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Abstract
The widespread availability of vulnerable IoT devices has
resulted in IoT botnets. A particularly concerning IoT botnet
can be built around high-wattage IoT devices such as EV
chargers because, in large numbers, they can abruptly change
the electricity consumption in the power grid. These attacks
are called Manipulation of Demand via IoT (MaDIoT) at-
tacks. Previous research has shown that the existing power
grid protection mechanisms prevent any large-scale negative
consequences to the grid from MaDIoT attacks. In this pa-
per, we analyze this assumption and show that an intelligent
attacker with extra knowledge about the power grid and its
state, can launch more sophisticated attacks. Rather than at-
tacking all locations at random times, our adversary uses an
instability metric that lets the attacker know the specific time
and geographical location to activate the high-wattage bots.
We call these new attacks MaDIoT 2.0.

1 Introduction

Most attacks on power systems (e.g., Ukrainian power grid
blackout, Dragonfly 2.0, and Aurora) target the central control
systems of the electrical grid [1–4]. While targeting control
systems is a direct attack, adversaries can also attack power
systems indirectly through the consumer side. Given the pro-
liferation of IoT vulnerabilities and the growing availability
of high-wattage devices with Internet connectivity, security
researchers are starting to analyze Manipulation of Demand
via IoT (MaDIoT) attacks [5–7].

In a MaDIoT attack, the adversary uses a botnet consist-
ing of high-wattage IoT devices to change the power sys-
tem’s load abruptly; these attacks might cause frequency in-
stabilities, line failures, and increased operating costs [5]. A
followup-work by Huang et al. [6] argued that a missing
piece in Soltan’s analysis [5] was a model of the protection
mechanisms already in place in the power grid to prevent
problems caused by natural events (e.g., sudden changes in
the generation/load imbalance). They then showed how these

protections (e.g., under-frequency load shedding or the time
delay before disconnecting an overloaded transmission line)
would significantly reduce the impact of MaDIoT attacks. In
particular, Huang et al. argue that the embedded protection
systems in the power grid will prevent widespread blackouts
from adversaries launching MaDIoT attacks. While the nega-
tive impact of MaDIoT attacks on operations might not be as
severe as previously thought, a recent work by Shekari et al.
showed that MaDIoT attacks can be used to affect the elec-
tricity market (fraudsters can predict the market and future
changes in the load because of the botnet they control) [7].

In this paper, we revisit the problem of the impact of Ma-
DIoT attacks on the security of the power grid. So far, the
original argument is that these attacks are dangerous [5], and
follow-up work showed that they were not as severe as ini-
tially thought [6]. A missing analysis in these previous works
is that they considered MaDIoT attacks as an all-or-nothing
effort (e.g., turning on all bots simultaneously or turning them
all off) [5, 6]. This spreads the attack throughout the power
system equally and randomly. In this paper, we show that
sometimes “less” is better. In particular, we show that by care-
fully turning on devices in specific geographical locations,
we can target the system more methodically. In particular, we
propose MaDIoT 2.0; our new attack looks at voltage stabil-
ity indices and then targets the geographical areas where the
system is more vulnerable from the stability perspective. Our
contributions include the following:

• We propose and analyze a new MaDIoT 2.0 attack.

• We show that MaDIoT 2.0 has a significantly better
success rate compared to the previous attacks (i.e., [5,
6]) while requiring a fewer number of compromised
IoT devices, which makes it more feasible in practical
situations.

• We conduct numerical studies to investigate the effec-
tiveness of MaDIoT 2.0 with real-world data obtained by
crawling the websites of independent system operators
(ISOs) and the Bloomberg Terminal.
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Figure 1: A typical power grid and its different sectors.

• All our models and simulations are released as open-
source software so that other researchers can reproduce
our results [8]. We are also sharing high-order models
for standalone devices (e.g., generators, transmission
lines, and loads), protective relays, and the controllers of
standalone devices.

• We discuss short-term and long-term countermeasures
to minimize the damaging consequences and severity of
MaDIoT 2.0.

The rest of this paper is organized as follows. Section 2
explains the basic structure of the bulk power system and
its primary control and protection schemes. The intuition
behind MaDIoT 2.0 attacks and the threat model is discussed
in Section 3. The detailed formulation and mechanism of
the attack model are in Section 4. Section 5 evaluates the
performance of the proposed approach with real-world case
studies and shows its better performance over the previous
works. Countermeasures are presented in Section 6. Related
work is summarized in Section 7. We conclude the paper and
discuss possible future work in Section 8. The feasibility of
the attack and the data of the benchmark systems are in the
appendix.

2 Background

A typical power grid is divided into different sectors illustrated
in Figure 1 [9]. Generation, transmission, and distribution sec-
tors are connected through substations [10]. Each substation
includes high voltage equipment such as power transformers
(to change the voltage level of the circuits) and circuit break-
ers (switches for connecting/disconnecting lines), and also
control and protection devices such as protective relays (to
detect faults), voltage and current measurement sensors, and
remote terminal units (RTU) to communicate with the control
center via the SCADA system [11].

Most of the energy is produced by power plants in the gen-
eration sector. The voltage at generators is originally medium
voltage (e.g., 13.8 kV). This generated power is then stepped
up to a higher voltage level (e.g., 500 kV) to be transmitted
over long distances. This voltage level change is performed
to reduce energy losses in transmission lines (higher voltage
levels imply smaller currents, which lead to lower transmis-
sion losses). Eventually, the electricity is stepped back down
to a medium voltage level by distribution substations near end
users. The distribution sector generally feeds the consumers
within a limited geographical area with medium voltage [9].

2.1 Control of Power Systems

The total demand for the power grid is continuously chang-
ing. To preserve system stability and avoid any large-scale
blackouts, the output power of generators must match the de-
mand in real-time [12]. These variations change the load of
the transmission lines; some of them might even work while
being overloaded, depending on the grid operating point [6].
Therefore, to relieve overloaded transmission lines, the con-
figuration of the system is modified (by switching the trans-
mission lines) so that the energy will be transmitted to the
end-users via different routes. These strategies are a part of
the power system control mechanism. Power system control
is defined as the set of local and wide-area algorithms which
help the system operator maintain grid stability. The main
goal of operators is to ensure that the grid is continuously de-
livering electric energy to consumers at the nominal voltage
and frequency with an acceptable error (i.e., 120 ± 20 V and
60 ± 0.5 Hz in the US) while keeping the generation-demand
balance. The most important power system control schemes
are: i) primary frequency control (governor), ii) automatic
voltage control (AVR), and iii) automatic generation control
(AGC). These controllers have either local or wide-area mech-
anisms.

Electric power has two main elements: i) active and ii)
reactive power. Active power is the part that flows from the
generator to the load, and reactive power is the part that is
continuously flowing from source to load and is returning
back to the source. The existence of reactive power makes the
transfer of active power possible in electrical circuits [12].

The primary frequency controller is locally installed in each
generator. It changes (increases/decreases) the active output
power of the generator in response to any frequency change
in the system, which is a sign of load-generation imbalance in
the grid. As a rule of thumb, whenever the generation exceeds
the demand in the grid, the system frequency becomes greater
than the nominal value, and whenever the demand exceeds
the generation, it drops below the nominal frequency [11].

The AVR is similarly installed in each generator with the
goal of maintaining the voltage level of the generator within
allowable ranges; it achieves this by changing the reactive
power output of the generator [12].

