
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

TLB;DR: Enhancing TLB-based Attacks with
TLB Desynchronized Reverse Engineering

Andrei Tatar, Vrije Universiteit, Amsterdam; Daniël Trujillo,
Vrije Universiteit, Amsterdam, and ETH Zurich; Cristiano Giuffrida

and Herbert Bos, Vrije Universiteit, Amsterdam
https://www.usenix.org/conference/usenixsecurity22/presentation/tatar

TLB;DR: Enhancing TLB-based Attacks with
TLB Desynchronized Reverse Engineering

Andrei Tatar†∗ Daniël Trujillo†‡∗ Cristiano Giuffrida† Herbert Bos†

† Vrije Universiteit, Amsterdam ‡ ETH Zurich

∗Equal contribution joint first authors

Abstract
Translation Lookaside Buffers, or TLBs, play a vital role in re-
cent microarchitectural attacks. However, unlike CPU caches,
we know very little about the exact operation of these essential
microarchitectural components. In this paper, we introduce
TLB desynchronization as a novel technique for reverse engi-
neering TLB behavior from software. Unlike previous efforts
that rely on timing or performance counters, our technique
relies on fundamental properties of TLBs, enabling precise
and fine-grained experiments. We use desynchronization to
shed new light on TLB behavior, examining previously undoc-
umented features such as replacement policies and handling
of PCIDs on commodity Intel processors. We also show that
such knowledge allows for more and better attacks.

Our results reveal a novel replacement policy on the L2
TLB of modern Intel CPUs as well as behavior indicative of
a PCID cache. We use our new insights to design adversarial
access patterns that massage the TLB state into evicting a
target entry in the minimum number of steps, then examine
their impact on several classes of prior TLB-based attacks.
Our findings enable practical side channels à la TLBleed over
L2, with much finer spatial discrimination and at a sampling
rate comparable to L1, as well as an even finer-grained variant
that targets both levels. We also show substantial speed gains
for other classes of attacks that rely on TLB eviction.

1 Introduction

Deeper knowledge of microarchitectural components fre-
quently leads to significant advances in low-level attacks
and defenses. For instance, reverse engineering CPU cache
replacement policies [1, 2, 34] allowed researchers on the
defensive side to ensure bounds on execution time and to
protect against side channels [1], and on the offensive side,
to leak information through the replacement policy state [36]
or optimize cache eviction for more effective Rowhammer
attacks [4]. Likewise, knowledge of the interplay between the
memory management unit, caches, and virtual-to-physical ad-
dress translation structures enabled new information leakage

attacks through trusted CPU components [14, 32]. However,
most reverse engineering efforts to date have focused exclu-
sively on the data and instruction CPU caches, with little
attention devoted to the translation lookaside buffer (TLB),
the other vital cache component involved in memory accesses.
This is somewhat surprising, as TLBs play a pivotal role in
a growing number of attacks [14, 32, 39]. Aside from crude
examinations (e.g., by Gras et al. [14]), researchers have not
looked at the detailed behavior such as allocation and replace-
ment policies of TLBs at all.

In this paper, we show that our lack of knowledge of the
operation of the TLB hinders the exploration of new attack
vectors and limits the efficiency of attacks proposed so far. For
example, the absence of optimal eviction strategies limited the
TLBleed covert channel [14] to coarse-grained information
over the L1 data TLB, rather than more fine-grained chan-
nels over the larger and shared L2 TLB. In this paper, we
reverse engineer modern TLBs and show how knowledge of
replacement policies not only improves existing attacks but
also makes new attack variants practical.

In contrast to previous research, we do not leverage per-
formance counters or timing side channels for reverse en-
gineering, but rather use a precise technique based on TLB
desynchronization. In particular, we desynchronize the TLB
and the page table structure in memory by altering the page
table entry (PTE) for a page in the TLB. Doing so allows us
to determine very precisely when a TLB entry is evicted, be-
cause that is when the processor starts using the new mapping
from the page tables in memory.

Using TLB desynchronization as a side channel, we ex-
amine TLB features that previous work has omitted, such
as replacement policies and PCID handling, and in doing so
are the first to uncover several new undocumented properties.
Specifically, we describe a new replacement policy in use
by the 12-way L2 TLBs of recent Intel microarchitectures,
as well as behavior indicative of a previously undocumented
PCID cache in all the tested CPUs.

Finally, by creating a more complete model of hardware be-
havior, we show how we can gain net speed benefits for prior

USENIX Association 31st USENIX Security Symposium 989

attacks that rely on the TLB such as TLB side channel [14],
as well as translation-based cache [32] and Rowhammer [39]
attacks. Our reverse engineering efforts also make new attack
variants practical, such as an efficient TLBleed over the L2
TLB. Such a variant provides 8 times the spatial discrimina-
tion of the original TLBleed, while our optimized eviction
strategy provides a sampling rate comparable to the L1 sam-
pling rates of the original TLBleed. Further, we introduce an
even more fine-grained variant targeting a particular (L1, L2)
set pair, improving spatial discrimination by two orders of
magnitude, and show how optimized eviction sets are neces-
sary for the practical implementation of such an attack.

Contributions

• We introduce TLB desynchronization as a reliable side
channel for TLB reverse engineering and use it to (a) re-
produce existing results, and (b) uncover entirely novel
TLB properties and behavior.

• We discover previously undocumented TLB behavior on
Intel CPUs, including a novel replacement policy, and
behavior congruent with an undocumented PCID cache.

• We use this knowledge to introduce optimized eviction
sets and show how they improve TLB-based attacks.

Our code to build optimized eviction sets and implement
the considered case studies is available as open source at
https://github.com/vusec/tlbdr.

2 Background

In this section we briefly describe TLBs and some of their
fundamental properties. We then lay out previous reverse
engineering work and attacks involving the TLB.

2.1 Virtual Memory and TLBs

Abstracting a machine’s available RAM through the use of vir-
tual memory is a nearly ubiquitous technique used in modern
computer architectures. A common implementation of this
abstraction is paging, where memory is divided into physical
page frames—equally-sized contiguous blocks. The virtual
address space is similarly divided into virtual pages. Trans-
lating between virtual and physical address spaces is handled
by the Memory Management Unit (MMU) inside the CPU,
which uses hierarchical in-memory data structures called page
tables to accomplish this task. Page tables contain page table
entries (PTEs) which point to a page frame containing either
the requested data or to another, lower-level, page table. This
translation performed by the MMU is called a page table walk,
owing to the traversal over page table structures it involves.

e0 e1 e2 e3

0 1

1

(a) A possible ordering.

π0 = (0,1,2,3)
π1 = (1,0,3,2)
π2 = (2,1,0,3)
π3 = (3,0,1,2)

(b) Permutation vectors.

Figure 1: 4-way tree-PLRU

Translation Lookaside Buffer As multiple memory ac-
cesses can be expensive, recently resolved translations are
stored in a cache called the Translation Lookaside Buffer
(TLB) in order to speed up subsequent accesses. The TLB,
like data caches, is a set-associative cache partitioned into S
sets, each consisting of a number of ways W , with a so-called
hash function determining the set in which a translation is
cached. Modern processors typically use a two-level TLB
hierarchy. The first level (L1) is split in two components: the
dTLB is used to cache translations triggered by data loads
while the iTLB stores those triggered by instruction fetches.
A second level (L2) TLB is consulted after an L1 miss and
can be either shared (sTLB), storing translations from either
memory access type, or itself split, handling data loads and in-
struction fetches independently. Similarly to other multi-level
caches, the concepts of inclusivity and exclusivity apply to
TLBs as well. An inclusive TLB is one where entries in L1
are necessarily also present in L2, whereas an exclusive TLB
has entries present in at most one level at a time.

Replacement Policies Caches of all kinds quickly face the
issue of storing a new translation into a full set, thus having
to first pick an entry to evict. The method by which a cache
selects this eviction victim is called a replacement policy. Op-
timally, a cache should evict the entry that will be used most
distantly in the future [6]. Implementing such a replacement
policy, however, is impossible, as the future is unknowable.

Fortunately, the past is often a reasonable approximation
of the future. This forms the basis for the Least-Recently
Used (LRU) replacement policy which keeps track of the
access history of entries, always evicting the least-recently
used. As the number of ways in a set increases, though, LRU
scales very poorly and becomes infeasible. To address this,
approximations of LRU, called Pseudo LRU (PLRU), are
commonly implemented instead. One family of such policies
is tree-PLRU, which use W −1 bits to represent a binary tree
that approximates access history ordering. An example tree-
PLRU ordering for a 4-way set is shown in Figure 1a. After an
access, the tree is traversed and all the nodes encountered are
updated to point in the opposite direction. On insertion, the
entry currently pointed to is evicted and replaced, after which
the nodes traversed in order to reach it change direction. More
generally we can view a replacement policy as maintaining an
ordering of ways in a set, forming a queue of eviction victims.

990 31st USENIX Security Symposium USENIX Association

https://github.com/vusec/tlbdr

Permutation Vectors Although descriptions and visualiza-
tions of replacement policies are helpful, thorough reverse
engineering efforts require the rigor of a mathematical model.
Abel and Reineke [1] introduce permutation vectors as a
model for a broad class of replacement policies where the
state of a TLB set can be exhaustively described by a per-
mutation (i.e., ordering) of its W ways that represents access
history, with the rightmost element being chosen for eviction
next. Permutations are also used to describe updates to cache
state following hits or misses, with the new state formed by
composing the initial state with the update permutation. A per-
mutation vector πi shows how each entry’s position changes
after a hit on the entry at position i. For example, if we access
entry x at position 3 and π3(0) = 3, x will move to position
0. A miss vector πm shows what happens on a TLB miss,
and is conventionally fixed to (W −1,0,1, ...,W −2), i.e. the
new entry is inserted at position 0 and other entries have their
positions increased by one. Permutation vectors allow us to
model many common replacement policies like LRU and tree-
PLRU. In Figure 1b we see an example for 4-way tree-PLRU.
Permutation vectors do have limitations, and are inadequate
for describing non-deterministic policies, as well as policies
whose decision is not solely based the access history (e.g.,
bit-PLRU [3], which replaces the left-most element that was
not accessed recently).

