
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

SCRAPS: Scalable Collective Remote Attestation for
Pub-Sub IoT Networks with Untrusted Proxy Verifier

Lukas Petzi, Ala Eddine Ben Yahya, and Alexandra Dmitrienko,
University of Würzburg; Gene Tsudik, UC Irvine; Thomas Prantl

and Samuel Kounev, University of Würzburg
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi

SCRAPS: Scalable Collective Remote Attestation for Pub-Sub
IoT Networks with Untrusted Proxy Verifier

Lukas Petzi1, Ala Eddine Ben Yahya1, Alexandra Dmitrienko1,
Gene Tsudik2, Thomas Prantl1, Samuel Kounev1

1University of Würzburg 2UC Irvine

Abstract
Remote Attestation (RA) is a basic security mechanism

that detects malicious presence on various types of computing
components, e.g., IoT devices. In a typical IoT setting, RA in-
volves a trusted Verifier that sends a challenge to an untrusted
remote Prover, which must in turn reply with a fresh and
authentic evidence of being in a trustworthy state. However,
most current RA schemes assume a central Verifier, which rep-
resents a single point of failure. This feature is problematic
when mutually suspicious stakeholders are involved. Further-
more, scalability issues arise as the number of IoT devices
(Provers) grows.

Although some RA schemes allow peer Provers to act as
Verifiers, they involve unrealistic (for IoT devices) require-
ments, such as time synchronization and synchronous commu-
nication. Moreover, they incur heavy memory, computation,
and communication burdens, while not considering sleeping
or otherwise disconnected devices. Motivated by the need to
address these limitations, we construct Scalable Collective
Remote Attestation for Pub-Sub (SCRAPS), a novel collec-
tive RA scheme. It achieves scalability by outsourcing Ver-
ifier duties to a smart contract and mitigates DoS attacks
against both Provers and Verifiers. It also removes the need
for synchronous communication. Furthermore, RA evidence
in SCRAPS is publicly verifiable, which significantly reduces
the number of attestation evidence computations, thus lower-
ing Prover burden. We report on SCRAPS prototype imple-
mented over Hyperledger Sawtooth (a blockchain geared for
IoT use-cases) and evaluate its performance, scalability, and
security aspects.

1 Introduction

Loosely defined as a network of specialized devices, the In-
ternet of Things (IoT) revolutionized and altered numerous
aspects of our daily lives. IoT includes a wide range of com-
puterized gadgets unified by one feature – their primary pur-
pose is not traditional computing. IoT offers new and exciting

opportunities for commercial and societal purposes, includ-
ing E-Health [25], as well as many “smart” environments:
homes [4], grids [48], cities [41], and factories [63]. Recently,
IoT played an important role in the response to the COVID-19
pandemic [20,56], by helping control the spread of the disease
by contact tracing.

Not surprisingly, IoT devices have become attractive attack
targets. The attacks vary in terms of effect, e.g., local in case
of covert control of a smart lock [60], or global, as in the
2017 Mirai Botnet [37, 40] which zombified untold numbers
of smart cameras worldwide. These attacks clearly motivate
the need for security mechanisms for IoT devices. These
examples are also a preview of things to come, and they amply
demonstrate the terrifying impact of IoT-focused attacks.

Unfortunately, IoT manufacturers have little or no incentive
to invest in security. First, this is because security is not a
primary or consumer-facing service delivered by a typical
IoT device. Second, even if it exists, the security budget is
normally quite low and security is often viewed as an inhibitor
to actual “useful” services. Third, security is usually treated
as an afterthought because of the rush-to-market syndrome,
i.e., the drive to be the first to sell a particular device type.
Thus, for IoT manufacturers, the monetary motivation is to be
reactive: invest in security only if and when attacks on their
devices (and subsequent bad publicity) occur.

At the same time, a typical IoT device cannot be expected
to defend itself from attacks in the manner of more pow-
erful computing devices. Servers, desktops, laptops, tablets,
and smartphones are all full-blown general-purpose comput-
ers that can host complex anti-malware tools and implement
proactive defenses. The same is unworkable for resource-poor
IoT devices with unstable connectivity, low bandwidth, mea-
ger memory, slow CPUs, and sometimes very limited (e.g.,
battery) power. The only alternative is reactive security mea-
sures, key among which is Remote Attestation.

Remote Attestation (RA) is a basic reactive security mech-
anism for trust establishment and compromise detection in
remote entities. Although RA is a general notion, this paper

USENIX Association 31st USENIX Security Symposium 3485

focuses on RA in the context of IoT devices. In its simplest
form, RA is aimed at attesting a single device. A simple RA
scheme involves a trusted entity (Verifier) that interacts with an
untrusted (and possibly compromised) remote device (Prover).
In the end, Verifier learns the current state of Prover and deter-
mines whether the latter is compromised. Prover captures its
current state by computing a measurement – an authenticated
integrity function (e.g., a keyed hash) over its memory and
Verifier’s challenge. Verifier checks it against the reference
value(s) that correspond to the valid state(s).

Collective RA (cRA) is necessary whenever a multitude of
remote Provers need to be attested and simple repeated appli-
cation of single-Prover RA becomes burdensome in terms of
time and resources. In recent years, several cRA designs were
proposed with the goal of achieving scalability and efficiency.
They typically use one-to-one RA schemes as a building block
to establish individual trust connections among Provers and
arrange such connections in a more complex topology.

Current cRA techniques fall either into one-to-many or
many-to-many category. The former assume one Verifier and
many Provers [8, 12, 36, 58]. They attest the whole network
at once and assume that devices remain connected and quasi-
static during each RA session, which can last awhile. They
also require a trusted external Verifier and do not support
on-demand attestation of individual devices. They are thus
unsuitable for settings where Provers are under the control
of different entities. This limitation is addressed by many-to-
many cRA schemes [7,36,43,47,58] that allow devices to play
the role of both Provers and Verifiers. However, such schemes
scale poorly in comparison to their one-to-many counterparts,
due to their decentralized nature [7,36,43]. Furthermore, some
of them make additional trust assumptions [47, 58].