Finally, AGC is a wide-area controller that changes the out-
put power of the system generators to recover the frequency to
its nominal value if the primary frequency controllers are not
able to fully recover the system frequency change to the al-
lowable range [12]. Wide-area controllers gather and analyze
the data from the entire grid and make decisions and issue
commands to multiple components throughout the system.
These controllers use a private network for receiving data
and sending commands; this network is called the SCADA
system.
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2.2 Protection of Power Systems
When a severe fault or incident occurs in the system (e.g.,
short circuit fault in a transmission line, sudden outage of a
big power plant, etc.) and the physical damage to the grid
components or a widespread blackout is inevitable, power
system protection schemes will intervene to isolate the faulty
area while keeping as much of the transmission network still
in operation [11]. This means that there may be localized
outages that can be easily repaired, and these are caused to
prevent the interconnected bulk system from going down.

These protection schemes can be categorized into local
and wide-area methods. The local protection schemes usu-
ally detect and isolate the faulty component in the system to
prevent damage to the equipment and prevent the fault from
spreading to the entire grid. On the other hand, wide-area pro-
tection schemes gather and process data from different parts
of the grid through the SCADA system to detect any faults
and react to them accordingly. From the technical perspective,
wide-area protection schemes employ more sophisticated data
analysis methods and are able to detect and resolve more com-
plex faults in the system [11]. Table 1 lists the most common
protection schemes used in the bulk power system.

These protection schemes play an important role in keeping
the grid stable following severe natural events or accidents,
and as shown by Huang et al. [6], they can even protect the
grid from basic MaDIoT attacks. However, basic MaDIoT
attacks and natural events have not taken an adversarial look
at protection mechanisms. In the next Section, we discuss
what types of attacks can bypass and even use the existing
protection mechanisms against the grid.

3 Threat Model

3.1 Intuition Behind MaDIoT 2.0
The main objective of the MaDIoT attack is to manipulate the
consuming power of compromised high-wattage IoT devices
(turning them on/off at the same time) to cause a blackout
in the target power grid. To understand the limitations of
a MaDIoT attack, we first need to understand the intuition
behind it. We simulate the classical benchmark IEEE 39-node
(also known as the model of the New England power grid)
test system to test different attack scenarios and determine
which attack scenarios are more practical to implement to
cause a blackout in the grid. We considered the load profile
of one week per season (the modeling details are in Section 5
the appendix and in our public repository [8]. The central
assumption of a MaDIoT attack is that the attacker has access
to a high-wattage IoT botnet whose bots are evenly distributed
in all of the system nodes. This means that adversaries can
alter the system demand at different nodes at their will by
turning on the bots simultaneously to take down the entire
power grid.
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Figure 2: Success rates of MaDIoT 1.0 attacks vs. size of the
high-wattage IoT botnet.  
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Figure 3: Success rates when attacking a single node (IEEE
39 node benchmark). Only the nodes with the highest success
rates are in the figure.

In MaDIoT, the adversary turns on all of the compromised
devices evenly distributed in the system nodes to give a shock
to the power grid and cause a widespread blackout [5, 6].
Figure 2 shows the success rate of MaDIoT 1.0 for different
botnet sizes. As we can see, the results are consistent with [6],
and the system control and protection schemes are able to
recover the stability of the power grid following the attacks in
most of the simulated cases, and hence, the attack’s success
rate is very low. The low success rate can even lead to the
early detection of the attack due to so many unsuccessful
tries (consumers might report malfunctioning devices, or the
electric utility can spot these anomalies).

Given that in historical power grid blackouts, the system
collapse occurs due to a severe supply-demand imbalance
in limited geographical areas of the grid, implementing the
MaDIoT attack from a single node seems more reasonable
than the previous attack scenario. Based on this, we simulated
MaDIoT attacks by turning on the compromised IoT devices
located in a single node of the power grid. Figure 3 illustrates
the results of the new attack scenario. Note that only the nodes
with the highest success rates are shown in the figure. We can
see in Figure 2 that the success rate of the attacks in some
nodes is larger than that of the previous scenario (although
most nodes have a lower success rate). Our main question is
whether we can further increase the attack’s success rate or
not.

The MaDIoT attack seems to have a significantly higher
success rate if we launch it from several nodes that are close
together (neighboring nodes). By performing the brute force
simulations (simulating all the possible attacks from three
nodes, n(3, 39) = 9,139), we noticed that attacking the grid
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Table 1: The Most Common Protection Schemes Used in Power Grids
Name of the Protection Scheme Local or Wide-Area Aim

Distance [13] Local Short circuit detection in transmission lines
Overcurrent [14] Local Overload detection in transmission lines
Overvoltage Load Shedding (OVLS) [11] Local/Wide-Area Overvoltage detection in grid nodes
Undervoltage Load Shedding (UVLS) [15] Local/Wide-Area Undervoltage detection in grid node
Under-Frequency Load Shedding (UFLS) [16, 17] Local/Wide-Area Underfrequency detection in grid nodes
Over-Frequency Generation Rejection (OFGR) [18] Local/Wide-Area Overfrequency detection in generation nodes
Differential [19, 20] Local Fault detection in power transformers and transmission lines
Out-of-Step [21] Local Out of synchronous detection in power generators
Loss-of-Excitation [22] Local Excitation system fault detection in power generators
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Figure 4: Success rate of an IoT botnet attack (IEEE 39 node
benchmark) when launched from three nodes. Only the 3-
nodes with the highest success rates are in the figure.

from three nodes reveals the best results. Figure 4 illustrates
the performance of the attack when launched from three dif-
ferent locations in the power grid. The figure lists the highest
success rates from all the possible simulated cases. We can
see that the success rate of the new attack scenario is consid-
erably higher than that of the previous ones. There are several
technical reasons why the last strategy causes the most effec-
tive attacks. As the first reason, when a severe supply-demand
imbalance occurs in a limited geographical area of the grid,
the generators detect this energy shortage and try to increase
their generated power to compensate for the deficit. How-
ever, the distant generators cannot deliver their share to the
faulty area as long transmission lines have considerable power
losses. Accordingly, this persistent power shortage remains in
the faulty area and causes a cascading outage throughout the
grid. In such situations, the central system protection scheme
is under-frequency load shedding (UFLS). UFLS tends to
evenly drop a portion of the grid’s load to bring back the
supply-demand balance. However, because it decreases the
system loads evenly throughout the system, it cannot solve the
problem, and a widespread blackout inevitably happens. We
will show how a modification to the existing UFLS scheme
can reduce the attack’s success rate in Section 6.

Since the power grid demand and its operating status
change over time, the best nodes to launch the MaDIoT attack
change accordingly. Therefore, it is important to periodically
(e.g., every 15 minutes) find the best nodes for the MaDIoT
attack to increase the attack’s success rate. In addition, given

a power grid structure and its operating condition, there is a
question on how an adversary calculates the best nodes of
the system to attack in its current state. Our detailed analysis
shows a strong correlation between the best nodes to attack
and their voltage stability margins. The adversary can com-
pute the voltage stability margins of different nodes in the
system and choose the ones close to instability to launch the
attack from those nodes. We explain the detailed hierarchical
approach of our attack in the following Section.