Address Space Identifiers Since each process is offered its
own virtual address space, translation structures are process-
specific. Hence, upon context switch, any existing TLB entries
become stale and should no longer be used for translation. A
naive way around this is to flush the entire TLB on context
switch, which although simple, has the newly scheduled task
start off with an empty TLB, forcing the MMU to perform
page walks for the first memory accesses. To avoid this so-
called cold start, modern processors tag TLB entries with an
address space identifier. This eliminates the need for a TLB
flush on every context switch, as it allows the processor to
distinguish between valid and stale entries. As recent transient
execution attacks proved the need for a separate kernel address
space [23], such identifiers became even more important for
performance, avoiding the need for a TLB flush on every
privilege switch. Intel processors refer to this identifier as
Process-Context Identifier (PCID).

2.2 Exploiting the TLB
Gras et al. [15] introduce AnC, a cache attack on the MMU
that can be used to break ASLR. Their insight is that the
MMU needs to access multiple levels of page tables in order
to complete a translation, and each accessed entry is cached.
By using an established EVICT+TIME attack on these cached
entries they can leak the value of any data pointer. RevAnC,
introduced by van Schaik et al. [33], uses repeated AnC at-
tacks to reverse engineer the sizes of the TLB and translation

caches on multiple architectures. XLATE [32] similarly uses
the translation process as a cross-process side channel.

In TLBleed [14], Gras et al. show that the TLB itself can be
abused to spy on a co-resident hyperthread. Specifically, they
use the L1 dTLB as a side channel to leak the key bit being
processed by the libgcrypt EdDSA key scalar-multiplication
function on a victim thread. They successfully recover the
secret key using a limited number of brute force attempts. In
the process, they reverse engineer several properties of mod-
ern Intel TLBs, showing that the L1 dTLB and the L2 sTLB
are competitively shared between hyperthreads, while the L1
iTLB is statically partitioned. Next to that, they determine
set sizes, set selection hash functions, and also show that the
TLB is non-inclusive.

Zhang et al. [39] show that page walks can be leveraged to
perform Rowhammer, in an attack they call PTHammer. By
flushing the TLB and cache entries for the last-level PTE they
ensure this entry is fetched from DRAM on each page walk.
These memory accesses are used to hammer DRAM on a row
that is not directly accessible to the attacker, invalidating the
threat model of many software-based Rowhammer defenses.

All TLB-based attacks described here indispensably rely
on evicting one particular entry out of the TLB. Currently
they achieve this using a blunt approach: fill the target set
with W or more new entries to force the target entry out. In §5
we propose a finer-grained and more performant alternative.

3 TLB Desynchronization

In this section, we introduce TLB desynchronization as a
novel primitive for reverse engineering the TLB that, unlike
previous work, relies neither on timing [1, 33], nor on hard-
ware performance counters [1, 2, 14].

Our starting insight is that unlike data caches, which feature
intricate coherency protocols, TLBs do not enforce coherence
with the in-memory page tables. The task of invalidating any
potentially stale TLB entries is explicitly left to the operating
system [19] and failing to do so would be a serious bug in nor-
mal circumstances. For our purposes of reverse engineering,
however, we can leverage stale entries to accurately determine
whether a given memory access incurred a hit in the TLB.

To do so, we first select a victim address and trigger a TLB
fill by accessing it. If we alter the corresponding PTE directly
afterward without explicitly invalidating the TLB, the victim
entry becomes desynchronized with the PTE in memory. Any
subsequent memory access to the victim address that hits the
TLB will use the stale entry, whereas any TLB miss will use
the in-memory PTE. If we can then distinguish which PTE
is used for translation, we enable reliable TLB hit detection
with the finest possible granularity—individual accesses.

Desynchronization poses several attractive properties when
compared to alternatives. As opposed to performance coun-
ters, it does not rely on sampling and thus precisely measures

USENIX Association 31st USENIX Security Symposium 991

APTE
(RAM) APTE

(RAM) APTE
(RAM) BPTE

(RAM)

Prime
L1d -

L2 -

Init State

Experiment. . .Evict L2
Swap
PTE

L1d A

L2 A

Primed

L1d A

L2 -

Flushed

L1d A

L2 -

Desynced
L1d HIT

L1d MISS

Read
Target

A

B

Figure 2: Overview of a TLB desynchronization experiment on L1d with pages A and B of different contents.

specific memory accesses independently. In addition, desyn-
chronization classifies hits and misses based on fundamental
properties of the TLB, offering a much clearer and more ro-
bust classification than timing measurements, which require
calibration and are more prone to noise.

Before we can leverage desynchronization to reverse engi-
neer the TLB we must address several challenges.

Distinguishing Memory Accesses A first issue we face is
that we must distinguish between memory accesses going
through a stale (in-TLB) entry versus a fresh (in-memory)
PTE. A straight-forward solution would be to mark the PTE
invalid by setting a reserved bit or clearing the present bit. A
subsequent TLB miss would then result in a page fault, which
we can easily measure. However, this method would execute
the page fault handler on every TLB miss, potentially thrash-
ing the TLB state and adversely affecting measurements.

We instead opt for PTE swapping, by which we interchange
the contents of our victim PTE with another, also valid, PTE.
As a result of desynchronizing and PTE swapping, the victim
page maps to different page frames when accessed via a TLB
hit or page table walk. By ensuring that these physical pages
contain different data we can easily and precisely classify
TLB hits and misses by interpreting these contents.

Component classification Although we can distinguish
between a TLB hit and a TLB miss, for non-exclusive TLBs
we still cannot easily determine which component caused a
hit (e.g., whether a data load was served from L1d or L2). In
certain cases when testing the sTLB we can use a data load
for priming and an instruction fetch for testing presence in the
TLB, or vice versa, to eliminate influence from L1. To solve
this issue more generally, we selectively flush an entry from
a single TLB component without affecting the others (e.g.,
flush an entry from L2 while preserving it in L1). Selectively
flushing L2 can be done naively by issuing a large number
of memory accesses of the opposite type to the split TLB we
want to preserve, assuming a shared L2. For example, after
initiating enough instruction fetches on unique pages, we are
certain that any cached entries are evicted from both L1i and
L2, while leaving L1d unaffected. Figure 2 shows an overview
of such a TLB desynchronization experiment.

More precise eviction can be achieved by targeting a single

specific set, requiring fewer, albeit more carefully chosen
memory accesses. This, for example, enables us to evict an
entry from L1d without evicting any entries that are relevant
for our experiment from L2. For this to work, however, we
need to know the hash functions used for set indexing.

Implementation To experiment with desynchronized TLBs,
we need to handle several issues. First, userspace programs
cannot directly access or modify page tables, forcing us to
implement PTE swapping in kernel mode. Second, scheduling
events such as context switches can thrash the TLB state and
contaminate our results, prompting an implementation that
minimizes task switching. Third, we want to keep the amount
of out-of-order execution to a minimum to avoid polluting our
results. Finally, asynchronous events such as interrupts can
also affect the TLB state and should be minimized. Taking
all these considerations into account, our reverse engineering
experiments run entirely in kernel mode with preemption and
interrupts disabled, and use a strict form of pointer chasing.

4 Reverse Engineering

In this section we discuss how to use the TLB desynchro-
nization primitive to design and run experiments for probing
TLB behavior. In designing the experiments presented in this
section, we assume a shared L2 TLB, an assumption we found
not to hold for two AMD microarchitectures examined. For
such systems, we lay out an alternative set of experiments in
Appendix A. The results for the two AMD microarchitectures
are summarized later in this section, in Table 2.

We first examine a range of basic TLB properties of Intel
CPUs that confirm and expand the insight into TLB behav-
ior of previous work [14]. From §4.4 onward, we focus on
features that were thus far unexplored, yet no less fundamen-
tal. In the process, we uncover a previously undocumented
replacement policy, as well as evidence of a PCID cache.

4.1 Inclusivity and Exclusivity
Before we pursue more advanced experiments we must first
confirm several fundamental properties, and we start with
inclusivity. To do so, we prime the TLB with a data load of
our target address T , swap its PTE to desynchronize the TLB

992 31st USENIX Security Symposium USENIX Association

from the page tables, then perform unique instruction fetches
until the L2 sTLB is completely flushed. If a subsequent data
load of T is a TLB hit, the TLB must have been non-inclusive,
as L1d retains T independently of L2. A miss implies either
strict inclusivity, or that L1 is not populated by page walks.
On all tested microarchitectures, we obtain proof of a non-
inclusive TLB, confirming the results of Gras et al. [14].

Knowing this, we expand upon their work by performing a
similar experiment to check for exclusivity. Specifically, we
prime the TLB with a data load, desynchronize, then access
T via an instruction fetch. A TLB hit will occur if and only
if T was also loaded into L2 in addition to L1d, and thus a
non-exclusive TLB. Our results show that all tested microar-
chitectures are non-exclusive, as the second access incurs an
sTLB hit. We conclude that all our tested systems implement
non-inclusive, non-exclusive TLBs. In addition, we know that
entries are inserted into both TLB levels by a page walk.

4.2 Set Size and Mapping

Now that we know where entries may reside in the TLB and
how they are inserted by the MMU, we use TLB desynchro-
nization to measure the number of ways and the set hash
functions, again extending earlier results [14].

We consider a TLB component with S sets and W ways
that uses one of the two types of hash functions found before
on TLBs [14]. Assuming we start with an empty TLB and
no evictions occur before a TLB set is full, visiting W + 1
virtual pages belonging to said set should cause evictions for
correct values of W and S. Evictions should also occur if we
pick W greater than the true number of ways, or if we pick S
a multiple of the true number of sets. Therefore, the smallest
values for both W and S that trigger TLB evictions denote
the correct number of ways and sets. To find this minimal
pair we run our experiment for all sensible combinations of
W , S, and candidate hash function. Directly after accessing
our pages, we swap their PTEs to desynchronize the TLB
and page tables. We next access the pages again, measuring
if any access incurred a miss. If so, we know that the first
round of accesses resulted in a TLB eviction. To eliminate
the influence of TLB components that we are not testing (e.g.,
false hits from stale entries in L2 when testing L1), we use
the techniques described in §3.

Our results, shown in Table 1, agree for the sTLB and dTLB
with the ones described by Gras et al. [14]. On the iTLB,
however, the measured number of sets depends on the activity
of the co-resident hyperthread for all tested microarchitectures
except the oldest one, Westmere-EP. With the hyperthread
active, our results are consistent with previous work and with
static partitioning of L1i. But when idle, the number of sets
doubles (i.e., our experiment had access to both “halves” of
the iTLB), suggesting that partitioning occurs dynamically,
with the iTLB switching between partition states at runtime.

4.3 Reinsertion Behavior
Now that we know how the TLB populates on a miss, we
next examine reinsertion on hits. In particular, we want to
know whether L2 serves as a victim cache, whether L2 hits
propagate upward, and whether L1 hits propagate downward.