Challenges: Many current and emerging IoT network set-
tings use Publish/Subscribe (Pub/Sub) protocols, such as
MQTT [2], DDS [26], and AMQP [46]. For instance, both
Google Core IoT [27] and Amazon Web Services (AWS)
IoT [52] adapted MQTT for communications among IoT ser-
vices. Such Pub/Sub protocols prompt unique challenges for
cRA protocols since they utilize asynchronous communication
patterns, while current cRA techniques rely on synchronous
communication and direct connections between Provers and
Verifiers. Another challenge arises because some types of IoT
devices are battery-powered and use the sleep mode to save
energy. It is also possible for devices to become disconnected
due to communication failures (e.g., due to other sleeping
devices upstream). In either case, they cannot always respond
to Verifiers’ attestation requests. This issue has not been ad-
dressed so far, and we discuss it in detail in Section 2.2.

In this paper, we aim to advance the state-of-the-art and
overcome the aforementioned challenges. To this end, we
construct a novel cRA scheme, SCRAPS (Scalable Collective
Remote Attestation for Pub-Sub), a blend of one-to-many
and many-to-many approaches. It offers advantages of both:

while supporting on-demand attestation of individual devices,
it scales better than many-to-many schemes. SCRAPS also
deals with unique challenges posed by asynchronous com-
munication patterns of Pub/Sub, and accommodates devices
with intermittent availability, i.e., supports the sleep mode and
temporary disconnections.

Contributions. We make the following contributions:

• SCRAPS, a cRA scheme for Pub/Sub networks. It in-
volves an additional entity, called the proxy, that verifies
Provers’ RA evidences on behalf of actual Verifiers. We
instantiate this proxy using smart contact – an untrusted
entity hosted over a blockchain or a ledger. This makes
SCRAPS scalable since the logical attestation topology
between the proxy and Provers is one-to-many. Once
the proxy attests a Prover, Verifiers can fetch the RA evi-
dences from the former, which enables many-to-many
attestation. Verifier ensures that the attestation process
was conducted correctly and the valid RA evidence was
stored in the smart contract, without trusting the proxy.
This is guaranteed by the properties of smart contracts
and underlying blockchains.

• A prototype of SCRAPS using Hyperledger Saw-
tooth [1], the popular blockchain platform for IoT, as the
proxy. Verifiers and Provers are realized and evaluated
on two platforms: NXP evaluation board LPC55S69-
EVK and ATmega 1284p Xplained MCU from AVR.
The former is equipped with ARM TrustZone, thus pro-
viding strong security guarantees, while the latter rep-
resents a typical IETF Class-1 [14] IoT device. Both
devices are off-the-shelf and do require no hardware
modifications. Performance evaluation results demon-
strate that SCRAPS can be easily supported by IoT
platforms. We release the source code of SCRAPS at
https://github.com/sss-wue/scraps.

• Assessment of SCRAPS’s scalability via simulations and
comparison with LegIoT [43] – the state-of-the-art and
open-source many-to-many cRA scheme. These results
show that SCRAPS significantly outperforms LegIoT,
in terms of scalability, in all the tests. Especially for
larger networks, we show that SCRAPS is capable of re-
using RA evidences of previously conducted attestations
during the operation phase more effective and thereby
reducing attestation overhead by 70% for 10000 devices
while also having a ten times shorter warm-up phase
than LegIoT. We also do not experience any performance
bottlenecks in large(r) networks.

To summarize, SCRAPS is the first cRA scheme that blends
the features of one-to-many and many-to-many approaches.
Furthermore, it is the first to address challenges stemming
from both: asynchronous communication in a Pub/Sub set-
ting and periodically sleeping/disconnected devices. Prior
blockchain-based cRA schemes merely use the ledger as a
storage means to distribute attestation evidences conducted

3486 31st USENIX Security Symposium USENIX Association

https://github.com/sss-wue/scraps

by other parties. In contrast, SCRAPS’s smart contract-based
proxy performs attestation and informs other parties about
attestation results. This lowers the number of necessary at-
testation verification processes, leading to better scalability
and efficiently, as well as reduced trust assumptions, since the
smart contract is untrusted.

Paper Outline: The remaining part of the paper is organized
as follows: Section 2 discusses challenges and requirements
of cRA in Pub/Sub networks. Next, Section 3 presents our
system and adversary models, followed by the detailed design
of SCRAPS. Section 4 provides implementation details, fol-
lowed by Section 5 that covers performance and scalability
evaluations. Security analysis is provided in Section 6. Next,
Section 7 overviews the related work, and, finally, Section 8
ends with conclusions.

2 Challenges & Requirements

This section first introduces publish/subscribe (Pub/Sub) net-
works followed by a discussion on challenges posed by the
Pub/Sub paradigm and the requirements analysis.

2.1 Pub/Sub IoT Networks

Pub/Sub protocols are well-suited for highly dynamic envi-
ronments since they can tolerate disruptions and delays, thus
they are often used in IoT networks. Figure 1 shows a typical
Pub/Sub network that includes three entities: Publishers, Sub-
scribers, and Brokers. From one side, a Publisher connects to
a Broker specifying topics to publish their messages. On the
other side, Subscribers communicate to the Broker to define
their topics of interest. When Publishers push messages to the
topics, the Broker mediates the connection, filters all incoming
messages, and distributes them to Subscribers.

Figure 1: Pub/Sub communication model

In this manner, Pub/Sub obviates the need for synchroniza-
tion and constant presence. Publishers and subscribers never
contact each other directly, and both are unaware of the un-
derlying network topology and the state of other entities, e.g.,
their reachability and sleep status. Lack of synchronization as-
sumption is one of the main characteristics of such networks.

2.2 Challenges
We identify the following major challenges that prevent the
straightforward application of existing cRA solutions to IoT
Pub/Sub networks: Asynchronous communication, sleeping
devices, and malicious brokers.