One might ask here if we can choose these three nodes
randomly to cause a blackout in the targeted grid. Technically
speaking, the attack works well if we choose the top nodes
(from the voltage stability perspective) that are close to the
instability. For example, in the New England test system, there
are n(3, 39) = 9,139 possible attack combinations, and only
the top 5-6 choices return reasonable success rates after the
implementation of the attack. The probability of choosing
these nodes randomly is only 0.055%, which is very unlikely.
In addition, due to a large number of unsuccessful attacks, the
chance of consumers or operators detecting the high-wattage
IoT botnet attack becomes high. The probability of choosing
three good noes to attack gets smaller with larger power grids.
For example, in a system with 118 nodes, this probability is
0.0019%.

3.2 Overview of MaDIoT 2.0
As in [5–7], we assume that vulnerable high-wattage IoT de-
vices have been already compromised and are part of a botnet
that can be directly controlled by the attacker–we discuss this
assumption in Section 9. To launch more sophisticated at-
tacks, the adversary needs to obtain the graph of the targeted
grid through reconnaissance, phishing, or available automatic
tools. This is a one-time analysis for each power grid and can
be done offline. A detailed explanation of how an attacker can
obtain the grid graph is in Section 4.1.

With this information, a MaDIoT 2.0 attack has two main
online stages: in the first stage, the attacker obtains basic
information about the targeted power grid, and in the second
phase, the attacker analyzes the data to find the right time and
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Figure 5: Overview of MaDIoT 2.0 attacks. 0� Preliminary
offline analysis: the attacker obtains the grid graph through
reconnaissance and inference tools, 1� Data acquisition stage:
the attacker collects the real-time operation information about
the current operating point of the grid by crawling the online
websites of ISOs and Bloomberg Terminal, 2� System analy-
sis stage: the attacker analyzes the raw data and determines
the weakest points of the grid from the stability perspective.
Finally, the attacker assesses the feasibility of the attack with
the available high-wattage IoT botnet and implements it if it
is feasible.

place to launch the attack. Figure 5 shows the threat model
and overview of the new MaDIoT 2.0 attack. We now describe
these steps in more detail.

3.2.1 Data Acquisition Stage

In this stage, the attacker’s goal is to obtain real-time infor-
mation on the state of the power grid. With the emergence
of deregulated electricity markets in recent years, real-time
data is publicly available through the ISO websites or stock
trading tools like Bloomberg Terminal [23]. Three examples
of online data sharing in ISOs websites are given in [24–26].
This data is openly available so traders and market players
can monitor the changes in the underlying system and quickly
adapt their bids in the market for maximum profit.

By crawling ISO websites and the Bloomberg Terminal,
an attacker can learn the power production and consumption
of the system in different nodes1 and estimates the stability
margin of the grid in various geographical regions. In par-
ticular, the attacker can obtain each node’s integrated power
generation/consumption, which is explicitly shared via the
methods outlined above.

3.2.2 System Analysis Stage

After learning the state of each node, the next step for the
attacker is to identify the most vulnerable nodes based on volt-
age stability analysis. The motivation to conduct this study
is that one of the most common root causes of big blackouts

1The terms nodes and buses are interchangeably used in power systems.
Each node represents a relatively wide geographical area (e.g., a metropolitan
city such as Atlanta or a big power plant).

is the voltage instability following severe technical incidents
such as big imbalances between energy generation and con-
sumption (e.g., caused by the outage of critical power plants
due to technical faults) [12, 16, 17].

A classical way to identify vulnerable nodes is through
voltage stability indices. There are multiple voltage stability
indices in the literature, and they can help the attacker rank the
nodes and determine the most vulnerable ones in real-time.
We will give a detailed explanation of these indices along
with their performance in Sections 4 and 5.

Once the attacker ranks nodes according to their stability
margin, he needs to evaluate the likelihood that an attack on
the top nodes (e.g., the top 3 most vulnerable nodes) will bring
the power system down. The adversary sends the attack com-
mand to the relevant bots located in critical nodes if the attack
is feasible. According to the numerical results presented in
Section 5, the attack’s success2 rate can be as high as 91%.
If the attack is not feasible, the attacker will wait until the
beginning of the following scanning cycle (e.g., five minutes
mainly depending on the refresh rate of the public informa-
tion) and start again from the first stage. As we will discuss
in Section 5, MaDIoT 2.0 attacks have two advantages: i) the
attack is executed only when there is a good chance for suc-
cess (so the existence of the botnet is not discovered because
of failed attacks), and ii) a successful attack to bring down
the power grid requires less IoT bots than in previous work
because it only targets the weakest nodes of the system.

4 MaDIoT 2.0

4.1 Preliminary Offline Analysis
Before we describe the online tasks of MaDIoT 2.0, we dis-
cuss a preliminary offline step. To launch successful attacks,
the attacker needs to gather some basic information about
the architecture of the power grid. This architecture does not
change over long periods of time (years), and we only need
to obtain them once for every target grid. Although the power
companies and ISOs do not explicitly share this type of infor-
mation, the attackers can acquire them with indirect methods
such as phishing or social engineering [27]. In addition to this,
researchers have shown that there is enough openly available
information to infer in great detail the topology and configu-
ration of power grids [28].

Because all of the transmission lines and substations in
the bulk power grid are outdoors, they can be identified with
online mapping services such as Google Maps [29]. The
attacker can easily follow transmission lines from the power
plants to the distribution substations and obtain the graph
of the entire system. The size and shape of the tower reveal
the voltage level of the respective transmission line and the
attacker can estimate the technical parameters of the line by

2Success is defined as a complete blackout in the entire grid, and failure
is defined as the recovery of the grid from the attack
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multiplying the length of the line to the per-unit values of
the relevant tower. Although this process might take some
time if the attacker does it manually, the processing time here
is not important because it is a one-time analysis for every
system. In addition, the attacker can develop computer vision
algorithms to automatically (or semi-automatically) generate
the graph of a given system using Google Maps satellite
pictures [30–32]. Reference [31] illustrates how the graph
of the Chilean power grid can be inferred by an open-source
tool.

4.2 Data Acquisition Stage

As we briefly explained in Section 3.2, once the attacker
has some basic information of the topology of the grid, the
next step is to start monitoring the state of the system and
find vulnerable nodes in real-time. As explained before, this
data (power generation and consumption in each node) of
the power grid is released on the website of ISOs (e.g., NY-
ISO and CAISO) and is updated every 5 minutes [24, 25].
In addition to this, this data can also be accessed through an
advanced stock trading tool called Bloomberg Terminal [23].
To extract the operation data, the attacker uses a crawler. To
verify this, we collected all the system operation data of the
California and New York power grids from January 2020 to
January 2021.

4.3 System Analysis Stage

Once the attacker has information about the state of the sys-
tem, the next step is to determine the weakest nodes of the
grid from the voltage stability perspective. Note that since
the power generation and consumption in different nodes of
the system change constantly, the weakest points of the target
grid will change accordingly. In particular, we want to exploit
voltage instability as changing voltages in multiple nodes is
easier than attempting to change the frequency of the grid.
Frequency is a global variable in power grids while voltage
is a local variable in each of the system nodes. Changing a
node’s voltage can be done by slightly changing the demand
at that node while changing the system frequency requires the
demand change in the entire system.

We can create voltage instabilities when the load increases
in nodes where the voltage stability margin is at its critical
point [15]. Therefore to find vulnerable nodes, we need to
compute the voltage stability margin. While finding the exact
stability margin is computationally expensive and cannot be
solved in real-time, the power grid community has developed
a set of voltage stability indices that approximately rank the
system nodes based on their voltage stability margins. We now
introduce two candidate options for estimating this quantity.