We start by looking at victim caches, specifically whether
L2 sTLB is populated by evictions from L1d or L1i. To do so,
we prime either L1d or L1i with our target T , desynchronize
the TLB, evict L2, and finally evict our stale entry from L1.
A subsequent hit on T means that evicting L1 populated L2,
implying a victim cache, whereas a miss suggests otherwise.
Our results show that entries are never reinserted into L2
after either L1d or L1i eviction. None of the L2 sTLBs tested
behave as a victim cache.

We next investigate whether an L2 hit is reinserted into L1.
For this, we access T , desynchronize the TLB, then access
T using the opposite type of memory access, which should
cause an L2 hit. Finally, we evict the L2 set and access T
again using the latter access type. If L2 hits populate L1 we
should see a hit, while a miss indicates otherwise. For all
tested microarchitectures our results show that the last mem-
ory access results in a TLB hit. Hence, entries are reinserted
into the dTLB or the iTLB upon an sTLB hit.

As a last experiment, we test if the TLB reinserts the other
way around—into the sTLB upon L1 hit. For this, we access
a target page T , desynchronize the TLB, and evict its sTLB
set, leaving the entry only in L1. We access the target again,
using the same access type. If this causes sTLB reinsertion,
an access of the opposite type results in a TLB hit. Likewise,
a TLB miss proves that entries are not reinserted. Our results
show no evidence of L2 reinsertion in any of the TLBs.

4.4 Replacement Policies
With the insights gained thus far we have an overview of
where and how entries are inserted into the TLB. We use
this knowledge to explore replacement policies, using per-
mutation vectors as a model for reverse engineering. We im-
plement the algorithm presented by Abel and Reineke for
regular caches [1], but for the TLB components, using TLB
desynchronization.

4.4.1 Experiment Design

We first test whether we can fill all W ways of a TLB set by
initiating W accesses to unique virtual pages mapping to the
same set. After each access, we swap the corresponding PTE
and finally access the W pages again to see if any of them
is a TLB miss. Although similar to the experiment in §4.2,
the fundamental difference here is that we start with a full set
instead of an empty set. The results confirm that after visiting
W pages, all their entries are present in the TLB set, on all
tested microarchitectures and TLB components. This is in
line with the conventional miss vector used in previous work.

USENIX Association 31st USENIX Security Symposium 993

π0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
π1 = (1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11, 9)
π2 = (2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10)
π3 = (3, 1, 2, 0, 4, 5, 9, 7, 8, 6, 10, 11)
π4 = (4, 2, 0, 1, 5, 3, 10, 8, 6, 7, 11, 9)
π5 = (5, 0, 1, 2, 3, 4, 11, 6, 7, 8, 9, 10)
π6 = (6, 1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11)
π7 = (7, 2, 0, 4, 5, 3, 1, 8, 6, 10, 11, 9)
π8 = (8, 0, 1, 5, 3, 4, 2, 6, 7, 11, 9, 10)
π9 = (9, 1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11)
π10 = (10, 2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9)
π11 = (11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Figure 3: Permutation vectors for the sTLB replacement pol-
icy of Skylake-SP, Kaby Lake and Coffee Lake(-S) CPUs.

The main intuition of the algorithm presented by Abel and
Reineke [1] is that we can determine the position of an entry
in the ordering by finding the minimum number of TLB fills
required to evict the entry from the set. In general, the position
of the entry is W −nmin, where nmin is the minimum number
of TLB fills required to evict the entry and 1≤ nmin ≤W .

To find the permutation vectors, we first establish a known
state in the TLB set by priming it with W pages. After that,
we trigger any of the W permutations by causing a TLB hit
on the entry with the corresponding position in the ordering.
To determine what permutation vector we have triggered with
the TLB hit, we find nmin(x) for each entry x present in the set.
We do this by desynchronizing x immediately after accessing
it when priming, then determining the minimum number of
TLB fills required to cause a TLB miss when accessing x
afterwards. The new position of the entry is then W −nmin(x).
Hence, for each position i we determine the corresponding
permutation vector πi by deciding W −nmin(x) for each entry
x and placing each xpos on this index in πi. That is, πi(W −
nmin(x)) = xpos for each entry x and position i.

Before our experiment we first warm up the respective set
by initiating a number of memory accesses on unique virtual
pages to ensure the set is full. We do this because we wish
to measure steady-state behavior, and replacement policies
may behave differently when the set is not yet full [1, 2]. As
in the other experiments, we eliminate the influence of TLB
components not under test by selectively evicting that level.

To determine the new position of an entry we test a number
of iterations, each using randomly selected sets. This results in
a 2D matrix of S×W for each entry and permutation vector,
where rows represent the different TLB sets and columns
represent the possible positions in the ordering. A cell in this
matrix shows the number of votes for a position, obtained by
testing in a certain set. To find the correct new position for
each entry, we take the column with the highest number of
total votes, those in other columns being deviations, which we

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

0 0 1 0 0 0

1 0 0

2

M
R

U

Figure 4: A possible sTLB ordering on Skylake-SP, Kaby
Lake and Coffee Lake(-S) after an access to entry 7. Entry 8
is the next victim.

refer to as errors. The error rate is defined as the percentage of
errors given the total number of votes. Essentially, we select
the deterministic permutation vector model closest to our
observations.

4.4.2 Results

Our results reveal a previously unknown replacement policy
on the sTLB of Skylake-SP, Kaby Lake, and Coffee Lake(-S).
Figure 3 shows the measured permutation vectors.

We recognize a possible implementation using a tree struc-
ture that behaves congruent with the permutation vectors.
The 12 entries are divided into three groups of four entries
each, with tree-PLRU keeping an ordering within each group.
The root node indicates the current victim group, which is
chosen based on the Most-Recently Used (MRU) group. Intu-
itively, if we number the groups 0, 1 and 2, we can say that
the victim group is MRU+1 using modulo 3 arithmetic. A
visual explanation of a possible ordering after an access to
entry 7 can be seen in Figure 4. Here, the second group was
most-recently used, and hence the root node is pointing to the
third group. A subsequent hit on any entry in the third group
(e8,e9,e10 or e11) would make the first group the victim group,
as (2+1)≡ 0 (mod 3). Finally, the nodes encountered while
traversing to the entry within the third group are updated to
point in the opposite direction, as with regular tree-PLRU. On
TLB fill the victim entry is replaced and the state updated as
if there had been a hit on the victim.

We are unaware of previous reverse engineering efforts that
describe this policy. The most similar is LRU3PLRU4, found
by Abel and Reineke [2] on the L1 data cache of Intel Ice Lake,
where the 12 entries are also divided in three PLRU trees, with
the victim group selected using LRU. Adopting their naming
scheme, we refer to our found policy as (MRU+1)%3PLRU4.
We ascertain that both of these policies belong to a family of
tree-PLRU variants patented by Intel Corporation [5].

Table 1 summarizes the replacement policies we measured.
On Westmere-EP, Ivy Bridge, and Haswell, we identified a
tree-PLRU replacement policy on the sTLB. For the dTLB our
results are consistent with tree-PLRU on all tested microar-
chitectures. The iTLB replacement policy on Westmere-EP

994 31st USENIX Security Symposium USENIX Association

Table 1: Summary of reverse engineered properties on Intel.

TLB Property Westmere-EP
E5645

Ivy Bridge
i3-3220

Haswell
i7-4790

Skylake-SP
Silver 4110

Kaby Lake
i7-7700K

Coffee Lake(-S)
i7-8750H, i9-9900K

Inclusive 7 7 7 7 7 7
Exclusive 7 7 7 7 7 7
L2 is victim cache 7 7 7 7 7 7
L2 hit inserts into L1 3 3 3 3 3 3
L1 hit inserts into L2 7 7 7 7 7 7

L1 dTLB
Number of sets 16 16 16 16 16 16
Number of ways 4 4 4 4 4 4
Hash function linear linear linear linear linear linear
Replacement policy tree-PLRU4 tree-PLRU4 tree-PLRU4 tree-PLRU4 tree-PLRU4 tree-PLRU4
Max PCIDs N/A N/A N/A N/A N/A N/A

L1 iTLB
Number of sets 32 16 / 321 8 / 161 8 / 161 8 / 161 8 / 161

Number of ways 4 4 8 8 8 8
Hash function linear linear linear linear linear linear
Replacement policy tree-PLRU4 LRU4 tree-PLRU8

2 tree-PLRU8
2 tree-PLRU8

2 tree-PLRU8
2

Max PCIDs 1 / 43 1 / 43 1 / 43 1 / 43 1 / 43 1 / 43

L2 sTLB
Number of sets 128 128 128 128 128 128
Number of ways 4 4 8 12 12 12
Hash function linear linear linear XOR XOR XOR
Replacement policy tree-PLRU4 tree-PLRU4 tree-PLRU8 (MRU+1)%3PLRU4 (MRU+1)%3PLRU4 (MRU+1)%3PLRU4
Max PCIDs 4 4 4 4 4 4
1 Depending on the activity of the co-resident hyperthread; see §4.2.
2 Model closest to our observations, but very high error rate; see §4.4.2.
3 Depending on whether the NOFLUSH bit is set when switching PCIDs; see §4.5.

corresponds to tree-PLRU, whereas Ivy Bridge uses perfect
LRU. On Haswell, Skylake-SP, Kaby Lake, and Coffee Lake(-
S), the closest model to our observations is tree-PLRU, albeit
with a higher than usual error rate—where errors denote sets
that do not behave consistently across iterations.

4.4.3 Error Rates

Our most stable results are on the sTLB of all microarchitec-
tures, with error rates of less than 1%. The dTLB error rate
on all microarchitectures is less than 8%, but since measure-
ment code itself is active in at least one of the 16 sets, the
majority of measurements in that set are off. The policies of
the iTLB on Westmere-EP and Ivy Bridge—tree-PLRU and
LRU—show an error rate of less than 5%, but, again, our code
resides in at least one set.

The exact context in which we conduct the experiment
influences the error rate. For example, writing to the CR3 reg-
ister before the experiment starts typically increases the error
rate significantly, while walking over the pointer chain twice,
recording only the second outcome, decreases it somewhat.
In all cases the measured permutation vectors remain either
unchanged or clearly erroneous.