CH1: Asynchronous Communication Current cRA
schemes rely on direct and synchronous communication
between Prover and Verifier [7, 35, 36, 38] (cf. Section 7
for more details). In contrast, as discussed in Section 2.1,
Pub/Sub networks exhibit asynchronous communication
where Publishers and Subscribers are completely decoupled
and never communicate directly. Furthermore, current cRA
schemes require the knowledge about current states of
devices being attested [8, 12, 36, 58], which is not available
in Pub/Sub networks. Publishers and Subscribers do not
even know the entities, let alone their current states, with
which they communicate; instead, they publish to a topic or
receive updates published to a topic. Moreover, many cRA
schemes [7, 12, 43, 50, 58] require knowledge of the network
topology. This information is not available in highly dynamic
networks, which makes prior cRA schemes unsuitable for
Pub/Sub networks.

CH2: Sleeping Devices A related issue arises from the need
to support battery-powered devices that periodically sleep
to conserve energy (or become temporarily disconnected for
network reasons) and can not be constantly available to handle
attestation requests. Whenever a prover device sleeps and/or
is disconnected, multiple attestation requests, perhaps sent by
different subscribers, can accumulate at its broker. Moreover,
a single subscriber may send several requests, since either a
request or a response may be delayed or lost. Upon waking
up or reconnecting, the prover would receive the requests and
engage in a long computational process to answer them. This
would consume energy and inhibit access to the service for
which it is deployed.

CH3: Malicious Brokers The infrastructure of Pub/Sub net-
works is maintained by third parties. This implies that Brokers
are untrusted and can be compromised. A malicious Broker
can flood Provers with fake attestation requests, thus forc-
ing them to perform excessive amounts of computation and
causing Denial of Service (DoS). Eliminating this attack vec-
tor using cryptography is challenging since it would trigger
the need for scalable (efficient) key distribution and manage-
ment, which is complicated in large and dynamic networks of
mutually untrusted devices.

2.3 Requirements
We now formulate the requirements for scalable cRA in large
and dynamic Pub/Sub IoT networks.

Heterogeneity: Targeted Pub/Sub IoT networks may include
heterogeneous devices with diverse hardware and software

USENIX Association 31st USENIX Security Symposium 3487

capabilities. For instance, they may range from simple temper-
ature sensors to more complex devices such as street cameras.
The heterogeneity requirement is hard to fulfill; only two cRA
schemes [36, 58] support heterogeneous networks.

Scalability: As IoT networks grow in size, complexity and
sophistication do. The ideal cRA scheme should efficiently
handle thousands of devices. While some prior schemes
consider scalability, they either target specific settings rely
on additional trust assumptions or do not scale to large
networks. In particular, although some one-to-many cRA
schemes [12,17,30,31,34,57] scale well, they attest the state
of the entire network at once, thus imposing high overhead
on all devices during attestation. Such schemes do not apply
to settings that require trust establishment with individual
devices. Some many-to-many schemes, e.g., [43], only scale
to networks up to 1,000 nodes. Moreover, some allegedly
scalable techniques, e.g., [13, 47], impose additional trust as-
sumptions, such as mutually trusted Verifiers [13] or trusted
blockchain miners [47].

On-demand Attestation: We need on-demand attestation of
individual devices in Pub/Sub IoT networks. Although this
requirement is trivially satisfied by one-to-one RA schemes, it
does not scale to large networks [7,36,43]. Whereas, scalable
RA schemes, e.g., [12, 17, 30, 31, 34, 57], do not support attes-
tation of individual devices, and it seems difficult to amend
them to support this feature.

Asynchronous Communication: The cRA scheme must ac-
commodate Pub/Sub networks, where the Verifiers and Pro-
vers communicate asynchronously, via untrusted brokers. To
the best of our knowledge, no current cRA scheme can be
easily applied to such networks.

Sleeping/Disconnected Devices: As mentioned before, IoT
devices use sleep mode to save energy or disconnected be-
cause of other reasons. A sleeping or otherwise disconnected
device can not take part in direct challenge-response attesta-
tion. This aspect was not explored previously and, to the best
of our knowledge, all prior cRA schemes assume permanent
availability of Provers for attestation purposes.

Configuration Updates: In a large, dynamic, and heteroge-
neous IoT network, a cRA scheme must consider periodic
software updates and provide an efficient and secure mech-
anism to commit new reference measurements. Most prior
schemes only support static software configurations. The only
exception is SAFEd [58] which includes a separate (though
quite costly) mechanism to support updates.

Untrusted Brokers: Large Pub/Sub IoT networks rely on
brokers to mediate communication. These brokers are third
parties, and a cRA scheme must consider potential malicious
brokers altering communication between Prover and Verifier.

3 Design

In this section, we present the design of SCRAPS. The key
idea is to delegate the role of the single trusted Verifier to
an untrusted proxy, which helps attest Provers on behalf of
Verifiers. We instantiate this proxy as a smart contract, which
is: (i) always online, i.e., does not sleep or become discon-
nected, and (ii) consolidates all attestation requests for a given
Publisher. This general approach mitigates the challenges
identified in Section 2.2. It also gives us the freedom to use
multiple RA schemes (hardware-based, software-based, and
hybrid), thus supporting heterogeneity of IoT platforms and
attestation types. Overall, SCRAPS satisfies all requirements
formulated in Section 2.3. A detailed comparison with the
related work is provided in Section 7.

3.1 System and Adversary Model

We consider a dynamic Pub/Sub IoT network, which may
include thousands of heterogeneous (in terms of hardware
and/or software) IoT devices: Publishers and Subscribers.

Use Case. Our sample scenario is an IoT-based Air Qual-
ity Decision Support System (AQDSS) [10, 42, 51], wherein
smart city citizens are encouraged (e.g., for a fee) to deploy in-
door and outdoor sensors (Publishers). Readings are reported
to research institutions, companies, and others (Subscribers)
to monitor and estimate the Personal Air Pollution Exposure
(PAPE) of an individual. Since trustworthiness of collected
data is vital, Subscribers use RA to attest Publishers.