4.3.1 Voltage Magnitude of Nodes (Index 1)

During the normal operation of the power grid, the operators
want to keep the voltage magnitude of system nodes constant,
and only allow deviations between 0.95 and 1.05 per unit
(p.u.). Undervoltage protection schemes use the voltage mag-
nitude of the system nodes as an indication of their stability
margin [15]. In these schemes, a lower voltage magnitude im-
plies a lower stability margin in the node, and hence, during
emergency conditions when the voltage magnitude is too low,
the protection scheme drops a portion of the loads that are
fed through the critical nodes to keep the system stability and
recover the voltage value to its nominal range.

This index is very easy to compute (we only need the value
of the voltage at each node), and therefore our first candidate
to identify the most vulnerable nodes is the voltage magnitude
of nodes. We will show later (Figure 10.c2) that if the attacker
increases the system demand in several critical nodes where
the voltage magnitude is in the minimum range, the resulting
effect then further drops voltage magnitudes below the normal
range and causes cascading outages in the power grid.

4.3.2 Modal Analysis (Index 2)

One of the most efficient methods to calculate the voltage
stability margin of the system nodes is the modal analysis
based on the Jacobian matrix [33–35]. To calculate this index
for different nodes, the relationship between the system states
and the active and reactive power of system nodes can be
written as:


DP
DQ

�
=


JPq JPV
JQq JQV

�
Dq
DV

�
, (1)

where DP, DQ, Dq, and DV are the vectors representing active
and reactive power changes and voltage magnitude and angle
change in the system nodes. The elements of the Jacobian
matrix (i.e., JPq, JPV , JQq, and JQV ) are calculated based on
the results of the load flow analysis performed in the previous
stage (the data acquisition stage helps us perform this analysis
easily). Since the reactive power and voltage changes have
strong relationships with each other, it is reasonable to assume
DP = 0 [33]. Therefore, we can write:

DQ = [JQV � JQqJ�1
Pq JPV ]DV = JRDV. (2)

Reversing the matrix above equation, one can rewrite it as:

DV = J�1
R DQ. (3)

In order to simplify the calculations, a decomposition can
be used to calculate J�1

R as:

J�1
R = ERx�1EL. (4)
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Hence, (3) can be transformed into:

DV = ERx�1ELDQ = Â
l

ER,lEL,l

ll
DQ, (5)

where ER and EL are the right and left eigenvector matrices
of JR and x is the diagonal eigenvalue matrix of JR. Also, ER,l
and EL,l denote the lth column and lth row of ER and EL and
ll stands for lth eigenvalue of JR. All things considered, the
V-Q sensitivity of node k can can be computed through:

V QSk =
∂Vk

∂Qk
= Â

l

µklhlk

ll
, (6)

in which µkl and hlk are the kth element of ER,l and EL,l .
The negative value of V QSk implies the voltage instability in
the node k in the grid. During the normal operation of the
power system, V QSk will be positive for all of the system
nodes which means that the system is stable from the voltage
stability perspective; however, we can use this index to rank
the system nodes and see which one of them are more prone
to the instability point. The lower value for the V QSk index
implies that the kth node of the system is closer to the voltage
instability and a small load shock can make it unstable.

Index 2 is more computationally intensive (i.e., O(n5 ⇥
(logn)2) time complexity) for larger systems because a large
matrix (the dimensions are increasing linearly with the total
number of the grid nodes, i.e., n⇥n) is getting inverted for
its calculation. Index 1 on the other hand, is only looking at
DV in equation (1) (which is a subset of Index 2) and is very
easy to compute (i.e., O(1) time complexity) regardless of the
grid size. So, in short, index 2 performs better because it is a
more accurate model of the system, yet it requires more effort
by the attacker. For very large grids where the calculation of
index 2 is not practical, index 1 can be used which has some
errors but reveals a satisfactory success rate for the attack. In
smaller grids, we can use index 2 because of its higher attack
success rates.

4.3.3 Checking the Feasibility of an Attack

After the attackers find the most vulnerable nodes in the grid,
they need to evaluate the feasibility of the attack before its im-
plementation. To do so, the adversary can use modal analysis
to determine whether the grid will be unstable following the
implementation of load alteration attack in the weakest nodes
of the system. In the first step, the attackers update the power
consumption in the weakest nodes of the power grid based
on the available potential of the high-wattage botnet. Then,
they compute AC load flow analysis and recalculate JPq, JPV ,
JQq, and JQV based on the new updates. Finally, the voltage
stability index of different nodes can be obtained through
(6). If following the attack implementation, the index V QS
of weak nodes becomes negative, this implies that the grid
will be unstable; otherwise, the available botnet is not strong

enough to take down the power grid and the attack scenario
is not feasible in the current operating point. If the attack
does not succeed with the current state, the attacker needs to
wait for at least five minutes so that the operating point of the
grid and power consumption in different nodes change. Then,
the adversaries will repeat the previous analysis until they
find an attack with a high success likelihood. The accuracy
of this evaluation is numerically evaluated in Section 5. We
will show that by using a suitable voltage stability index, the
success rate of the attack can be as high as 90%.

5 Experiments and Discussion

Due to the irreparable economic and social damages caused
by the real-world implementation of MaDIoT 2.0, we use
simulation results to show the performance of the proposed
attack (as was done in previous work [5, 6]). In this line,
instead of adopting simplified models and simulations, we
leveraged an advanced, commercial power system simulation
software called DIgSILENT PowerFactory [36].

5.1 Test Case and Component Modeling
To evaluate the performance of the proposed attack, we use
a standard test power grid, called the New England power
system—this is also known as the IEEE 39-bus test system.
The New England power system includes 39 buses (nodes),
32 transmission lines, 24 power transformers, and 10 genera-
tors. The total base load of the system is 6097.1 MW (active
load) and 1408.9 MVAr (reactive load) [37]. This test case is
greater than the New York and California ISOs together, and
hence, is a reasonable representation of power grids in various
countries. We will also use a smaller test case (IEEE 9-bus
test system) which has been used in the previous relevant
works [5, 6]. The IEEE 9-bus test system has 6 transmission
lines, 2 power transformers, 3 generators with a total active
and reactive power generation of 350 MW and 244 MVAr.
Further explanation about the used test cases can be found in
Section 10 (Appendix).

To capture the system dynamics and minimize the simu-
lation errors, we used the best recommendation from power
system standards [12]. An eighth-order model is used for rep-
resenting the dynamics of generators. In this model, the me-
chanical part of the generator is formulated by a second-order
state-space equation and the electrical part by a sixth-order
system [12]. Furthermore, the IEEE-type DC1A excitation
system for modeling the AVRs of generators and an appropri-
ate governor model are employed in our simulations [12].

We also adopt a combinational load model in our simula-
tions, where the static and dynamic parts of the composite
model are represented by a polynomial model (i.e., a mixture
of power constant, current constant, and impedance constant
loads) and a third-order induction motor, respectively [16,17].
This model of the system allows us to study the dynamic
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behavior of the power grid in response to MaDIoT 2.0 attacks
with minimal errors.