Establishing the exact cause of this behavior is very diffi-
cult. We can exclude non-deterministic replacement policies,
as we achieve very low error rates with deterministic models.
Likewise, an adaptive policy would be unlikely for multiple

reasons. First, we can exclude set dueling, as we did not find
proof of difference in behavior among specific sets. Second,
any variant policy would itself be measurable as a different,
coherent replacement policy some of the time, and we have
found no evidence of such. Therefore, we speculate that the
fluctuation in error rate is caused by unexpected memory
accesses during the experiment. Possible causes could be
System Management Mode (SMM), non-maskable interrupts,
and TLB prefetching, which we know is used by AMD [8, 9].

4.5 PCID Support

The currently active PCID corresponds to the 12 least signif-
icant bits of the CR3 register. To investigate the role PCIDs
play in TLB behavior, we attempt to isolate an entry in the L1
dTLB similarly to previous experiments. This time, however,
we prime and check the TLB using a different PCID than the
one used for eviction. The results were surprising: in none of
the cases did we witness a TLB hit.

One possible explanation we considered was the TLB get-
ting flushed on switching PCIDs. The Intel architecture man-
ual [19] offers no strong guarantees about how the TLB be-
haves in this scenario, claiming it may or may not retain
entries. In addition, when switching from one PCID to an-
other, software needs to explicitly hint to the CPU not to flush
cached entries corresponding to the new PCID, a hint which
the CPU is free to ignore. To provide the hint, it sets the 63rd

USENIX Association 31st USENIX Security Symposium 995

(NOFLUSH) bit of the CR3 register on a context switch.

Due to the lack of information on this topic we conduct a
systematic study of the interplay between PCIDs and TLB
behavior. We later identified a patent by Intel describing imple-
mentations that behave in line with some of our findings [11].

We first investigate the maximum number n of concurrent
PCIDs supported by a TLB. We start by accessing a randomly
chosen page and desynchronize its TLB entry. We then suc-
cessively switch to n different PCIDs, where 0≤ n≤ 4095.
We do this both with and without setting the NOFLUSH bit.
Lastly, we switch back to the original PCID while setting the
NOFLUSH bit and measure an access to the target page. If we
witness a TLB hit, we have not reached a maximum yet, and
we increase n. If we see a TLB miss on every iteration, we
have found a limit on the PCID support. As done previously,
other TLB components are evicted as described in §3.

As a follow-up experiment, we investigate whether a hyper-
thread can evict entries of the other hyperthread by switching
to new PCIDs. For this purpose, we create two kernel threads
scheduled on the same physical core. In thread 1 we visit a ran-
domly selected target page, desynchronize its TLB entry, then
temporarily switch to another PCID. Next, on thread 2, we
switch between all possible PCIDs in order. Lastly, in thread 1
we switch back to its original PCID with the NOFLUSH bit
set, and measure our target.

We present our results for each TLB component, as sum-
marized in Table 1. The results show that the dTLB does not
support PCIDs at all, as even when n = 0 the second access
results in a TLB miss. Hence, the dTLB is not aware of the
currently active PCID and flushes all entries upon a CR3 load.
The immediate security implication of this result is that the
recent TagBleed attack [22] cannot abuse the dTLB. The sec-
ond experiment shows that one hyperthread’s PCID switch
does not evict entries of the other hyperthread. This suggests
that entries are tagged with their owning hyperthread.

In contrast, we found that the sTLB does support PCIDs on
all tested microarchitectures, with no difference in behavior
between having the NOFLUSH bit set or not. When 0≤ n < 4
the last access results in a TLB hit, while as soon as n = 4 we
witness TLB misses, without exception. We conclude that the
sTLB supports a maximum of 4 PCIDs. As with the dTLB,
entries belonging to one hyperthread are not evicted by PCID
switches on the other hyperthread.

Our experiments show that the iTLB is also aware of PCIDs.
When not setting the NOFLUSH bit our entry is consistently
evicted when n = 1. However, when the NOFLUSH bit is
set, we measure evictions for unstable values of n, ranging
from 1 to 4. We were not able to find an explanation for this
behavior. As with the dTLB and sTLB, PCID switches on
one hyperthread do not evict entries belonging to the other
hyperthread, supporting the hypothesis of an iTLB that is
wholly partitioned between active hyperthreads.

4.6 PCID Cache

The fact that there is a limit on the number of distinct PCIDs
for which a TLB can hold entries suggests the existence of a
cache for holding PCIDs, which we refer to as a PCID cache.
Only PCIDs present in these caches may have their entries
in a TLB component. Having such a cache would mean TLB
entries need only store the bits to index into a small cache
denoting their assigned address space, as opposed to storing
all 12 bits of a PCID. As the sTLB supports 4 PCIDs, its
PCID cache has 4 entries and because PCID switches on one
hyperthread do not evict entries of the other hyperthread, it
follows that each hyperthread has its own instance.

As a cache with limited space, it must implement some
form of replacement policy to decide which PCID to evict
when full. We attempt to measure this behavior, modeling
it using permutation vectors and using the same algorithm
as in §4.4, but now using PCID switches instead of mem-
ory accesses. In other words, we determine how many PCID
switches are required to evict a PCID from the cache, for each
PCID position in each permutation vector.

Our results show that the sTLB PCID cache uses a per-
fect LRU replacement policy. The observations described in
§4.4.3 also pertain to the permutation vectors of the PCID
cache, although to a lesser extent. As mentioned, we observed
inconsistent results on the iTLB, but have enough information
to surmise one of two possibilities: either (a) the iTLB and
sTLB share a PCID cache, with the iTLB invalidating the
entries more eagerly (e.g., when not setting the NOFLUSH
bit) or (b) the iTLB has its own PCID cache of size 4 with a
more complex replacement policy.

4.7 iTLB Partitioning

Following our findings regarding iTLB partitioning between
hyperthreads from §4.2 we look into what happens at the
moment of transition between non-partitioned and partitioned
states. Because partitioning is done set-wise there must be a
discrete moment in time when the set hash functions transi-
tion from one to the other, evicting entries. We test several
hypotheses to how eviction is handled. First and most obvi-
ous is to flush the entire iTLB and have subsequent accesses
repopulate from sTLB or RAM using the new hash. A slight
optimization is to only flush the set indexes that exist solely
in the unpartitioned state, and which the new hash function
cannot address. A third strategy is to evict enough of the less
recently used ways of all sets to make room for the partition.

To test our hypotheses we design an experiment that moni-
tors iTLB behavior and measures what happens on transition.
For an iTLB with S sets of W ways we set up two lots, A
and B, of S×W pages each, mapped to fill the entire iTLB.
We populate these pages with code that amounts to a jump
chain that walks across all sets W times. Additionally, before
the jump, we set a bit in a known register identifying the set,

996 31st USENIX Security Symposium USENIX Association

Table 2: Summary of reverse engineered properties on AMD.

TLB Property Zen+
Ryzen 7 2700X

Zen 3
Ryzen 5 5600X

Inclusive 7 7

L1 dTLB
Number of sets 1 1
Number of ways 641 641

L1 iTLB
Number of sets 1 1
Number of ways 641 641

L2 dTLB
Number of sets 256/1922 256
Number of ways 8 8
Set selection bits 12–18, 21 12–18, 21

L2 iTLB
Number of sets 128 128
Number of ways 42 4
Set selection bits 12–17, 21 12–17, 21
1 Reported by cpuid, but consistent with our results.
2 Results inconclusive; see §A.2.

way number and chain (A or B) associated with that page. We
also add code to the page at the end of the chain that handles
recording and looping. This produces a self-contained code
blob that fills the iTLB and remains resident.

Running either of these chains by itself will not yield any
new information. Thus we prime with chain A, desynchronize
to have the page tables point at chain B, flush all entries out
of L2, then run chain A again. At the end the measurement
registers show, for every entry, whether it has survived un-
evicted thus far—chain A entries are from the initial priming,
chain B entries were reloaded from RAM. We loop over the
chain for as long as unevicted entries remain, recording new
measurements and the number of iterations between them.
This offers us a deep view into how the iTLB behaves over
time, allowing us to test our hypotheses.

Results show a high level of interference within the first iter-
ations, with (all) entries rarely remaining in the iTLB for long,
even with a completely idle co-resident hyperthread. After the
first few evictions the iTLB stabilizes and we see entries with
long lifetimes. Activating the co-resident hyperthread yields
results not conclusive enough to completely determine the
transition strategy, however we can draw some conclusions:
first, the iTLB does not flush sets in their entirety on transition,
rather it seems to flush some of the less recently used ways.
Second, regardless of the co-resident hyperthread’s activity,
a sufficiently often accessed entry can be kept in the iTLB
indefinitely, barring any descheduling or interrupts.

4.8 AMD
As pointed out before, our experiments described so far rely
on the assumption that the L2 TLB is a shared component

for data loads and instruction fetches. When running our
experiments on two AMD microarchitectures—Zen+ and
Zen 3—we found that this assumption does not hold.

We therefore design an alternative set of experiments. The
lack of a shared TLB component has proven challenging,
however, and several experiments do not work without this
feature. Foremost, we are unable to selectively flush a single
TLB level as we describe in §3, which prevents us from distin-
guishing between L1 and L2 entries. A first consequence of
this is that we are unable to design experiments that test for re-
insertion behavior and exclusivity. In addition, this limitation,
coupled with a fully associative L1 TLB, further prevented us
from reliably testing for replacement policies.

However, in spite of these difficulties, we design exper-
iments to determine set size, set mapping and inclusivity.
These experiments are explained in Appendix A. Our results
are summarized in Table 2.

5 Massaging TLB State

In this section we apply the knowledge about TLB replace-
ment policies gained in §4.4 to show how an attacker can
purposefully manipulate the TLB state to their advantage.
Specifically, we show how to create access patterns that evict
a target entry in fewer accesses than the state of the art.

Previous attacks that construct and use TLB eviction
sets [14, 15, 32, 39] do so under the assumption that an opti-
mal eviction set is of size W—the number of ways in a set.
Intuitively this makes sense: inserting W new entries clobbers
all existing W ways for a large class of replacement policies,
thus evicting our target regardless of its position in the set’s
replacement queue. This strategy is albeit only optimal if one
wishes to evict all entries from a set and no assumptions can
be made about its existing state. In practice, however, both
these assumptions are overly restrictive, as an attacker has
considerable power to prime the TLB state, and often targets
a singular entry in a set.

We show how relaxing these restrictions combined with an
accurate model of the replacement policies in use allows us to
construct access patterns that evict a particular target entry out
of an adequately primed TLB in fewer than W accesses. First
we introduce the theory behind constructing these patterns,
which we call optimized eviction sets. We then examine two
replacement policies, tree-PLRU4 and (MRU+1)%3PLRU4,
used on the L1d and L2s of modern Intel CPUs, and construct
optimized eviction sets for a most-recently-used target.

