementation,
to evaluate whether the generality of Piranha’s design comes
at a performance cost.

We benchmark the run-time for a single training and
inference pass over 3 different networks – LeNet, AlexNet,
and VGG16. While we can support batch sizes of up to 128
on each of these networks, we scale down our computation
to provide an apples to apples comparison with prior work.
The results are presented in Table 4.

For private inference, where the forward passes use a
single input image (batch size of 1), the computation is not
large enough to fully benefit from GPU acceleration. Table 4
shows that Piranha achieves comparable performance to the
CPU-based FALCON for private inference over small networks,
but over the much larger VGG16 architecture,Piranha already
yields a 3× performance improvement.

GPU acceleration has a much stronger impact on private
training iterations, where the computation sizes are much
larger due to the increased batch size and the addition of
a backward pass over the network. Even on the smallest
architecture, LeNet, Piranha performs training iterations 16×
faster by leveraging a GPU, while on the larger architectures
we benchmark, we show between a 44-48× speedup.

In addition to evaluating the benefits of GPU acceleration,

Table 4 also quantifies whether Piranha incurs additional
overhead from supporting multiple protocol implementations,
compared to tools that integrate a specific MPC protocol
end-to-end like CryptGPU [21]’s 3-party implementation.
Considering private inference, Piranha is significantly faster,
showing approximately 12, 7, and 4× speedup on each of
LeNet, AlexNet, and VGG16, respectively. We also show
a performance advantage in computing training iterations,
with performance gains ranging from approximately 2.5×
on LeNet to 1.6× on VGG16. We attribute these constant
improvements to a few factors. First, Piranha’s direct use of
64-bit integer kernels avoids the repeated 16-bit floating point
multiplications that CryptGPU incurs. We do this at the cost of
using less powerful GPU integer cores and kernel implemen-
tations that must be emulated with 32-bit integer instructions.
Second, even though Piranha supports many different protocol
implementations, Table 4 shows that the negligible overhead
of our approach can yield the same or better performance
than single-protocol designs. Third, some portion of these
performance difference may be attributable to different
programming environments – Piranha is implemented in C++
while CryptGPU is implemented over PyTorch.

7 Related Work
In recent years, a number of new frameworks have been
proposed for privacy-preserving approaches to machine
learning. While most frameworks demonstrate a CPU-only
implementation, there are a few works that explore GPU
assisted computation. The two earliest works by Husted et.
al. [42] and Frederiksen and Nielsen [35] explore the use
of GPUs for improving secure computation using garbled
circuits and OT extensions. Delphi [57] uses GPUs to improve
the performance of linear components of the computation.
In a more recent work, CryptGPU [79] building on top of the
CrypTen framework [21] uses GPUs for the entire computation.
Recently, GForce [61] shows the benefits of GPU acceleration
for secure inference. In a somewhat related effort, cuHE [22]
and PixelVault [81] use GPUs for homomorphic encryption, se-
curing keys, and encryption operations. Visor [67] has looked
at using GPUs for secure computation over enclaves, while
Slalom [80] investigates NN inference on trusted hardware.

A number of general purpose frameworks have improved
the practical performance of MPC. In the dishonest majority
setting, a number of works [8, 19, 34, 46, 47, 73] improve
the performance of the original SPDZ protocols [25, 27].
Helen [93] proposes a system to train a linear model in a
dishonest majority setting. Poseidon [75] explores the use of
MPC techniques for federated learning in a similar corruption
model. A lot more frameworks propose new specialized
protocols and implementations in the semi-honest and honest
majority adversarial settings. Recent 2-party computation
frameworks include [43,44,55,57,60,63,70,71] that typically
look at protocols in the semi-honest setting. A number of
frameworks explore a 3-party setup with an honest majority
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corruption. This includes [18, 23, 49, 59, 64, 79, 82]. Similarly,
4-party computation frameworks include [17, 23, 49, 69].
Other proposed frameworks include [68, 92]. An entire line
of work improves the performance of garbled circuit based
approaches to secure computation. Recent advances include
as well as silent OT extension protocols such as [14,15,76,90].
Finally, our platform can be used to implement efficient
protocols for other applications such as sorting networks [20],
ORAMs [38, 85], and differential privacy [32, 87].

A number of libraries with varying infrastructures are open
sourced. MP-SPDZ and SCALE-MAMBA [7,45] implement a
number of protocols, including most of the dishonest majority
protocols. CrypTen [21] implements a few protocols over
PyTorch. Other popular libraries providing a number of useful
secure computation tools include [29, 72]. There also exist
open-source libraries for privacy-preserving machine learning
such as Rosetta and PySyft [1, 2], but no open source library
that enables general secure computation applications to benefit
from the use of GPUs or the development of new accelerated
protocols. Piranha can not only fill this gap, but reduce the
performance gap between plaintext and privacy-preserving
computation.