We model the system for 24 hours in each season. We
chose 24 hours because the daily load curve of each power
grid is similar and we can reasonably extrapolate the analyzed
results to longer periods of time such as one year [24, 25].
Previous works have studied the power grid behavior during
the non-strategic MaDIoT botnet attacks only in one snapshot
(e.g., 5 minutes) [5, 6]. Therefore, previous results cannot be
reliably extrapolated to longer time periods.

Table 2 summarizes the list of new models and simulation
contributions of the current work over the recent related works.
Our work presents the most comprehensive and high-fidelity
modeling of real-world power systems when compared to
previous works. Our improved models are highly important
because of three main reasons:

1. Ignoring the detailed modeling of the system controllers
(i.e., governor, AVR, AGC) in the time domain simula-
tions can lead to considerably erroneous results com-
pared with practical situations because these controllers
contribute to the system recovery when a severe incident
occurs in the grid [12].

2. When a big disturbance happens in the grid, system
protection schemes (i.e., distance, overcurrent, OVLS,
UVLS, UFLS, OFGR, differential, out-of-step, and loss-
of-excitation) seek to locate and isolate the faulty area
to limit the damaging consequences of the widespread
outages and area of the blackout. Hence, overlooking
these schemes in the simulations will lead to erroneous
results [38].

3. The detailed modeling of the system components (i.e.,
generators, static, and dynamic loads) play an important
role in the power system dynamic studies. During unsta-
ble conditions, the dynamic behavior of the loads and
system generators makes the situation worse and pushes
the grid towards a more unstable point where recovery
is hard [16].

This comprehensive system modeling approach can be used
in future studies as the benchmark.

5.2 Evaluation of MaDIoT 2.0
Grid Simulation and Botnet Features We first consider the
New England power grid for 24 hours. We assume that the at-
tacker obtains the power consumption of the simulated power
grid every 5 minutes. Therefore, there are 288-time intervals
in which the available high-wattage IoT botnet can be used to
take down the power grid. We chose a 24-hour grid simulation
because of the daily load patterns of the grid [39]. For our
initial evaluation, we assume that the attacker has access to a
botnet with 150,000 bots, each of which can consume 3 kW
of electrical power (⇠ 3,850 bots per node since the New

Table 2: Modeling and Simulation Contributions of the Cur-
rent Work Over the Recent Related Works

Element Our Work Soltan et. al. [5] Huang et. al. [6]
Governor 3 7 3
AVR 3 7 7
AGC 3 7 7
Distance 3 7 7
Overcurrent 3 3 3
OVLS 3 7 7
UVLS 3 7 3
UFLS 3 3 3
OFGR 3 7 7
Differential 3 7 7
Out-of-Step 3 7 7
Loss-of-Excitation 3 7 7
Static Load 3 3 3
Dynamic Load 3 7 7
Generator Model 3 7 7

England grid model has 39 nodes). In each node, the attacker
needs to control ⇠0.2% of the total real power of the grid
to have a consistent attack with high success rate. Accord-
ing to our calculations, there are roughly 52,000 residential
high-wattage IoT devices in each of the grid nodes in the New
England power grid (more than 2 million devices in the entire
grid). Assuming that the attacker cannot compromise more
than one bot in each residential home, he would need to com-
promise 3,850 homes (from 52,000 total homes within each
node) in each of the grid nodes to have a very high success
rate in his attack.

We use each of the voltage stability indices as a binary
predictor (if the algorithm gives a positive, it also gives us
the suitable nodes to launch the attack) at each simulation
time period. For the current time, the predictor can determine
whether to launch the attack or not. With the high accurate
simulation of the power grid, we evaluate the performance of
predictions. We have the following basic definitions used in
calculating the evaluation metrics.

• True Positive: When the predictor gives a positive (i.e.,
it recommends an attack) and the attack causes a black-
out.

• True Negative: When the predictor gives a negative (i.e.,
it recommends no attack) and a blackout in the system
is not possible even with a brute-force attack.

• False Positive: When the predictor gives a positive (i.e.,
it recommends an attack) but the attack’s implementation
does not cause a blackout.

• False Negative: When the predictor gives a negative
(i.e., it recommends no attack) but we find a “blackout”
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Figure 6: The performance of the proposed attack methods
along with the approaches developed in the most recent works
obtained from the New England power grid [5, 6].

 

Figure 7: The performance of the proposed attack methods
along with the approaches developed in the most recent works
obtained from the IEEE 9-bus test system [5, 6].

in the system by using a brute-force search of all possible
attacks (i.e., there is a successful MaDIoT attack, but the
predictor fails to see it).

Attack Performance in Test Grids Figure 6 illustrates
the precision, recall, and the F-1 score of the proposed attack
methods along with the approaches developed in the most re-
cent works obtained from the New England power grid [5, 6].
Here, the precision or recall alone are not suitable to judge the
performance of the studied attack methods. Since the meth-
ods proposed in [5, 6] have zero false negatives, their recall
is 100%. However, they have a high false-positive rate, and
hence, low performance. Accordingly, we use the F-1 score
to judge the overall performance of the simulated attack sce-
narios because it represents a combination of both precision
and recall. As can be seen in Figure 6, the proposed MaDIoT
2.0 attacks outperform the previous methods with a relatively
large margin. As previously reported by Huang et al. [6], we
confirm that in most of the cases the conventional protection
schemes are able to control the disturbance caused by ran-
dom attacks and keep the system stability following the IoT
botnet attack. However, MaDIoT 2.0 attacks can bypass these
protections and create a cascading failure of the bulk power
system. The reason behind this observation is that we target
the weakest nodes of the grid while the proposed attack sce-
narios in [5, 6] are uniformly spread over the grid. Simulating
the IEEE 9-bus test system reveals similar results with 0%,
0%, 61%, and 93% F-1 scores that are associated with Soltan
et. al. [5], Huang et. al. [6], Index 1 and Index 2, respectively
(see Figure 7).

Performance of Indices 1&2 The other interesting obser-

 

Figure 8: The accuracy of the proposed Index 1 and Index 2
compared with the exact calculations (ground truth).

vation is that Index 2 for the voltage stability margin indicator
performs much better than Index 1 for launching MaDIoT
2.0 attacks. Based on this observation, it is apparent that In-
dex 2 is a better indicator for determining the voltage stability
margin in system nodes. To validate this claim, we solved the
exact model of the system equations in all of the 288-time in-
tervals and obtained the error-free ranking of the system nodes
in terms of their voltage stability margins. Figure 8 depicts
the normalized accuracy of Index 1 and Index 2 compared
with the ground truth which was acquired through perform-
ing the computationally intensive calculations (that cannot
be performed in real-time) on the New England power grid.
According to this figure, Index 2 represents the ranking of the
grid nodes based on their voltage stability margins with lower
errors and this justifies the results we observed in Figure 6. It
should be noted that the exact equations of the entire grid took
longer than 24 hours to calculate (for all 288 time intervals)
and this is why we cannot use the exact model in the real-time
attack mechanism. On the other hand, the calculation of the
proposed indices in each of the time intervals took less than
5 sec (24 minutes for all 288-time intervals) and this makes
the MaDIoT 2.0 attack feasible in practice. Again, simulation
of the IEEE 9-bus system returns the same similar pattern
where the normalized accuracy of Index 2 is much higher
than that of Index 1. This is aligned with the aforementioned
performance metrics discussed in the previous paragraph.