5.1 Theoretical Considerations
In order to benefit from knowledge about replacement policies
when constructing eviction sets we must first model the TLB
state and its evolution through time. Our key insight is treating
the possible states of a TLB set as nodes of a graph, with
directed edges that represent lookups changing the state.

USENIX Association 31st USENIX Security Symposium 997

Table 3: Optimized eviction runs for Tree-PLRU4.

(a) Unknown Starting State

START (T X X X)
0 πm (0 T X X)
1 πm (1 0 T X)
0 π1 (0 1 X T)
2 πm (2 0 1 X)

(b) Primed Starting State

START (3 2 1 0)
T πm (T 3 2 1)
2 π2 (2 3 T 1)
3 π1 (3 2 1 T)
0 πm (0 3 2 1)

(c) Eviction Loop Self-Synchronization

START (3 2 1 0) START (3 2 1 0)
T πm (T 3 2 1) – (3 2 1 0)
2 π2 (2 3 T 1) π1 (2 3 0 1)
3 π1 (3 2 1 T) π1 (3 2 1 0)
0 πm (0 3 2 1) π3 (0 3 2 1)

For each TLB set of W ways and replacement policy P
we define σi—a data structure that exhaustively describes
the state of a TLB set, namely the present entries as well as
their relative replacement order. We also define ΣP the set
of all possible σi states and refer to it as the state space of
replacement policy P. ΣP will form the nodes of our graph.
Analogously, for each σi ∈ ΣP we define outgoing edges to
all possible successor states as expressed by P. We remark
that outgoing edges imply either a hit, of which there are
exactly W distinct possibilities, or a miss, of which there can
be arbitrarily many, bounded only by available memory.

Now that we have a model of TLB behavior, we apply it
to the problem of constructing eviction sets. In broad terms,
we pick a starting state that contains the eviction target and
then apply a graph search algorithm to find the shortest path
to our desired end state—one with the target entry evicted. As
for the choice of algorithm, we first remark that the raw state
graph has a huge number of nodes, each with a similarly huge
indegree and outdegree, leading to rapid memory exhaustion
for a naive breadth-first-search (BFS) approach.

Fortunately we can make several optimizations to reduce
the problem size. For our purpose of constructing an evic-
tion set, we observe that all entries can be categorized in
one of three distinct ways: T, a singular distinguishable tar-
get entry, inaccessible to the attacker; X, “don’t care”, non-
distinguishable, inaccessible entries; and i ∈ N, numbered,
distinguishable entries accessible to the attacker. By only con-
sidering these types of entries we greatly reduce the size of
our state space. Similarly, if we only consider outgoing edges
under the attacker’s control (i.e., hits or misses of i-type en-
tries) we further limit the outdegree of our graph. In addition,
we remark that when considering outgoing edges that repre-
sent a miss, all i-type entries are functionally identical, and
can thus be reduced to a single edge. By convention we pick
the lowest-numbered entry not currently in the TLB for this
purpose. These changes make it practical to apply BFS on the
reduced graph, providing insight into massaging TLB states.

5.2 Tree-PLRU4

We apply our previously discussed model to the tree-PLRU4
replacement policy. Thus we have σi = (e1,e2,e3,e4) and
outgoing edges according to the permutation vectors shown in
Figure 1b. At first we consider the case where the attacker has

0 1 2 3
(lead-in)

2 3 0
3 0 1
0 1 2
1 2 3

Figure 5: Optimized eviction loop for Tree-PLRU4.

no apriori information about the state of the TLB, other than
that the target is the most recently accessed entry. To model
this we choose our starting state σS = (T,X ,X ,X) and then
apply the search algorithm to find the shortest path evicting T .
Table 3a shows our results. While our sequence has the same
number of lookups as the state of the art, it incurs one fewer
TLB miss. According to previous work [14], this translates
into marginally fewer CPU cycles.

We can do better, however, if we allow the attacker to prime
the TLB set ahead of time. Considering the primed state
σP = (3,2,1,0), a TLB lookup of T will miss and lead to
σS = (T,3,2,1) which we use as starting state. Looking at the
resulting minimal path in Table 3b we see a clear improvement
over the previous case. Not only are we evicting T using
one fewer lookup, we are incurring a TLB miss only when
absolutely necessary—when evicting and replacing T . This
grants an attacker both faster eviction as well as stealthier
operation when compared with traditional eviction sets. In
latency terms, we expect a theoretical reduction of CPU cycles
of more than 25% [14]. We however observe that the final
state differs from the primed state we started with, leading to
a future repeat of the eviction run triggering other permutation
vectors than intended, ultimately failing to evict T .

To address this issue we extend our eviction sequence with
analogous runs, taking note of any repeating patterns. We do
this by adding a TLB lookup of T to the previous final state,
then we apply the search algorithm again to obtain the next
eviction run to add to our sequence and repeat the process.
After four such iterations we observe that we have reached a
previously visited σS, leading to a loop in our sequence and
an end to our algorithm. We now have a minimal, repeatable
sequence of TLB lookups which will evict any single most-
recently-used target, shown in Figure 5 along with the lookups
necessary to initially prime the set, which we call the lead-in.

There is one more issue we must contend with, namely syn-
chronization. We have thus far constructed our eviction loop
relying on a lookup of T to always occur in-between eviction

998 31st USENIX Security Symposium USENIX Association

Table 4: Optimized evictions for (MRU+1)%3PLRU4.

(a) Unknown Starting State

START (T X X X X X X X X X X X)
0 πm (0 T X X X X X X X X X X)
1 πm (1 0 T X X X X X X X X X)
2 πm (2 1 0 T X X X X X X X X)
3 πm (3 2 1 0 T X X X X X X X)
4 πm (4 3 2 1 0 T X X X X X X)
5 πm (5 4 3 2 1 0 T X X X X X)
6 πm (6 5 4 3 2 1 0 T X X X X)
2 π4 (2 4 6 5 1 3 X X 0 T X X)
7 πm (7 2 4 6 5 1 3 X X 0 T X)
8 πm (8 7 2 4 6 5 1 3 X X 0 T)
9 πm (9 8 7 2 4 6 5 1 3 X X 0)

(b) Primed Starting State (a = 10, b = 11)

START (b a 9 8 7 6 5 4 3 2 1 0)
T πm (T b a 9 8 7 6 5 4 3 2 1)
6 π6 (6 a b 9 8 7 T 5 4 3 2 1)
9 π3 (9 b a 6 8 7 3 5 4 T 2 1)
8 π4 (8 a 9 b 7 6 2 4 3 5 1 T)
0 πm (0 8 a 9 b 7 6 2 4 3 5 1)

runs. That assumption evidently does not hold in a real-world
scenario, and starting from a different state will trigger differ-
ent permutation vectors than expected. We therefore need to
investigate how the TLB state evolves when running our loop
with and without target lookups. To achieve this we replay
the lookups of an eviction run over both the primed state σP
and our original starting state σS and compare resulting states.
Examining the results for the first eviction run in Table 3c we
observe the very convenient property of self-synchronization.
Regardless if T is present in the starting state we see identical
final states—the TLB “re-synchronizes” to a properly primed
state on every run. This property holds similarly for the other
three eviction runs in the loop, meaning that each run will
prime the set for the next, regardless of lookups to T .

5.3 (MRU+1)%3PLRU4

Similarly to before, we apply our eviction run construction
model on (MRU+1)%3PLRU4. We have len(σi) = W = 12
and outgoing edges correspond to the permutation vectors pre-
sented in Figure 3. In addition, because (MRU+1)%3PLRU4 is
implemented by an L2 TLB we must either model it together
with a replacement policy for L1 or always ensure L1 misses.

We start by looking at the case with no apriori information
about the TLB state and obtain the eviction run shown in
Table 4a. Similar to our previous results for tree-PLRU4, we
obtain a marginally more efficient eviction run—one fewer
memory access and two fewer TLB misses, in theory 10%

0 1 2 3 4 5 0 2 1 6
(lead-in)

3 0 2 7
4 1 0 8
6 2 1 5
7 0 2 3
8 1 0 4
5 2 1 6

Figure 6: Optimized eviction loop for (MRU+1)%3PLRU4.

fewer CPU cycles. Once again, allowing the attacker to prime
the TLB set dramatically improves the situation, as we can
see in Table 4b. Our optimized eviction run requires only one
third as many memory accesses, and incurs a single TLB miss,
necessary to evict T . This, as before, grants an attacker both
greater speed and more difficult detection, with a theoretical
latency of less than a third of the state of the art [14]. We also
remark that these 4 lookups, by virtue of being L1 misses,
also entirely flush a 4-way L1 dTLB.

We notice that not all primed entries are used for eviction,
only the ones corresponding to π6, π3, and π4. This means
our priming can be limited to just the entries required to trig-
ger these vectors, while also ensuring these positions remain
primed for a second run. Taking this idea further, we can ex-
tend several π6-π3-π4 eviction runs one after another until we
see starting states repeat. This occurs after 6 iterations, giving
us the complete eviction loop we see in Figure 6. Analogously
to tree-PLRU4, each π6-π3-π4 eviction run following the lead-
in is also self-synchronizing, i.e., it reaches identical final
states regardless of whether there has been a target lookup.

6 Case Studies

We now evaluate the impact of optimized TLB evictions
on several classes of existing attacks, as well as new attack
variants made practical by optimized eviction sets. Specif-
ically, we examine side channels that target the TLB di-
rectly [14], as well as various attacks that rely on TLB evic-
tion [15, 32, 33, 39]. We ran our case studies on an Intel
i7-7700K (Kaby Lake) CPU with microcode version 0xea
at 4.20 GHz, with frequency scaling disabled, 32 GB DDR4
RAM, and running Linux kernel v5.14.

6.1 Speed Benefits for Existing Attacks

We first examine the performance improvements that opti-
mized eviction sets can bring to existing attacks.

Page Translation Side Channels In our first case study, we
look at the class of side channels that rely on measuring the
side effects of page translation and feature TLB eviction as a
supporting mechanism for triggering page table walks. Here
the TLB evictions are not at the heart of the attack, but still
play an important role in the overall overhead. Examples in-

USENIX Association 31st USENIX Security Symposium 999

0 20 40 60 80 100
Run

8

9

10

11

Ti
m

e
[s

]t
o

br
ea

k
A

SL
R

Original
Optimized

Figure 7: Comparison of time required to break ASLR.