All Publishers are produced by Manufacturers, who are
trusted to produce non-malicious devices (hardware and soft-
ware) and provide information about non-malicious hard-
ware and software configurations. This trust assumption is
typical for all RA schemes1. Manufacturers establish and
maintain Manufacturer’s SC, their own smart contract on the
blockchain/ledger, which serves as a public bulletin board
where trustworthy configurations of manufactured IoT de-
vices are published. We also assume that Publishers and Sub-
scribers are mutually untrusted.

All Publishers act as RA Provers, while all Subscribers
also act as Verifiers. This is because Publishers must assure
Subscribers, that the services they provide and the data they
publish come from a trustworthy entity. However, Verifiers
do not engage with Provers directly. Instead, verification is
performed by a smart-contract-based ProxyVerifier, on their
behalf. ProxyVerifier runs atop a blockchain/distributed ledger
that uses a mitigation mechanism against DoS attacks that
flood the smart contract with excessive queries.

To accommodate devices that sleep and/or become discon-
nected, the IoT network uses asynchronous communication,

1Mistrusting Manufacturers would require each IoT device owner to
analyze every deployed hardware and software component or even develop
their own, which is highly impractical

3488 31st USENIX Security Symposium USENIX Association

Blockchain/Ledger

(1
a)
 U

pl
oa
d
Pu

bl
ish

er
‘s

Co
nf
ig
ur
at
io
n

Manufacturer

Broker

(4
) Q

ue
ry
 S
ta
te

(2) Registration

Subscriber/
Verifier

Publisher/
Prover

Manufac‐
turer’s
Smart

Contract

ProxyVerifier
Smart

Contract(3b) Fetch Prover’s
Configuration

(3a) Attestation

(1b) Deploy
attestation
scheme

Figure 2: SCRAPS Architecture

mediated by untrusted Brokers that act as drop-boxes. Read-
ings generated by a Publisher are sent to a Broker which
filters, and distributes them correctly to the Subscribers. Sim-
ilarly, Brokers mediate communication between Publishers
and blockchain/ledger and are responsible for routing trans-
actions, queries, and their results. Communication between
Subscribers and the blockchain/ledger is not mediated by Bro-
kers. A Subscriber interacts with several blockchain nodes to
ensure the integrity of its query results.

Adversary Model. We denote the adversary by ADV . At
the network layer, we consider the Dolev-Yao ADV that can
overhear, intercept, alter and concoct any number of messages
and is only constrained by underlying cryptographic tech-
niques. Moreover, ADV can generate artificial data and, e.g.,
receive payments for them without investing in real IoT de-
vices. Furthermore, ADV can compromise any Broker and
Subscriber/Verifier.

We further assume that the smart contract-based entity,
ProxyVerifier inherits all trust assumptions of the underlying
blockchain. For instance, Proof-of-Work (PoW) blockchains
(such as Ethereum) assume trustworthiness of at least 50% of
the computing power in the blockchain network, while ledgers
that rely on PBFT consensus [19], e.g., Hyperledger [1]), as-
sume that at least [(n− 1)/3] validator nodes are not com-
promised. We also assume that the ADV requires at least
a minimal time Tmin to compromise the device, i.e., we as-
sume the device to be in the benign state for time Tmin after
successful attestation.

Device Assumptions. We assume that ADV can compro-
mise any Publisher/Prover except for the trust anchor. This as-
sumption is inherited from one-to-one RA schemes that serve
as a building block for cRA schemes. We provide a more
elaborate discussion about one-to-one RA in Appendix A.
Physical attacks, such as device capture and hardware tam-
pering, are out of the scope of this work; this is a typical
assumption in most RA and cRA schemes. The only excep-
tions are [30, 34, 35], which detect device capture attacks and

hardware tampering by using absence detection (heartbeat)
protocols that require devices to be available at all times.

3.2 Design Challenges

We had to address the following design challenges in order to
instantiate ProxyVerifier in a smart contract.

As mentioned earlier, one-to-one RA schemes typically
rely on synchronous communication between Prover and Ver-
ifier. Smart contracts, however, cannot engage in synchronous
communication. Instead, one can only query the state of the
blockchain and modify its state by sending transactions. To
address this, we modify the regular flow of the RA proto-
col such that Prover actively interacts with ProxyVerifier and
queries it for any pending updates.

The second challenge occurs because in RA schemes,
Prover current state is captured by computing an RA evi-
dence as a MAC (usually realized as a keyed hash) over its
memory, which requires each Prover and Verifier to share a
unique symmetric key. This approach cannot be leveraged
by the ProxyVerifier in SCRAPS, as smart contracts do not
offer secrecy and, hence, cannot hold the key privately. To
address this issue, we substitute a keyed hash function with
a public key-based digital signature. Although a signature is
computationally more expensive than symmetric MAC, this
approach has the following advantages: (1) it saves Prover
having to receive multiple (potentially many) RA requests
which means bandwidth savings; (2) makes it resistant to
DDoS attacks by a multitude of malicious verifiers; and (3)
makes it possible for anyone to later determine Prover state
at the time since the signature is included in the blockchain.
However, we acknowledge that the use of signatures may be
prohibitive for very resource-constrained devices.

The third challenge is how to ensure freshness of attestation
evidence computed and returned by Prover, which is normally
achieved via a random nonce provided by the Verifier and
included in Prover computation. However, ProxyVerifier can
not provide such a nonce, since the blockchain has no reliable
source of randomness. To overcome this hurdle, we use the
block ID (i.e., its hash) of the most recent block as a freshness
nonce. This allows us to attain freshness at the granularity of
blocks, which suffices for enabling one RA execution (for a
given Prover) per block.

3.3 SCRAPS Phases and Workflows

The architecture of SCRAPS is shown in Figure 2. Like many
similar systems, SCRAPS has pre-deployment and operational
phases. For brevity, Figure 2 only depicts the workflows of
the operational phase.

USENIX Association 31st USENIX Security Symposium 3489

3.3.1 Pre-deployment Phase

Manufacturer: In a pre-deployment phase, Manufacturer es-
tablishes its presence by deploying its own Manufacturer’s
SC on the ledger to publish information about its IoT devices.
Manufacturer’s SC provides read access of stored information
to other entities in the system and keeps write access exclu-
sive. Each modification of the information stored in the smart
contract is triggered by a transaction, which is signed using
Manufacturer private key.