Effect of Botnet Size on Success Rates We also consid-
ered how the size of the botnet changed the effectiveness of
all attacks. Figure 9 shows the F-1 score of different attack
methods versus the number of compromised high-wattage IoT
devices that the attacker can control in the new England power
grid. As can be seen, not only the proposed attack methods
have a higher F-1 score compared to the previous attack mech-
anisms in the literature, but also they require smaller botnets
to cause a large-scale blackout of the bulk power system. In
addition to this, as the size of the available botnet increases,
the success rate of the proposed attacks increases as well.
However, after a certain point (150,000 bots) the increase in
the attack success rate saturates and it does not respond to an
increase in the size of the available botnet. In the IEEE 9-bus
test system, the optimal success rate for the MaDIoT 2.0 at-
tack is achieved when the size of the botnet is 5,500 bots.
The reason for this observation and its difference with the
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Figure 9: The success rates of different IoT botnet attacks
versus the size of the available high-wattage IoT botnet in the
New England power grid.

New England power grid is that the IEEE 9-bus test system
is much smaller than the New England power grid. Based on
this, one can reasonably infer that for smaller power grids, we
will need smaller botnets to achieve the highest attack success
rate.

Effect of the Attack on Node Voltages and System Fre-
quency It is interesting to see how the proposed attack causes
a system collapse. To do so, we illustrate the voltage profile
of the system nodes and the grid frequency during different
attacks in the New England power grid. Figure 10 shows the
system frequency and the voltage profile of the New England
power grid during one of the simulated time intervals. In this
Figure, 0�, 1�, 2�, and 3� denote the attack time, protection
and control involvement time, system recovery to the normal
condition, and wide-area blackout (voltage collapse), respec-
tively. In this figure, (a1), (b1), and (c1) illustrate the system
frequency over time (the frequency is unique and equal in
every power grid). Also, (a2), (b2), and (c2) depict the system
voltage magnitude in different nodes over time (each node
has its voltage magnitude, and they are not equal in the entire
grid). As we can see, the system controllers and the protection
schemes are able to recover the grid to the normal operating
state following the attack scenarios proposed in [5, 6]. How-
ever, since our attack targeted the weak nodes of the system,
power grid controllers and protection schemes are unable to
handle the emergency conditions following the attack, and
a system-wide voltage collapse becomes inevitable. More
specifically, the voltage magnitude of the system nodes col-
lapses after a few seconds of starting the MaDIoT 2.0 attacks.
The blackout is confirmed almost ten seconds after the attack.

Effect of Botnet Time Delay on the Attack’s Perfor-
mance An important factor that has not been studied in the
previous works is the network delay of the bots’ activation dur-
ing the manipulation of demand attacks. Practically speaking,
the attacker cannot simultaneously activate/deactivate the bots
in the botnet because of the latency and randomness in the
underlying communication network. To model the network
latency associated with different bots, we considered a normal
probability distribution function (pdf) for the network latency.
Considering the standard deviation of 100 msec, Figure 11
depicts the successful rate of different attack methods versus
various values for the mean of the normal pdf in the New

England power grid. As can be seen, the latency of the com-
munication network does not have significant effects on the
proposed and previous attack methods. The MaDIoT 2.0 at-
tacks still have a very high chance to cause a system-wide
blackout in the studied power system. Simulating this delay
in the IEEE 9-bus test system resulted in a similar pattern
where no notable change was observed during the increase of
the botnet delay.

Effect of Available Bots in System Nodes Although Ma-
DIoT 2.0 attacks have excellent performance in causing
system-wide blackouts in power grids, they have their own
limitations. While MaDIoT 2.0 requires fewer bots, it also
requires the attacker to have a presence in all nodes. This is a
direct factor in the botnet operator’s success, i.e., if the oper-
ator does not have enough bots in a location that is a "weak
point", the adversary might not be able to launch a successful
attack sometimes. It should be noted that the weak points
of the power grid change as the loading of different nodes
change around the clock. Accordingly, even if the adversary
has compromised few bots in certain nodes, he still should be
able to cause a blackout in the target grid at certain times. To
verify these explanations, we did an experiment in the New
England power grid. Figure 12 shows the performance of the
MaDIoT 2.0 attacks with different coverage of nodes that
consist of high-wattage bots. As expected, although the attack
performance declines following the decrease in the number
of nodes having high-wattage bots, the success of MaDIoT
2.0 attacks are still higher than MaDIoT 1.0. In practice, there
are many high-wattage IoT devices that can be compromised
in each grid node. Smart HVAC systems and EVs are only two
classes of high-wattage devices that could be compromised
and leveraged by the attacker as a part of his botnet. There
are currently more than 30 million smart HVAC systems in
the north America region [40]. Also, the number of EVs on
U.S. roads is projected to reach 18.7 million in 2030, up from
1 million at the end of 2018. This is about 7% of the 259
million vehicles (cars and light trucks) expected to be on U.S.
roads in 2030 [41].

Maximum Waiting Time for the Attacker The maxi-
mum amount of time the attacker will have to wait so that
a feasible attack scenario occurs depends on the operating
point of the grid and its general stability margin. Modern
grids are often operated near to their stability limits to use the
maximum capacity of the grid components and to postpone
expensive grid expansion plannings. For this reason, a typical
power grid such as the New England test system forces the
attacker to wait roughly 3 hours. While impractical, (due to
the high operational cost of non-optimal grid operation), oper-
ating a grid with a higher stability margin would increase the
time the attacker would have to wait to launch a successful
attack.

Effect of Line Parameter Errors The other important as-
pect of the MaDIoT 2.0 attacks is their performance sensitivity
to estimation errors by the attacker. To analyze this in detail,
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Figure 10: The system frequency and voltage profile of the New England power grid during one of the simulated time intervals
following the implementation of different attacks: a) Soltan et. al. [5], b) Huang et. al. [6], and c) Proposed approach using Index
2. Note: 0�, 1�, 2�, and 3� represent the attack time, protection and control involvement time, system recovery to the normal
condition, and wide-area blackout (voltage collapse), respectively.

 

Figure 11: The performance of the different IoT botnet attacks
in the New England power grid versus the mean value of the
normal pdf used for modeling the network latency.

 

Figure 12: The performance of the MaDIoT 2.0 attacks versus
the percent of the nodes including high-wattage IoT bots.

we performed two different experiments in the New England
power grid. In the first experiment, we assumed that the line
parameters of the grid transmission lines which are obtained
through offline analysis are not 100% accurate. Figure 13
depicts the performance of the MaDIoT 2.0 attacks versus the
mean error in the New England power grid line parameters.
According to this figure, the attack performance decreases
as the error becomes bigger. However, this performance re-
duction is not that significant and the MaDIoT 2.0 attacks
are still relatively effective in the presence of reasonable esti-
mation accuracy in the transmission line parameters. Since
the attack impact is lower with imperfect information, there
is value in adding deception. In fact, the defender can create

 

Figure 13: The performance of the MaDIoT 2.0 attacks versus
the mean error in the New England power grid line parame-
ters.

fake diagrams and substations in documents about the system
to create fake nodes; however, they also need to be consistent
with the physical-world information the attacker can get (e.g.,
build a phony substation that can be seen in Google Maps),
which can be challenging in practice.