2000 3000 4000
Cycles per hammer attempt

Original
Optimized

Optimized

Original

Figure 8: Comparison of time cost per double-sided hammer.

clude AnC [15], RevAnC [33], and XLATE [32]. We examine
AnC as a representative of this class.

Starting with the native code implementation 1 as a baseline
we patched it to use optimized TLB eviction sets. Because the
purpose is to evict a target entry from the TLB entirely, we
used the L2 eviction loop from §5.3. Figure 7 plots the time
needed to break ASLR for both the original AnC implemen-
tation and our patched version. We see a clear improvement
for the latter, taking on average 20% less time to break ASLR
than naive eviction sets. These results show that optimized
TLB evictions provide tangible improvements even to side
channel attacks in which they serve a supporting role.

Page Translation Rowhammer In our second case study,
we look at Rowhammer-based page translation attacks which,
again, feature TLB eviction as a supporting mechanism for
triggering page table walks. The recent PTHammer [39] tech-
nique exemplifies this class of attack. Rowhammer is a vul-
nerability in modern DRAM manifesting as bits in one row
flipping due to the leakage of electrical charge, caused by
rapid repeated accesses—hammering—of neighboring rows.
The hammer rate must be sufficiently high to allow for enough
charge to leak before the row is refreshed. Furthermore, the
PTHammer authors show that the relationship between ham-
mer rate and bit flip frequency is strongly non-linear, making
even marginal gains potentially very significant.

1https://github.com/vusec/revanc

Table 5: Raw sample rates (M/sec) of TLB-based channels.

Naive Optimized diff

L1d
clear 50.5 51.4 +1.8%
noise 34.4 41.3 +20%

L2
clear 14.1 33.4 2.37×
noise 13.5 25.5 1.89×

L1d+L2
clear 3.5 18.18 5.19×
noise 3.07 14.28 4.65×

We initially attempted to reimplement PTHammer [39],
reproduce their results, and show the improvements of opti-
mized eviction sets on concrete bit flips. This attempt proved
unsuccessful on modern hardware, and we were unable to
acquire a hardware setup similar to what the authors used due
to its age (circa 2011). As an alternative, we implemented a
benchmark using the same techniques as the authors, which
we used to compare the effect of naive and optimized eviction
sets on the hammer rate.

Looking at the results, the hammer time falls into three
distributions, with only the fastest evidencing differences be-
tween naive and optimized evictions. We hypothesize this to
be caused by stalls on the ring interconnect and surmise that
the slower rates are insufficient to cause bit flips. Thus, we
examine the faster distribution in detail in Figure 8. We see
a roughly 12% shorter median hammer time for optimized
vs. naive eviction sets. Again, these results show that opti-
mized TLB evictions provide tangible improvements even to
Rowhammer attacks in which they serve a supporting role.

6.2 Direct TLB Attacks
We now examine attacks that directly feature TLB lookups
as a side channel, as exemplified by the TLBleed attack in-
troduced by Gras et al. [14]. Specifically, we highlight how
optimized eviction sets improve the sampling performance of
TLBleed-style attacks, both enhancing the original variant, as
well as practically enabling additional variants. We discuss
the benefits of these new variants and why they are relevant
for potential attackers. Finally, we conclude by quantifying
the benefit of optimized evictions in covert channel scenarios.

TLBleed Sampling Performance Using similar techniques
as described by Gras et al., we implement a TLBleed-style
side channel using both naive and optimized eviction sets and
measure its sample rate. We focus on two scenarios: clear,
when the other logical core is idle, and noise, when a co-
resident thread randomly accesses memory. Our results are
summarized in Table 5.

Compared to the original attack on L1d, we implement the
eviction loop discussed in §5.2. While the results show only a
small improvement on a clear channel, the difference is much

1000 31st USENIX Security Symposium USENIX Association

more pronounced when the channel is actively used, where
we see the original implementation requiring as many as 4
misses, compared to just one for our optimized eviction sets.

We adapt our experiment from before to target the L2 sTLB,
implementing the eviction loops discussed in §5.3. We note
that the original TLBleed paper did not consider attacks based
on L2 sTLB due to the fairly poor performance, as evident
from Table 5. The improvements due to optimized eviction
sets for L2 are more evident than for L1, showing roughly
2× improvement in the sample rate for both clear and noisy
channels. Indeed, the absolute rates measured here for L2
approach those presented for L1d in TLBleed [14], providing
sufficiently fine temporal granularity to enable similar attacks,
but now on L2, yielding a practical, finer-grained variant of
the original TLBleed attack.

Set-pair TLBleed We observe in Table 1 that newer Intel
microarchitectures exhibit co-prime set selection functions
for L1d and L2. Under these circumstances, a further possible
TLB side channel can be constructed over a particular pair
of L1d and L2 sets by timing the eviction of each level in-
dependently. Doing so naively is laborious, as we lay out in
Appendix B, but we can use our knowledge of replacement
policies to construct more practical eviction sets. We remark
that each step of our eviction loop from §5.3 entirely fills L1d,
therefore repeating it will always hit L1. Any new access will
evict an entry, causing misses that hit L2 with a discernible de-
lay. Conveniently, repeating a loop step is self-synchronizing,
as we show in detail in Appendix C. Having independently
measured L1 usage, we time the next step of the eviction
loop to measure L2, similar to the previous paragraph. We
consider our victim set pair to have been accessed only when
both measurements agree, considering it noise otherwise.

The performance improvements of optimized eviction sets
are most evident for this technique, with up to 5× the rate of
naive, as shown in Table 5.

Spatial Discrimination and Set Count When running TL-
Bleed attacks over L2 or a pair of L1 and L2 sets, we gain a
finer target selection due to the larger number of sets, or of
combinations of sets. This better spatial discrimination gives
an attacker greater confidence that a positive measurement
has actually been caused by a target access, as random noise
is less likely to perturb the TLB state in the same way.

Existing exploits that target either the LLC [13] or the
TLB [14] report higher levels of noise on some sets that is due
to aliasing—undesired (secret-independent) victim accesses
that map to the same set as the target secret. Better spatial
discrimination reduces aliasing, and therefore aliasing noise,
in a way that is directly proportional to the number of sets.
Monitoring L2 would thus provide roughly an order of mag-
nitude less aliasing noise (8 times less), with L1+L2 reducing
it further by an additional order of magnitude, to 128 times
less than original L1d TLBleed.

Furthermore, having more sets to work with has an ad-
ditional benefit. Optimized covert channel implementations
built on top of cache contention require a significant num-
ber of auxiliary sets for unidirectional communication. The
PHY implementation proposed by Maurice et al. [26], for
example, requires 26 sets, with 14 sets for sequencing and
synchronization alone, and would not fit within the number
of L1 TLB sets. While serial designs, such as the one by Liu
et al. [24], address synchronization differently and thus use a
minimal number of sets, they do so at the expense of perfor-
mance, requiring multiple set evictions for every bit. As such,
an eviction primitive offering similar sample rates for a much
larger number of sets enables state-of-the-art covert channel
implementations for the TLB.

Covert Channel In order to quantify the benefits of opti-
mized eviction sets beyond raw sample rates, we implemented
a proof-of-concept covert channel over L2 in a sandbox set-
ting, based on the original TLBleed implementation [14].
Compared to the original implementation, which used evic-
tion to both send and receive a bit, we send by using a single
memory access to each set of interest. This not only signifi-
cantly improves baseline performance, but also enables us to
use the eviction loops discussed in §5.3 as a receive primitive.

We measured the bandwidth of our channel while trans-
mitting 100 000 words of 32 bits—16 for payload, 8 for se-
quencing, and 8 for error detection. Using naive evictions, we
observe an average effective bandwidth of 5.6 MBit/s, peak-
ing at 6.2 MBit/s. Meanwhile, optimized evictions measured
11 MBit/s on average, with a maximum of 11.7 MBit/s, for
a relative improvement of nearly 2× on average and 89%
peak, which mirrors the sample rate improvements seen in
Table 5. The undetected error rate is below 2 ·10−5 for both
naive and optimized eviction sets, with at most one word being
erroneous—in line with the original TLBleed implementation.

7 Related Work

Having laid out attacks that target the TLB in §2.2 and §6, we
now focus on related work that focuses on manipulating the
TLB state for benign purposes, as well as more general work
on reverse engineering and exploiting the cache subsystem.
We also address the implications of detailed knowledge of
replacement policies on secure TLB designs.

Manipulating TLB State Since address translation repre-
sents a considerable proportion of memory access latency,
monitoring and controlling the TLB state has been the focus
of much prior work concerned with real-time systems [20,28],
where preserving bounded latency guarantees is crucial. Fur-
thermore, the systems security community has previously
explored using TLB entries desynchronized from their in-
memory PTEs to implement memory protections such as non-

USENIX Association 31st USENIX Security Symposium 1001

executable [31] and execute-only memory [12] in software.
In addition, TLB desynchronization has been previously used
in adversarial settings to hide rootkits from detection [30] or
defeat checksumming-based software tamperproofing [35].

Reverse Engineering Cache Subsystems While cache and
TLB reverse engineering efforts often go hand in hand with
exploit development [14, 15, 17, 22, 32, 33] or are prompted
by the need to improve existing attacks [25], there is litera-
ture on more benign applications. Abel and Reineke [1, 2]
introduced permutation vectors and reverse engineered many
CPU cache properties, among which replacement policies,
for the purpose of developing better software optimizations
and cycle-accurate simulators. A master thesis by Zhu [40]
reported hash functions and inclusion policy for the Intel Sky-
lake TLB, but mistakenly reported the replacement policies
of the dTLB and sTLB as LRU.

Exploiting Data Caches Cache attacks have a long tradi-
tion in the systems security literature, using cache set con-
tention as a side channel and often targeting cryptographic
algorithms [10, 18, 24, 29, 37]. Guanciale et al. [16] showed
that caches can also be purposely desynchronized to cre-
ate a so-called cache storage channel, serving as an alter-
native to timing-based attacks. Additionally, more recent at-
tacks [27, 38] have explored other microarchitectural side
channels in order to increase granularity beyond cache line
size. Finally, cache attacks such as FLUSH+RELOAD [37]
have been recently repurposed as convenient covert channels
to leak information in the context of Spectre and other tran-
sient execution attacks [21].

Secure TLBs To address the various attacks on the TLB,
Deng et al. [7] have proposed secure designs that either parti-
tion the TLB (SP-TLB) or introduce randomness in TLB loads
(RF-TLB). SP-TLB would retain the same security properties
whether or not the attacker knows the replacement policies in
use. Indeed, any (statically or dynamically) partitioned TLB
will successfully prevent an attacker from adversarially evict-
ing a victim entry, as we have seen with some Intel iTLBs.