IoT Network Creation: To create the IoT network, one needs
to publish ProxyVerifier smart contract. This task can be per-
formed by a network administrator or any other untrusted
entity. To establish confidence in the correctness of Proxy-
Verifier functionality, the code of the smart contract is made
open-source and available for verification by other entities.

3.3.2 Operational Phase

The operational phase begins after the pre-deployment phase
and includes four stages/workflows: (1) Prover configuration;
(2) Prover registration, (3) attestation, and (4) query.

Prover Configuration: Manufacturer configures its IoT de-
vices and publishes their configuration in Manufacturer’s SC
(step 1a in Figure 2). Prover configuration includes a triple:
{Model,RAtype,Frel(t)}. Model is the configuration informa-
tion for the specific IoT device model; it includes all reference
Measurement (M) for that device. Note that Model is only re-
quired for attesting Provers (Publishers). Manufacturers do
not provide analogous information for Verifiers (Subscribers).
However, both Prover and Verifier can be instantiated on one
device.

When Manufacturer produces a new Prover model, it es-
tablishes a trust anchor and deploys a suitable RA scheme,
denoted as RAtype; see Appendix A for an overview of RA
schemes. Manufacturer also specifies the attestation reliabil-
ity function Frel(t) which reflects how long the positive RA
evidences (for this IoT device model and this RA scheme)
remain valid2. This function determines the probability of
the device remaining in a benign state during time t after
the last successful attestation. Inspired by LegIoT [43], we
define the attestation reliability function Frel(t) that outputs
the reliability score SR ranging from 0 to 1, which is defined
in Equation 1.

Frel(t) =


1, if t ≤ Tmin

f (t), if t > Tmin & t ≤ Texp

0, otherwise
(1)

Tmin is the minimum time for an attacker to compromise a
given device model. It defines the time period with a reliabil-

2There could be multiple reliability functions defined per device model, to
allow more flexibility for different network settings and application scenarios.
We leave this detail out for brevity.

Figure 3: Reliability Function [f (t) = −0.01 ∗ t +
2 with Tmin = 100 and Texp = 160]

ity score of 1 upon a successful attestation. Thereafter, f (t)
defines the score as it gradually decreases, reaching 0 at time
Texp. A sample reliability function is shown in Figure 3.

In addition to provisioning Prover with an appropriate RA
scheme during production, Manufacturer provisions Prover
trust anchor with a unique private signing key SK along with
the address of Manufacturer’s SC on the blockchain. The pri-
vate key is assumed to be only available to trusted (atomically
executed, uninterruptible and immutable) RA code (Step 1b).

Note that device configuration can be updated by the Manu-
facturer as needed by repeating Step 1a, e.g., whenever a new
software version for a given platform is released.

Prover Registration: Once deployed, Prover registers with
the blockchain using its public key PK (Step 2). Thereafter,
the authentication and integrity of each transaction, sent by
Prover, is verified by the blockchain or ledger before it reaches
ProxyVerifier. The latter uses PK as a unique identifier for
Prover to map to attestation RA evidences. The registration
process varies depending on the selected blockchain/ledger.
Permissioned blockchains (like Hyperledger Sawtooth) re-
quire adding PK to its access control list for Prover to sub-
mit transactions. In permissionless blockchains (such as
Ethereum), Prover simply announces itself by querying Proxy-
Verifier.
Attestation: The attestation process (Steps 3a and 3b in Fig-
ure 2) takes place between ProxyVerifier and Prover, via Bro-
ker. The protocol is depicted in Figure 4. The main task of
Broker is to filter all incoming messages and correctly dis-
tribute them to subscribers (blockchain and devices). This is
omitted from the flow diagram for simplicity.

In case of initial attestation, Prover queries the ledger for
the ID of the last written block. In case of subsequent attes-
tations, ProxyVerifier receives a query from Prover inquiring
about any pending requests (Step 1). If any exists, Prover re-
ceives the ID of the last block as a reply (Step 2). Once Block
ID is received, Prover executes stdAttest to compute a mea-
surement Meas (e.g, by computing a hash over its memory)
and then builds a new transaction AttestTX. The body of the
transaction includes: Meas, Block ID, PK, and the address of
Manufacturer’s SC, while the header includes a signature over

3490 31st USENIX Security Symposium USENIX Association

Figure 4: Attestation Flow

the body generated using SK. AttestTX is then submitted as
RA evidence to ProxyVerifier (Step 3).

The latter interacts with the Manufacturer smart contract
and retrieves M and Frel(t) by requesting configuration infor-
mation of the Prover using provided address (Steps 4 and 5),
and evaluates the evidence.

During verification, the provided measurement Meas and
Block ID are extracted from the transaction AttestTX. If Meas
matches M, ProxyVerifier also verifies Block ID by applying
Frel(t) to the time difference between the last block added to
the blockchain and the submitted Block ID.

If both checks pass, Prover status is changed to "attested",
and "untrusted" otherwise. The provided Block ID is stored
as the timestamp of the last valid attestation. ProxyVerifier
does not verify integrity of the transaction – this check is
performed by blockchain validators, and, in case of failure,
the transaction is not delivered/processed by ProxyVerifier.

We note that the attestation protocol is initiated by Prover.
Hence, it can be easily applied to sleeping Provers. Upon
wake-up, the Prover performs the steps described above before
going into sleep mode again. After successful attestation, the
trust status of Prover becomes accessible to every Subscriber
even if the Prover device is sleeping again.

Query: ProxyVerifier can be queried about the state of any
registered Prover (Step 4 in Figure 2). Such queries can be
submitted by either Prover itself, as described above, or Veri-
fier, through a signed transaction QueryTX including Prover
PK (Steps 7-8 and 9-10).