Effect of Erroneous Grid Operation Data In our final ex-
periment, we considered the effectiveness of our data-driven
countermeasure, so we assumed that the data associated with
the power generation/consumption in different nodes is pub-
licly released with some errors. Figure 14 shows the per-
formance of the MaDIoT 2.0 attacks versus the mean er-
ror in the New England power grid nodes’ power genera-
tion/consumption. As it was expected, the performance of the
MaDIoT 2.0 attacks drastically declines with the increased
error in the grid nodes’ power generation/consumption. This
performance reduction is more severe than that of the previ-
ous experiment shown in Figure 13. It is worth mentioning
that Figure 14 implies that the first data-driven countermea-
sure (limiting the online data sharing) cannot be alone used
for eliminating the risk of MaDIoT 2.0 attacks. However, it
definitely reduces (⇠26% performance reduction for index 2
in the presence of 5% error) the attacker chance of launching
a successful attack to cause blackout in the entire grid.

As a final point, according to recent studies, the emerg-
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Figure 14: The performance of the MaDIoT 2.0 attacks versus
the mean error in the New England power grid nodes’ power
generation/consumption.

ing trends such as the proliferation of new technologies in
power grids such as rooftop solar panels and electric vehicles
(EVs) reduce the stability margin of the power grids [12], and
hence, increase the chance of successful MaDIoT 2.0 attacks
in practical cases. Therefore, developing novel countermea-
sures against MaDIoT 2.0 is needed in future studies.

6 Countermeasures

The most effective way to prevent MaDIoT 2.0 attacks is
to update the protection schemes of the power grid so that
they can recover system stability following any unpredictable
shocks caused by similar attacks. In our experiments, we saw
that UFLS and UVLS are the two main protection schemes
involved during MaDIoT 2.0 attacks.

Conventional UFLS and UVLS schemes drop a predeter-
mined amount of the power grid loads when the system fre-
quency and voltage drop severely following a technical event
such as the outage of a power plant or a heavy transmission
line. However, system operators do not consider the situations
such as MaDIoT 2.0 attacks when they are configuring them.
The current protection schemes drop the system loads that
are evenly distributed in the entire grid. However, as shown
in Section 5.2, this strategy is unable to protect the grid and
recover it following the proposed IoT botnet attack. While
one possible way to fix this issue is to drop the loads where
the attack was launched, it is hard to detect and identify the
location of the MaDIoT 2.0 attack in the grid. The reason is
that it is hard to distinguish between a natural load change
or technical event and a MaDIoT 2.0 attack from the system
monitoring perspective.

One of the effective indicators which could be leveraged to
detect the region of the manipulation of demand attacks is to
use the voltage falling rate of grid nodes [42]. We observed
that during the IoT botnet attacks, the voltage falling rate in
the nodes that are close to the attacked nodes is much higher
than that of the far nodes. Therefore, we revised the setting
of the existing protection schemes so that they will first drop
loads of the system in the nodes where the voltage falling
rate is bigger than the other nodes. This adaptive protection
scheme will shed some loads in the area of the attack and will

 

Figure 15: The performance of different manipulation of
demand attacks after the modification of UFLS and UVLS
schemes in the New England power grid.

help the system recover from the attack.
Figure 15 illustrates the performance of different manipu-

lation of demand attacks after the modification of UFLS and
UVLS schemes with the explained logic in the New England
power grid. As we can see, the F-1 score of the studied attack
mechanisms significantly drops with this modification. The
high recall occurs because we have zero false negatives in the
test cases. Figure 16 depicts the system frequency and voltage
profile following the implementation of a MaDIoT 2.0 at-
tack considering the modified adaptive protection scheme in
the New England power grid. We can see that the system
was going to become unstable following the attack; however,
the modified adaptive protection scheme is able to identify
the region of the attack and drop the loads accordingly. This
eventually helps the grid to fully recover from the attack and
prevent a system-wide blackout.

This is just an improvement to existing protection schemes
against IoT botnet attacks. However, we also need to check
that our modified protection scheme also works against nat-
ural incidents and compare it with the existing protection
schemes. We simulated the New England power grid apply-
ing a set of natural events and observed the performance of the
modified UFLS scheme. According to our observations, since
the modified UFLS algorithm drops the similar amount of
loads to the conventional one (but from different locations), it
is able to recover the system stability following natural events.
The reason is that for natural random events it does not matter
where we shed loads, it only matters what the amount of the
load shed is. However, further in-depth analysis is required
to verify the effectiveness of the modified protection scheme
and also to identify any possible weaknesses against natural
events.

7 Related Work

Power system cybersecurity has been widely studied in the
past few years [1, 2, 4, 5, 43–62]. Attacks on power systems
can be classified into three main groups based on the ultimate
goal of the attacker: i) attacks targeting the power grid com-
munication infrastructure, ii) attacks targeting the power grid
standalone components, and iii) attacks targeting the power
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Figure 16: The system frequency and voltage profile of the
New England power grid during one of the time intervals
following the implementation of MaDIoT 2.0 attack consid-
ering the modified adaptive protection scheme. Note: 0�, 1�,
and 2� represent the attack time, protection and control in-
volvement time, and system recovery to the normal condition,
respectively.

grid through consumers (load altering attacks).
In the last class of attacks, the adversaries try to indirectly

affect the normal operation of the system by attacking pric-
ing signals or consumer devices [5, 58–63]. These indirect
attacks were first introduced by Mohsenian-Rad and Leon-
Garcia [58]. In this work, the attackers compromise the load
control signals associated with big industrial loads and data
centers. Big data centers can be one of the primary targets
of load-altering attacks [59]. Barreto et al. [63] considered
how attacks could manipulate the demand-response market to
change abruptly the load of the grid with devices that respond
automatically to energy prices.

The interest in load-altering Botnet attacks started in
2017 and 2018 [5, 61, 62]. Dvorkin et al. [61] proposed an
optimization-based approach that requires a complete knowl-
edge of the power grid (topology of the grid, detailed pa-
rameters of the transmission lines/generators, and real-time
regional generation/demand). To overcome this challenge,
Dabrowski et al. proposed a new method to increase the to-
tal system demand through remotely activating CPUs, GPUs,
hard disks, screen brightness, and printers to cause frequency
instability in the European power grid [62]. Although the new
approach did not require as much detailed information about
the power grid, the number of compromised devices needed
for a successful attack is quite high because the devices do not
consume a lot of power. Soltan et al. proposed the use of high-
wattage IoT devices to launch various types of attacks (fre-
quency instability, power line cascade tripping, and black start

restoration interruption) on a power grid to cause blackouts in
the entire system [5]. This novel attack, called Manipulation
of demand via IoT (MadIoT), was further analyzed by Huang
et. al. [6] and it was shown that the introduced attack is not as
effective as it was illustrated in [5]. The new analysis in [6] re-
vealed that while MaDIoT attacks could have negative effects
on the power grid operation, it is hard to cause a widespread
system collapse. According to these analysis, the existence
of conventional protection schemes in the grid can effectively
protect the system against random MadIoT attacks. However,
these protection schemes were mainly designed to help the
power grid withstand against credible contingencies and there
was no consideration of the manipulation of demand attacks
in their configurations [16, 38].

8 Conclusion and Possible Directions

In this paper, we introduced MaDIoT 2.0: a hierarchical two-
stage attack mechanism that leverages the potential of high-
wattage IoT botnets to attack the power grid and cause a
widespread blackout in the entire system. The performance
of the developed attack methods is evaluated using extensive
simulations and the results showed the superiority of MaDIoT
2.0 over the previously studied attack mechanisms. More
specifically, the success rates of the new IoT botnet attack
were 91% and 67% for voltage stability Index 1 and Index
2, respectively. In addition, MaDIoT 2.0 requires a smaller
number of bots involved in the attacks, since it targets the
weakest nodes of the system in the current operating state.
Finally, we discussed and showed the effectiveness of pro-
posed countermeasures to mitigate or reduce the damaging
consequences of the studied attacks.