The property offered by RF-TLB of decorrelating TLB
states from access patterns in the secure region remains unaf-
fected by the attacker’s knowledge of replacement policies.
However, as noted by the authors, practical implementations
should not randomize all TLB accesses to limit the perfor-
mance impact. If the randomization frequency chosen by a
practical implementation can be overcome by an attacker with
a sufficient number of repetitions, then our eviction sets can,
in principle, make the attack more efficient. However, since
randomized replacement entries can fall outside of the tar-
geted set, an attacker would have a harder time implementing
optimized eviction sets on RF-TLB.

8 Conclusion

In this paper, we introduced TLB desynchronization as a novel
way of reverse engineering previously inscrutable TLB prop-
erties. This allowed us to expose behavior previously undocu-
mented and we subsequently used these new insights to better
understand—and thus manipulate—the TLB, constructing
optimized eviction sets. We showed how this new eviction
primitive improves existing TLB-based attacks. Finally, we
posit that this work is a stepping stone towards gaining a more
complete model of the dynamic behavior of the memory sub-
system of modern CPUs, knowledge that is crucial not only to
developing more effective attacks, but for constructing more
informed defenses as well.

Acknowledgements

We thank our shepherd, Michael Schwarz, and the anonymous
reviewers for their comments. We also thank Ben Gras for
helping with the TLBleed covert channel implementation.
This work was supported by the EU’s Horizon 2020 research
and innovation programme under grant agreement No. 825377
(UNICORE), Intel Corporation through the Side Channel
Vulnerability ISRA, and NWO through projects “TROPICS”,
“Theseus”, and “Intersect”.

References

[1] Andreas Abel and Jan Reineke. Measurement-based
modeling of the cache replacement policy. In 2013
IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 65–74. IEEE,
2013.

[2] Andreas Abel and Jan Reineke. nanobench: A low-
overhead tool for running microbenchmarks on x86 sys-
tems. In 2020 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS),
pages 34–46. IEEE, 2020.

[3] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena
Milenkovic. Performance evaluation of cache replace-
ment policies for the spec cpu2000 benchmark suite.
In Proceedings of the 42nd annual Southeast regional
conference, pages 267–272, 2004.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui
Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren, and
Todd Austin. Anvil: Software-based protection against
next-generation rowhammer attacks. ACM SIGPLAN
Notices, 51(4):743–755, 2016.

[5] Adi Basel, Gur Hildesheim, Shlomo Raikin, Robert
Chappell, Ho-Seop Kim, and Rohit Bhatia. Balanced

1002 31st USENIX Security Symposium USENIX Association

P-LRU tree for a "multiple of 3" number of ways cache,
2016. US Patent 9,348,766.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[7] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Secure
tlbs. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pages
346–359. IEEE, 2019.

[8] Advanced Micro Devices. Software Optimization Guide
for AMD EPYCTM 7003 Processors. AMD, November
2020.

[9] Advanced Micro Devices. Software Optimization Guide
for AMD Family 17h Models 30h and Greater Proces-
sors. AMD, March 2020.

[10] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yu-
val Yarom. Drive-by key-extraction cache attacks from
portable code. In International Conference on Ap-
plied Cryptography and Network Security, pages 83–
102. Springer, 2018.

[11] Robert T George, Jason W Brandt, Jonathan D Combs,
Peter J Ruscito, and Sanjoy K Mondal. Associating
address space identifiers with active contexts, June 23
2009. US Patent 7,552,254.

[12] Jason Gionta, William Enck, and Peng Ning. Hidem:
Protecting the contents of userspace memory in the face
of disclosure vulnerabilities. In Proceedings of the 5th
ACM Conference on Data and Application Security and
Privacy, pages 325–336, 2015.

[13] Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Her-
bert Bos, and Cristiano Giuffrida. Speculative Probing:
Hacking Blind in the Spectre Era. In CCS, November
2020. Pwnie Award for Most Innovative Research.

[14] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation Leak-aside Buffer: Defeating
Cache Side-channel Protections with TLB Attacks. In
USENIX Security, August 2018. Pwnie Award Nomina-
tion for Most Innovative Research.

[15] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the Line: Practical
Cache Attacks on the MMU. In NDSS, February 2017.
Pwnie Award for Most Innovative Research, DCSR Pa-
per Award.

[16] Roberto Guanciale, Hamed Nemati, Christoph Bau-
mann, and Mads Dam. Cache storage channels: Alias-
driven attacks and verified countermeasures. In 2016
IEEE Symposium on Security and Privacy (SP), pages
38–55. IEEE, 2016.

[17] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
aslr. In 2013 IEEE Symposium on Security and Privacy,
pages 191–205. IEEE, 2013.

[18] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Cache attacks
enable bulk key recovery on the cloud. In International
Conference on Cryptographic Hardware and Embedded
Systems, pages 368–388. Springer, 2016.

[19] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Combined Volumes: 1, 2A,
2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Intel Corporation,
June 2021.

[20] Takuya Ishikawa, Toshikazu Kato, Shinya Honda, and
Hiroaki Takada. Investigation and improvement on the
impact of tlb misses in real-time systems. Proc. of
OSPERT, 2013.

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[22] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
Isolated Kernel Address Space Using Tagged TLBs. In
EuroS&P, September 2020.

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[24] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE symposium on security and
privacy, pages 605–622. IEEE, 2015.

[25] Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse engineering intel last-level cache complex address-
ing using performance counters. In International Sympo-
sium on Recent Advances in Intrusion Detection, pages
48–65. Springer, 2015.

[26] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan
Mangard, and Kay Römer. Hello from the other side:
Ssh over robust cache covert channels in the cloud. In
NDSS, volume 17, pages 8–11, 2017.

USENIX Association 31st USENIX Security Symposium 1003

[27] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth,
and Berk Sunar. Memjam: A false dependency attack
against constant-time crypto implementations. Interna-
tional Journal of Parallel Programming, 47(4):538–570,
2019.

[28] Shrinivas Anand Panchamukhi and Frank Mueller. Pro-
viding task isolation via tlb coloring. In 21st IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 3–13. IEEE, 2015.

[29] Colin Percival. Cache missing for fun and profit, 2005.

[30] Sherri Sparks and Jamie Butler. Shadow walker: Rais-
ing the bar for rootkit detection. Black Hat Japan,
11(63):504–533, 2005.

[31] The PaX Team. paging based non-executable pages.
https://pax.grsecurity.net/docs/pageexec.
txt, 2003. Accessed 2020-12-03.

[32] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious Management Unit: Why
Stopping Cache Attacks in Software is Harder Than You
Think. In USENIX Security, August 2018.

[33] Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert
Bos, and Cristiano Giuffrida. RevAnC: A Framework
for Reverse Engineering Hardware Page Table Caches.
In EuroSec, April 2017.

[34] Pepe Vila, Boris Köpf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 39–54.
IEEE, 2019.

[35] Glenn Wurster, Paul C Van Oorschot, and Anil Somayaji.
A generic attack on checksumming-based software tam-
per resistance. In 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 127–138. IEEE, 2005.

[36] Wenjie Xiong and Jakub Szefer. Leaking information
through cache LRU states. In 2020 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 139–152. IEEE, 2020.

[37] Yuval Yarom and Katrina Falkner. Flush+ reload: A
high resolution, low noise, l3 cache side-channel attack.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 719–732, 2014.

[38] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: a timing attack on OpenSSL constant-time
RSA. Journal of Cryptographic Engineering, 7(2):99–
112, 2017.

[39] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal,
Zhi Wang, and Yuval Yarom. Pthammer: Cross-user-
kernel-boundary rowhammer through implicit accesses.

In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 28–41.
IEEE, 2020.

[40] Weixi Zhu. Exploring superpage promotion policies
for efficient address translation. Master’s Thesis, Rice
University, 2019.

A Reverse Engineering AMD

In this section we lay out a set of experiments that do not rely
on a shared L2 TLB. Specifically, we discuss testing for the
existence of a shared TLB component, determining set size
and mapping, as well as testing for inclusivity.

Neither tested microarchitectures support PCIDs, therefore
we cannot run our PCID experiments discussed in §4.5.

A.1 Shared TLB
To verify whether a TLB has a shared component at all, we
check whether an entry primed by a data load can eventually
be used to translate an instruction fetch, or the other way
around. Specifically, we access an arbitrarily chosen page A
using one access type, followed by accessing n other pages
using the same access type. We then de-synchronize the TLB
with the in-memory page tables, and we probe A again using
the opposite access. We perform this experiment in multiple
iterations, for different values of 0 ≤ n < 5000. In case of
a shared TLB component, we would expect a hit for some
values of n. In case of full seperation between the iTLB and
dTLB, we would not expect any hits.

Our results show almost always misses, with hits occurring
in less than 0.1% of cases. We however do not consider this
proof of a shared TLB component, due to several observations
that exclude this possibility:

• Hits only occur when an instruction fetch is followed by
a data load, never the other way around.

• There is no correlation between the occurrence of hits
and the value of n.

• The amount of hits reduces when we insert cpuid in-
structions before and after each memory access, leading
us to suspect speculative execution.

We hypothesise that any spurious hits are caused by (specu-
lative) TLB prefetching. According to the AMD architecture
manual [8, 9], the hardware page table walker can perform
speculative translation, supporting our hypothesis. Thus we
conclude that the TLB is fully separated on both levels.

A.2 Set Mapping and Set Size
We now design an experiment for determining the set size and
mapping that does not rely on a shared L2 TLB. We assume
that the bits used for set indexing are a subset of the 20 least

1004 31st USENIX Security Symposium USENIX Association

https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt

significant bits of a virtual page number (bits 12–31 of the
virtual address). This is reasonable because we expect the
TLB to enumerate all sets even with only 4 GiB of virtual
memory (e.g., when running 32-bit code).