In this case, Algorithm 1 shows how ProxyVerifier computes
Prover state. As input, it receives ProverID – a hash of Prover
PK. There are 4 cases: (1) if no RA evidence is reported yet
(line 2), ProxyVerifier sets a flag for Prover to indicate that

attestation request is pending, and returns "pending"; (2) The
same happens if the last RA evidence from Prover is valid but
expired (line 17), (3) If last submitted RA evidence is valid
and unexpired (line 12), ProxyVerifier returns the score based
on the reliability function described earlier; and (4) If the last
submitted RA evidence is invalid (line 5), the "pending" flag
is also set and the state returned to Verifier is "untrusted".

Algorithm 1 Calculation of Status
Require: proverID

trustStatus← getTrustStatus(proverID)
if (trustStatus = ”NULL”) then

setRequest(proverID)
return "pending"

else if (trustStatus = ”untrusted”) then
setRequest(proverID)
return "untrusted"

else
timestamp← getTimestamp(proverID.Block_ID)
currentTime← getTimestamp(lastBlock.Block_ID)
t← currentTime− timestamp
if (t ≤ proverID.Tmin) then

return "trusted"
else if (t > proverID.Tmin ∧ t < proverID.Texp) then

riskScore← f (t)
return riskScore

else
setRequest(proverID)
return "pending"

end if
end if

The proposed SCRAPS design addresses all challenges
discussed in Sections 2.2 and 3.2. It copes with asynchronous

USENIX Association 31st USENIX Security Symposium 3491

communication since the ProxyVerifier mediates the attesta-
tion process. Attestation requests are stored and aggregated
to protect sleeping devices from DoS attacks while allowing
them to attest once awake and to do so only once since pub-
lic key signatures are used instead of symmetric MACs. The
design also ensures the freshness of RA evidences.

4 Prototype Implementation

This section describes SCRAPS prototype implementation.
Its key components are: ProxyVerifier, Prover, and Verifier.
Implementation of ProxyVerifier is based on Sawtooth Hyper-
ledger framework to instantiate the blockchain. Both Prover
and Verifier functionalities are included in a single IoT client.
To demonstrate support for heterogeneous devices, two ver-
sions of SCRAPS client were implemented for two different
IoT devices. We did not implement any Brokers, since any
standard Broker provided by third parties can be utilized.

Hyperledger. We selected Hyperledger Sawtooth as a
blockchain framework. Being part of Hyperledger framework,
Sawtooth is developed and maintained by the Linux Foun-
dation. Unlike Bitcoin or Ethereum, Sawtooth represents a
private blockchain and thus neither provides its own cryp-
tocurrency nor introduces any transaction fees. The technol-
ogy and modularity of Hyperledger Sawtooth simplify the
development process by separating the core system from the
application domain. Its core design allows applications to
choose the transaction rules, govern access permissions, and
select consensus algorithms.

In Hyperledger, each application defines custom transaction
families for its requirements. A transaction family includes
the following components: (1) A transaction processor (TP):
equivalent to the smart contract that defines the business logic
for the application; (2) a data model to record and store data;
(3) a client to generate and submit transactions.

The ledger is initialized with 3 native TPs. The first one,
Settings TP, stores on-chain configuration settings. Particu-
larly, several parameters are set to activate a backpressure
mechanism, a form of DoS protection, defining a threshold
for allowed transactions, submitted by the same transactor,
and a punishment period if the threshold is exceeded. The sec-
ond one, Identity TP, collaborates with Settings TP to handle
on-chain access permissions for validators (blockchain nodes)
and transactors based on signing keys. The third one, Block-
Info TP, provides an interface to store and retrieve information
about a configurable number of historic blocks.

Each validator node is equipped with an MQTT middleware
that: (1) communicates with Broker, (2) translates transactions
received from MQTT to API calls, and (3) converts the results
after retrieving them from the receipt store3.

3Sawtooth provides a receipt store to save information related to the
transaction execution, e.g., how the transaction changed the global state
and/or events of interest that occurred during transaction execution.

Manufacturer and Manufacturer SC. Manufacturer’s SC is
realized through a transaction family – it is provided as a TP
that handles received transactions and stores the configuration
data of produced models. The implementation consists of
97 LoC in Python. The Manufacturer’s client is responsible
for the generation of signed transactions, with configuration
information, and submitting them to the TP. It is implemented
in Python with 256 LoC and uses Concise Binary Object
Representation (CBOR) [15], Google Protocol Buffers [28]
and Secp256k1 as a signature algorithm.

ProxyVerifier The ProxyVerifier’s TP is implemented in
Python and contains 632 LoC. Several libraries are used,
such as Google’s Protocol Buffers and CBOR. Sawtooth uses
an addressable Radix Merkle tree to store data for transaction
families. Thus, ProxyVerifier retrieves the current global state
of the blockchain. Up-to-date information stored by other TPs
can be then be read using their addresses from BlockInfo TP.
This includes information about the last and previous blocks,
i.e., their IDs and the timestamps when they were written. In
the same fashion, the device model configuration is acquired
from the manufacturer’s TP.

IoTClient. We chose to build an IoTClient that combines
Prover/Publisher and Verifier/Subscriber functionality to coex-
ist within one platform. It consists of functionality to create
three transaction types (CheckReq, QueryState, and Attestt)
needed during the operational phase of SCRAPS and standard
attestation stdAttest functionality to compute Meas.

To instantiate the IoTClient, we chose 2 commercially
available devices: ATmega1284P-Xplained from AVR and
LPC55S69-EVK evaluation board from NXP. The former rep-
resents a typical IETF Class-1 [14] IoT device, while the latter
has a secure hardware component in form of ARM TrustZone.

LPC55S69-EVK is a 32-bit MCU equipped with an ARM
Cortex M-33 processor with TrustZone which runs at the max-
imum frequency of 150MHz and provides up to 640KB flash
memory with 320KB SRAM. TrustZone enables a Trusted Ex-
ecution Environment (TEE) by splitting hardware resources
into two separated protection domains, called normal and
secure world. The processor can switch between the two
worlds and execute in either, with normal world software be-
ing blocked from directly accessing secure resources. The
implementation of IoTClient for this device is written in C and
consists of 26600 LoC. It includes three components: (i) Non-
Secure Application, (ii) Secure Application, and (iii) Secure
Gateway. The non-secure application provides the required
functionalities to communicate with the blockchain and other
devices. Prover uses MQTT client, while Verifier uses HTTP
library to submit API calls to blockchain nodes. The secure
gateway offers an interface to call the attestation code from
within the secure world.