In closing, we recommend the following next directions:

• System operators should reconsider the current unneces-
sary online data sharing mechanisms and policies. Ac-
cess to historical and real-time system data can be easily
leveraged for malicious purposes.

• Further research is required to develop additional Ma-
dIoT attacks and effective protection schemes to help
the power grid withstand emerging high-wattage botnet
attacks.
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9 Attack Feasibility

9.1 From the IoT Botnet Perspective
One of the main questions about manipulation of demand
attacks is how feasible it is to gain control of a botnet of high-
wattage devices within a limited geographical area. Histori-
cally, the number of IoT botnets in recent years has increased
dramatically, with famous IoT botnets including Mirai, Lu-
aBot, Hajime, and BrickerBot [64–67]. Similar to previous
work [5, 6], we assume that the attacker has access to a high-
wattage IoT botnet.

The key aspect of our attack is that the adversary needs to
activate the attack only in specific geographical areas (such
as a city). The differentiation between the location of the
compromised bots can be initially done by classifying and
using their IP addresses. There are various research efforts
providing IP location with median errors of just 3.4km [68],
and free and commercial IP geolocation databases claiming
to locate cities (the nodes we are interested in for our study)
with an accuracy of over 85% [69].

Compared to previous work [5, 6], MaDIoT 2.0 attack re-
quires fewer IoT bots to be successful. The reason is that Ma-
DIoT 2.0 attacks target the most vulnerable nodes of the grid
instead of launching attacks spread over all nodes. As shown
in Section 5, an adversary with 150,000 bots can effectively
take down a typical power grid with MaDIoT 2.0 attacks.
Considering IoT botnets such as Mirai had over six hundred
thousand compromised devices [64], the future existence of a
high-wattage IoT botnet with 150,000 bots is not unlikely.

In practice, there are many high-wattage IoT devices that
can be compromised in each grid node. Smart HVAC systems
and EVs are only two classes of high-wattage devices that
could be compromised and leveraged by the attacker as a
part of his botnet. There are currently more than 30 million

smart HVAC systems in the north America region [40]. Also,
the number of EVs on U.S. roads is projected to reach 18.7
million in 2030, up from 1 million at the end of 2018. This is
about 7% of the 259 million vehicles (cars and light trucks)
expected to be on U.S. roads in 2030 [41].

Entrepreneurial attackers can compromise high-wattage
devices and then offer them for rent. This practice is common
in current botnets [70–75]. The available botnet rental ser-
vices provide clients with the capability to launch a limited
or unlimited (for premium users) number of attacks per day
with a guaranteed minimum duration from minutes to hours.
Since MaDIoT 2.0 attacks take less than a minute, all of the
currently available botnets satisfy this time requirement. The
cost of renting a typical IoT botnet is negligible compared
with the cost of a typical blackout. For example, Anderson
Economic Group (AEG) estimates the likely total cost of
the 2003 northeast US blackout to be between $4.5 and $8.2
billion [76].

9.2 From the End User’s Perspective
In order to make the attack repeatable, the adversary should
try to keep it as stealthy as possible. From the end user’s per-
spective, we discuss i) the effect of the attack on the billing
statement of the homeowners, and ii) the possibility of attack
detection and prevention in each home/building. The financial
effect of the MaDIoT 2.0 attack on each of the homeowners
depends on the duty cycle of the attack as well as the total
power consumption at home. As mentioned earlier, MaDIoT
2.0 attacks use the compromised high-wattage devices for less
than one minute. Therefore, even if the adversary launches
this attack multiple times each month, its effect in the house-
hold is minimal. According to the energy information ad-
ministration (EIA), the average electricity consumption of
Americans is approximately 914 kWh per month. Tennessee
has the highest electricity consumption at 1,282 kWh per
residential customer, and Hawaii has the lowest at 517.75
kWh per residential customer [77]. Assuming that each of the
high-wattage IoT bots consumes 3 kW of electricity and con-
sidering the duration of multiple typical attacks in each month
(30 minutes), each compromised home will pay 0.11%-0.28%
additional payment for electricity bills, which we believe is
unnoticeable. To answer the second question, the possibil-
ity of the MaDIoT 2.0 attack is detected by home or device
owners is almost negligible because the duration of the attack
is very short (e.g., 10 seconds) to raise any suspicions. In
addition to this, even if the home owner notices the unwanted
activation/deactivation of the compromised high-wattage de-
vices, he would likely think that it is happening because of a
software bug in the device and a simple restart would resolve
the issue but it is already too late and the blackout has already
occurred (the attack usually takes less 30 seconds to cause
a blackout in the entire system). Note that in the worst case,
individual bot detection and losing few bots would not thwart
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the entire attack.

10 Basic Data of Test Cases

Figure 17: The single-line diagram of the New England power
grid (IEEE 39-bus test system) [37].

 

 

Figure 18: The active and reactive powers of the New England
power grid during the evaluation period.

In this Section, the basic data for simulating the test sys-
tems were given, which might be used in future studies as
benchmark cases. The single-line diagram of the New Eng-
land power grid is shown in Figure 17 [37]. The total base
load of the system is 6097.1 MW (active load)and 1408.9
MVAr (reactive load). To expand the base load, we used a
daily load profile in the grid meaning that at every minute, the
load of the grid nodes changes similar to the real-world cases.
The daily load profile we consider is illustrated in Figure 18
for the New England power grid. The dynamic and static
parameters of the system generators are outlined in Table 3.

The grid graph or the single-line diagram of the IEEE 9-
bus test system is illustrated in Figure 19 [78]. For the IEEE
9-bus system, we used a relatively similar load curve shown
in Figure 20. Also, the dynamic and static parameters of the
system generators in this system are outlined in Table 4.

Table 3: Generator Parameters for the New England Power
Grid

G H x0d x0q xd xq T 0
do T 0

qo xl
G1 500 0.006 0.008 0.02 0.019 7.0 0.7 0.003
G2 30.3 0.0697 0.170 0.295 0.282 6.56 1.5 0.035
G3 35.8 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304
G4 28.6 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295
G5 26.0 0.132 0.166 0.67 0.62 5.4 0.44 0.054
G6 34.8 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224
G7 26.4 0.049 0.186 0.295 0.292 5.66 1.5 0.0322
G8 24.3 0.057 0.0911 0.290 0.280 6.7 0.41 0.028
G9 34.5 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298
G10 42.0 0.031 0.008 0.1 0.069 10.2 0.0 0.0125

Figure 19: The single-line diagram of the IEEE 9-bus test
system [78].

 

 

Figure 20: The active and reactive powers of the IEEE 9-bus
test system during the evaluation period.

Table 4: Generator Parameters for the IEEE 9-Node System
G H x0d x0q xd xq T 0

do T 0
qo xl

G1 0 0.0608 0.0969 0.146 0.0969 8.96 0 0.0032
G2 0 0.1198 0.1969 0.8958 0.8645 6.0 0.535 0.026
G3 0 0.1813 0.25 1.3125 1.2578 5.89 0.6 0.036
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