We start by picking m—a guess for the number of ways—
and an arbitrary 20 bit number X , then assemble a lot of m
pages with bits 12 to 31 set to this value. In addition, we
pick a bit b, 12≤ b≤ 31, that we flip in X , obtaining Y , and
assemble an eviction lot of M pages with bits 12 to 31 set
to Y , with M chosen to be significantly larger than the sum
of any reasonable L1 and L2 set capacity. If bit b is used
by the set hash function, the eviction lot would end up in a
different set. However, if bit b is irrelevant for set selection,
we expect both lots of pages to land in the same set, with the
second one evicting (some of) the first. Therefore, we prime
the TLB with the first lot of m pages then desynchronize their
PTEs. Next we access the eviction lot 10 times, then test if
the m pages are still in the TLB. We repeat this for a large
number of iterations for various values of m and b. If we do
not consistently witness evictions of any of the m pages, we
conclude that bit b is used for set selection. If we consistently
see misses, we can deduce that bit b is irrelevant. Additionally,
if we consistently see misses regardless of the value of b we
can deduce that m is larger than the true number of ways.

Results appear inconclusive at first, as performing this ex-
periment does not always yield consistent results. However,
when filtering out the runs that are either noisy or exhibit
extremely unlikely properties (e.g., odd number of ways or
entries that are never evicted from the TLB) we are able to
detect a pattern. We consistently witness dTLB misses when
m > 8, regardless of the bit flipped. Analogously for the iTLB,
we see misses when m > 4. For the dTLB, bits 12–18 and 21
of the virtual address are involved with set indexing, while
the iTLB uses bits 12–17 and 21.

Furthermore, the fact that we consistently measure misses
for m > 8 (dTLB) and m > 4 (iTLB), regardless of the chosen
b, leads us to the conclusion that L1 has a single set, i.e., is
fully associative. If that were not the case, we would find a
value of b for which the M eviction pages would fall in a
different L1 set, thus not evicting the original m entries.

Given fully-associate L1 TLBs, we deduce the L2 dTLB
to have 256 sets, each 8-way associative. Similarly, we infer
L2i to have 128 sets, each 4-way associative. In the case of
Zen+ this contradicts the number of dTLB sets and the iTLB
number of ways as reported by cpuid, which is 192 and 8
respectively. When looking closer at the results we do notice
that flipping bit 21 only preserves all m entries when m is
much smaller than WL2d . This leads us to suspect the hash
function to be more complex than linear bit slicing, although
we have not been able to reverse engineer it.

Finally, we find the sizes of L1d and L1i as reported by
cpuid to be consistent with our experiments, as picking M
significantly lower than 64 does not show any misses.

The fact that the L1 TLBs are fully associative could be

a factor in the unreliable results of the experiment to detect
set selection bits. Keeping a perfect LRU replacement order-
ing with such a large number of ways is clearly infeasible in
hardware, therefore L1 most likely implements a replacement
policy with fewer states (e.g. tree-PLRU). We hypothesize
that, due to unavoidable L1 hits induced by our experiment
code, some of our m pages “jump ahead” in the replacement
queue and are prevented from being evicted by the eviction
set. This unavoidable amount of noise caused by a fully as-
sociative L1 also makes precisely measuring the number of
ways or the replacement policy of L1 particularly challenging.

A.3 Inclusivity

As a final experiment, we test whether the TLB is inclusive.
We remark that a strictly inclusive TLB would necessarily
admit at most WL2 entries that map to the same L2 set. Hence,
we can test inclusivity by first priming the TLB with WL2 +1
entries mapping to the same L2 set, desynchronizing after
every access, then probing whether the entries are still present.

The results consistently show WL2 +1 TLB hits, proving
both iTLB and dTLB to be non-inclusive.

B Performing Set-Pair TLBleed

Separately measuring an adversarial eviction of a target ad-
dress in both levels of the TLB is not as straight-forward as
single-level TLBleed attacks. In this section we will present
one possible way of doing this for a two-level TLB of WL1 and
WL2 ways, making minimal assumptions about its behavior.

We put no constraints on the replacement policies in use,
except that WLx misses completely flushes the set and primes
it with the new entries. Furthermore, the TLB in question
must be non-inclusive and non-exclusive, have fewer ways
in L1 than in L2, and have hash functions that are mutually
prime, i.e., an address can be assigned all possible (L1, L2) set
pairs. We assume an attacker knows the number of sets and
ways for both levels of the TLB, as well as the hash functions.

We start by allocating two lots of WL2 distinct addresses
each that will be used in alternation. At each step, we prime L1
and L2 with entries from one lot and wait for a possible victim
access. Next, when we wish to probe, we first go through our
last-accessed WL1 entries in the same order as before, timing
the accesses. We expect all L1 hits if there was no intervening
L1 access, and one or more misses otherwise.

In the second phase, we walk through all WL2 entries of our
current lot in order. If there has been no intervening activity on
any level we expect all hits once again, since we had primed
the entire set and the L1 phase doesn’t touch L2. Similarly, if
there has only been activity on L1, the previous phase would
not have evicted any L2 entry, by virtue of all L1 misses being
already primed in L2. Finally, only when there has been an
access to the L2 set do we expect at least one miss—required

USENIX Association 31st USENIX Security Symposium 1005

to evict the new entry—with more possible depending on the
actual replacement policy in use.

We now have two separate measurements of whether each
level has been accessed. We consider there to have been an
access to our target (L1, L2) set pair only if both phases report
misses. In any other case we classify the measurement as
either quiet or noise caused by accesses outside our interest.

When moving on to the next step, we use the other lot of
addresses, to ensure fresh priming of the TLB.

C State Evolution of Set-Pair TLBleed

In Table 6 we see in detail how the TLB state evolves in
one step of the optimized set-pair eviction loop introduced
in §6.2. We treat four cases: (a) when no access occurs to
either set, (b) and (c) when sporadic accesses happen on L1
and L2 respectively, and (d) when our actual target pair of
sets has been accessed. Worth noting is that cases (a) and
(b) have identical intermediate states, showing that the L1
phase does not affect the state of L2, regardless of L1 access.
Additionally, we see that the final states are identical across
all cases—the eviction loop is self-synchronizing, regardless
of target accesses.

Table 6: Optimized set-pair TLBleed

(a) No access: 4 L1 hits and 0 L2 misses

START (8 0 1 4)(8 0 2 1 7 6 4 X X X 3 5)

4 L1π3 (4 8 0 1)(8 0 2 1 7 6 4 X X X 3 5)
1 L1π3 (1 4 8 0)(8 0 2 1 7 6 4 X X X 3 5)
0 L1π3 (0 1 4 8)(8 0 2 1 7 6 4 X X X 3 5)
8 L1π3 (8 0 1 4)(8 0 2 1 7 6 4 X X X 3 5)

6 L1πm L2π5 (6 8 0 1)(6 8 0 2 1 7 5 4 X X X 3)
2 L1πm L2π3 (2 6 8 0)(2 8 0 6 1 7 X 4 X 5 X 3)
1 L1πm L2π4 (1 2 6 8)(1 0 2 8 7 6 X X X 4 3 5)
5 L1πm L2π11 (5 1 2 6)(5 1 0 2 8 7 6 X X X 4 3)

(b) L1 access only: 4 L1 misses and 0 L2 misses

START (T 8 0 1)(8 0 2 1 7 6 4 X X X 3 5)

4 L1πm L2π6 (4 T 8 0)(4 0 2 1 7 6 8 X X X 3 5)
1 L1πm L2π3 (1 4 T 8)(1 0 2 4 7 6 X X X 8 3 5)
0 L1πm L2π1 (0 1 4 T)(0 2 1 7 6 4 X X X 3 5 8)
8 L1πm L2π11 (8 0 1 4)(8 0 2 1 7 6 4 X X X 3 5)

6 L1πm L2π5 (6 8 0 1)(6 8 0 2 1 7 5 4 X X X 3)
2 L1πm L2π3 (2 6 8 0)(2 8 0 6 1 7 X 4 X 5 X 3)
1 L1πm L2π4 (1 2 6 8)(1 0 2 8 7 6 X X X 4 3 5)
5 L1πm L2π11 (5 1 2 6)(5 1 0 2 8 7 6 X X X 4 3)

(c) L2 access only: 4 L1 hits and 1 L2 miss

START (8 0 1 4)(T 8 0 2 1 7 6 4 X X X 3)

4 L1π3 (4 8 0 1)(T 8 0 2 1 7 6 4 X X X 3)
1 L1π3 (1 4 8 0)(T 8 0 2 1 7 6 4 X X X 3)
0 L1π3 (0 1 4 8)(T 8 0 2 1 7 6 4 X X X 3)
8 L1π3 (8 0 1 4)(T 8 0 2 1 7 6 4 X X X 3)

6 L1πm L2π6 (6 8 0 1)(6 8 0 2 1 7 T 4 X X X 3)
2 L1πm L2π3 (2 6 8 0)(2 8 0 6 1 7 X 4 X T X 3)
1 L1πm L2π4 (1 2 6 8)(1 0 2 8 7 6 X X X 4 3 T)
5 L1πm L2πm (5 1 2 6)(5 1 0 2 8 7 6 X X X 4 3)

(d) L1+L2 access: 4 L1 misses and 1 L2 miss

START (T 8 0 1)(T 8 0 2 1 7 6 4 X X X 3)

4 L1πm L2π7 (4 T 8 0)(4 0 T 1 7 2 8 X 6 X 3 X)
1 L1πm L2π3 (1 4 T 8)(1 0 T 1 4 2 X X 6 8 3 X)
0 L1πm L2π1 (0 1 4 T)(0 T 1 7 2 4 X 6 X 3 X 8)
8 L1πm L2π11 (8 0 1 4)(8 0 T 1 7 2 4 X 6 X 3 X)

6 L1πm L2π8 (6 8 0 1)(6 8 0 2 1 7 T 4 X X X 3)
2 L1πm L2π3 (2 6 8 0)(2 8 0 6 1 7 X 4 X T X 3)
1 L1πm L2π4 (1 2 6 8)(1 0 2 8 7 6 X X X 4 3 T)
5 L1πm L2πm (5 1 2 6)(5 1 0 2 8 7 6 X X X 4 3)

1006 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	Virtual Memory and TLBs
	Exploiting the TLB

	TLB Desynchronization
	Reverse Engineering
	Inclusivity and Exclusivity
	Set Size and Mapping
	Reinsertion Behavior
	Replacement Policies
	Experiment Design
	Results
	Error Rates

	PCID Support
	PCID Cache
	iTLB Partitioning
	AMD

	Massaging TLB State
	Theoretical Considerations
	Tree-PLRU4
	(MRU+1)%3PLRU4

	Case Studies
	Speed Benefits for Existing Attacks
	Direct TLB Attacks

	Related Work
	Conclusion
	Reverse Engineering AMD
	Shared TLB
	Set Mapping and Set Size
	Inclusivity

	Performing Set-Pair TLBleed
	State Evolution of Set-Pair TLBleed