The secure application initializes TrustZone and configures
memory protection to secure sensitive data, such as attestation
keys and code. The latter consists of a standard attestation

3492 31st USENIX Security Symposium USENIX Association

functionality that computes the hash over the non-secure mem-
ory, and extra functionalities for computing the signature and
building transactions that satisfy ledger’s and ProxyVerifier’s
requirements.
ATmega1284P-Xplained is an 8-bit MCU running at the
maximum frequency of 20MHz, with 16KB SRAM and
128KB of flash memory. Since it does not provide any hard-
ware security features, we selected the SµV security micro-
visor [21] – a virtualization-based security middleware that
provides same security features as hybrid attestation schemes
while being implemented purely in software and incurring
minimal performance overhead. The implementation of the
IoTClient consists of 8094 LoC of C, including (i) non-secure
Application, (ii) secure application that provides functionality
to fulfill SCRAPS client workflow, and (iii) SµV secure mi-
crovisor. The non-secure application reads input from UART
and passes it to the secure application. The latter provides the
functionalities required to compute attestation measurement
and build the transactions. SµV protects the secure application
and the private key from unauthorized access.

5 Evaluation
In this section, we evaluate SCRAPS’s performance over-
head and scalability. Performance evaluation is based on the
prototyped testbed. To estimate scalability, we use simulation-
based approach and compare to LegIoT [43], the state-of-the-
art cRA scheme for many-to-many attestation in IoT networks
which has an open-source implementation4.

5.1 Performance Evaluation

The performance of the overall system is highly dependent
on network transmission delays. Ignoring that, we can break
down the remaining factors into (1) Performance of IoTClient,
and (2) transaction processing speed of ProxyVerifier.

ProxyVerifier. Table 1 shows the average execution time of
the smart contract on a validator node, which runs Linux
Ubuntu 18.04 LTS on an Intel Xeon E-2186G CPU with 64
GB RAM. The smart contract provides three functions to
handle incoming transactions, denoted as actions. During the
simulation, we executed every action 100 times directly on
the validator node and recorded the execution time. For every
incoming transaction, the ProxyVerifier decodes the CBOR
binary data and checks the senderID. CheckReq requires the
ProxyVerifier to query the blockchain global state for pending
attestation requests for the given senderID. For QueryState,
the ProxyVerifier executes algorithm 1 and returns the status.
The most time-consuming action is Attest, since ProxyVerifier
has to validate the included RA evidence as well as the times-
tamp and store the corresponding trust status.

4To the best of our knowledge, no other many-to-many RA schemes are
available as open-source.

IoTClient. To evaluate performance of IoT clients, we focus
on Prover and Verifier functionalities, both on the LPC55S69-
EVK and the ATmega1284P-Xplained platforms. Though
main steps are the same for both devices, LPC55S69-EVK
uses its TrustZone, e.g., for switching between secure and nor-
mal worlds, while ATmega 1284P relies on a purely software-
based approach. Runtimes for both IoTClients are shown in
Table 1. The table leads us to two observations: (i) LPC55S69
substantially outperforms ATmega in every action, and (ii) un-
derlying RA functionality stdAttest has by far the longest run-
time, while those introduced by SCRAPS (CheckReq, QueryS-
tate and Attest) are nearly equal on respective devices. The
former (i) is expected since LPC55S69 has substantially faster
hardware than ATmega.Observation (ii) shows, that using
SCRAPS only increases the attestation overhead by about
15% in comparison to using standard RA (stdAttest) without
SCRAPS.

5.2 Scalability Evaluation
We now evaluate scalability of SCRAPS and compare it
against LegIoT [43]. While being designed with scalabil-
ity in mind, LegIoT does not address challenges of Pub/Sub
protocols discussed in Section 2.2. It uses indirect trust rela-
tionships to build and maintain system-wide trust information.
To store and manage the information, LegIoT utilizes Dis-
tributed Ledger Technology. At its core is a smart contract
that implements a graph enlargement algorithm, which adds
new trust links to the system.

5.2.1 Preliminaries

LegIoT utilizes HitPercentage and trustQueryRate as main
evaluation metrics. To enable a fair comparison, we use simi-
lar metrics in our evaluation.

HitPercentage: indicates how much the system benefits from
the previously conducted attestation instances. It is defined
as:

HitPercentage =
queryStateHit

queryStateHit +queryStateMiss
∗100 (2)

Here, queryStateHit denotes the case where, after Verifier’s
request, a valid (correct and timely) RA response from Prover
is available and no further action is required from Prover.
Whereas, queryStateMiss refers to what happens otherwise:
a fresh/new RA instance is required from Prover. Both trust-
QueryHit and trustQueryMiss, are used interchangeably in
[43].
Parameters: HitPercentage is influenced by several parame-
ters. (Unless otherwise specified, we use the same parameters
as in [43].) The first parameter is the network size N ranging
from N = 100 to N = 25000 to show that performance of
SCRAPS does not degrade significantly even for large net-
works. The second, denoted by queryStateRate, determines

USENIX Association 31st USENIX Security Symposium 3493

Action ProxyVerifier IoTClient IoTClient
LPC55S69 - EVK ATmega 1284P

CheckReq 9.5 ± 0.0003 ms 355.0 ± 0.271 ms 5709.5 ± 0.024 ms
QueryState 19.7 ± 0.0013 ms 356.5 ± 0.493 ms 5711.9 ± 0.011 ms

Attest 26.2 ±0.007 ms 357.8 ± 0.43 ms 5647.6 ± 0.168 ms
stdAttest —- 1751.3 ± 8.533 ms 34499.8 ± 0.006 ms

Table 1: Average Run-Time & Standard Deviation of ProxyVerifier and IoTClient

the number of devices that QueryState of another device ev-
ery iteration5. We used three queryStateRates ranging from
N/2 to N/10 to demonstrate how the network benefits from
re-using RA evidences.