8 Conclusion
In this work, we propose Piranha, a platform for GPU-
accelerated MPC protocol development. Piranha contributes
three modular components: a device layer that manages
protocol memory on the GPU and accelerates MPC-specific
integer operations, a protocol layer where memory-efficient
in-place operations can be leveraged to fit the constrained GPU
environment, and an application layer for privacy-preserving
computation on any underlying protocol. Piranha’s modular
structure provides wide applicability for other projects to
use GPU acceleration without requiring expert knowledge.
To demonstrate that Piranha as a general-purpose platform
provides significant improvements in run-time through
GPU-based acceleration, we implement 3 different MPC
protocols for secure training of neural networks on top of
Piranha, resulting in a 16-48× performance improvement
over CPU-based implementations. Finally, using Piranha, we
are able to securely train a realistic neural network end-to-end,
with over 100 million parameters, in a little over a day.
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A Discussion, Limitations, and Future Work
We show in Section 6 that GPUs provide much-needed
performance acceleration for secure computation. Piranha’s
modular platform structure means that functional enhance-
ments made at any layer of the platform – from future
performance improvements in the GPU kernels to additional
MPC protocols or new privacy-preserving applications – can
immediately benefit other system components.
Device layer. The device layer separates protocols from the
GPU interface. Thus, acceleration of local operations, opti-
mizations, or entirely different methods of performing integer-
and fixed point-based calculations can be independently
developed. Even in its current state, Piranha’s integer kernels
are slower than their floating-point equivalents implemented
by popular libraries like cuBLAS [3], as they can take
advantage of features like tensor cores that focus exclusively
on floating-point. Future efforts can focus on supporting better
kernels, enabling multi-GPU usage, and supporting custom
accelerators on platforms such as FPGAs [30].
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Protocol layer.Piranha can be used for development of newer
multi-party protocols, expanding support for different number
of parties, innovative protocols, and adversarial models. As
noted in Section 1, we focus on LSSS protocols in a semi-
honest security model, and the protocols we implement operate
over 32- and 64-bit integer rings, such that the existing hard-
ware support for modular arithmetic simplifies computational
overhead. However, support for other protocol types can be
expanded, in supporting field operations, accelerating garbled
circuit evaluation [91], or adding homomorphic encryption
support [22] to enable dishonest-majority protocols.

Application layer. We showcase the use of Piranha for mak-
ing meaningful progress on private neural networks training.
Piranha’s modular approach provides a rich environment for
innovation in MPC-friendly neural network design, such as
private training of newer architectures like residual networks,
transformers, or LSTMs. While we only evaluate Piranha
over a neural network training application, the platform
allows development of arbitrary, protocol-agnostic secure
computation. Future work can focus on demonstrating the
ability of the platform to support applications in other areas,
such as oblivious sorting or oblivious RAMs.

B Comparison with Floating Point Kernels
We mention in Section 3 the tradeoff in performance when
computing directly over integer buffers on the GPU, as opposed
to decomposing large bit-width values into smaller chunks
for use in floating point-based kernels. In Table 5, we compare

Kernel Time (ms)

Library Datatype 784x9x20 1024x27x64 784x147x64 10000x1000x10000

cuBLAS float-32 0.014 4.16 4.45 54.19
Piranha float-32 0.981 4.51 4.56 65.16
Piranha int-32 3.61 4.38 4.52 78.35

cuBLAS float-64 4.58 6.37 4.70 126.5
Piranha float-64 4.60 5.92 4.69 114.95
Piranha int-64 4.76 4.66 4.90 2482.17

Table 5: Runtime for matrix multiplication kernels used in
Piranha vs. the cuBLAS implementation for different sizes.

the 32- and 64-bit kernels that Piranha uses, implemented
with CUTLASS [4], against state-of-the-art 32- and 64-bit
floating point kernels from cuBLAS [3]. While we can directly
compare floating point performance between the systems,
cuBLAS does not support large integer matrix multiplication,
so we only present Piranha-based results for comparison.

We benchmark the runtimes for the matrix multiplication
kernels used in Piranha vs. the cuBLAS implementation on
various sizes of matrices in Table 5. We observer that Piranha
kernels, when executed with floating point datatypes result in
comparable overhead to cuBLAS implementations. However,
executing 32-bit integer multiplications is much more expen-
sive in Piranha compared to the floating point case. 64-bit
integer multiplications are relatively comparable to cuBLAS
64-bit floating point, but at very large matrix sizes, there is a
significant difference between the two. This is likely due to the
fact that 64-bit integer operations are emulated using 32-bit
integer instructions that target the GPU integer cores used.
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