For LegIoT simulations, we used a securityParameter of
6 and a minReliability of 0.8. The securityParameter defines
the maximum length of the trust path in LegIoT and has no
counterpart in SCRAPS. One can say that SCRAPS has a fixed
path length of two, because all information flow between the
Prover and Verifier is mediated by ProxyVerifier. In LegIoT,
trust relations are transitive. With minReliability, Verifier can
define the lowest risk score of a potential path. SCRAPS does
not use it since there is a fixed path length and ProxyVerifier
computes the risk score according to Prover configuration.

The reliability function we use is based one the time func-
tion f (t) defined in Equation 3 and the values Tmin = 300s and
Texp = 600s.

f (t) =−0.0006666667∗ x+1.2 (3)

For the sake of fair comparison, we used the same values for
f (t), Tmin and Texp as in LegIoT evaluation.

5.2.2 Evaluation Scenarios

We conducted four evaluation scenarios: (1) Duration of
warm-up phase, after which the system effectively benefits
from prior RA evidences; (2) HitPercentage, which indicates
how effectively the system reuses prior RA evidences; (3) how
soon hit rate of 100% is achieved, which demonstrates the
effectiveness of both systems and (4) the maximum possible
queryState rate, stating processing capability of the system.

Warm-up Phase: In both systems, no RA evidences are
stored in the blockchain right after deployment. Thus, the rate
of queryStateMisses remains high until a certain numer of
AttestTX transactions are submitted. We consider the system
to be in the warm-up phase until a HitPercentage of 70%
is reached. Figure 5 plots warm-up phases of LegIoT and
SCRAPS with parameters defined in Section 5.2.1. Within
every iteration, N/2 queries are submitted, and hit rate is
measured at the end. Results show that SCRAPS remains
nearly constant for up to 25,000 devices, while LegIoT shows
a significant increase.

Hit Rate Comparison: In the second scenario, we compare
the overall hit rate for various query rates. To ensure that the

5It is equivalent to trustQueryRate in LegIoT

Figure 5: Duration of warm-up phases (X-axis in log scale)

operational phase is not influenced by the warm-up phase,
every simulation was executed five times, for 1,200s for ev-
ery run and the average of all five runs is reported. Figure 6
reflects hit rates of both systems for three query rates. It is evi-
dent that SCRAPS has a higher hit rate than LegIoT in almost
every scenario. This shows that SCRAPS requires fewer RA
instances during the operational phase and is, therefore, more
efficient and scalable.

Figure 6: Comparison of hit rates for various query rates
(X-axis in log scale)

Time to Reach 100% Hit Rate: Both schemes reach the
peak of utility when there are sufficiently many valid RA evi-
dences to answer queries without additional RA instances, i.e.,
when 100% hit rate is achieved. During this simulation, we
explore how many iterations it takes for LegIoT and SCRAPS

3494 31st USENIX Security Symposium USENIX Association

to achieve it. Results are in Figure 7. They are not complete
for LegIoT for network sizes of over 1,000 because we set the
maximum number of iterations to 9,999 and LegIoT never
reaches 100% hit rate during this period for N > 1,000.

Figure 7: Iterations until 100% hit rate (X-axis in log scale)

Maximum Query Rate Comparison: In this simulation,
N/2 queries are submitted every second to measure how many
are processed in one second. Results indicate that the addi-
tional overhead to build and maintain the graph of LegIoT sig-
nificantly influences its performance, while SCRAPS works
without any bottlenecks even for 25,000 nodes. Therefore,
even in very large networks, SCRAPS most likely does not
encounter any scalability limitations.

Figure 8: Maximum Query Rate (X-axis in log scale)

Based on our measurements and simulations, it is clear that
SCRAPS outperforms LegIoT in all tests and, hence, improves
the overall scalability. While LegIoT works well for networks
of up to 1,000 nodes, it shows substantial weaknesses for
larger networks. Meanwhile, SCRAPS operates without any
performance penalties in networks of up to 25,000.

6 Security Analysis

This section offers an informal security analysis of SCRAPS
by considering possible attacks and discussing their impact
and mitigation. We exclude any security weaknesses of un-
derlying technologies, including distributed ledgers, secure
hardware, and cryptographic primitives.

Denial of Service (DoS) Attacks: Possible DoS attacks in-
clude delaying or dropping attestation requests/responses.
These attacks can be mounted by any entity between IoT
device and the rest of the world, such as a malicious broker,
access point, or router. No proposed scheme considers DoS
attacks since they go beyond the scope of RA and require
distinct countermeasures, e.g., monitoring and detection.

Other types of DoS attacks may target Prover or Proxy-
Verifier. If Prover is targeted, the attack is launched by a ma-
licious Verifier sending numerous attestation requests, thus
forcing one or more Provers to perform the expensive at-
testation process repeatedly. In a more elaborate scenario,
ADV , which controls many Verifiers, mounts the same attack
in a distributed fashion, i.e., DDoS. SCRAPS mitigates such
DoS/DDoS attacks by design, since all attestation requests are
mediated by ProxyVerifier. No matter how many attestation
requests are received by ProxyVerifier for a given Prover, only
one attestation process will be triggered per block ID.

In the second scenario, ADV targets ProxyVerifier. While
some blockchains, such as Bitcoin, avoid DDoS attacks be-
cause each transaction requires spending digital currency,
Sawtooth applies backpressure – a flow-control technique
to reject unusually frequent client submissions. Parameters
for this technique are set during the initialization phase, as
discussed in Section 4.

Replay Attacks: ADV can record valid RA evidence of be-
nign Prover before compromising it. Later on, the attacker
publishes the recorded RA evidence, hoping for Prover to
remain trusted. However, every AttestTX message is cryp-
tographically bound to a unique block ID provided by the
blockchain. Since the blockchain keeps a record of the times-
tamp when the respective block is written, ProxyVerifier com-
putes the reliability score of the RA evidence starting from
that timestamp. Therefore, the attacker gains nothing with
this attack.

Predictable Block IDs: If ADV could predict a future block
ID, it could feed this ID to a benign Prover to generate
valid RA evidence. Afterward, ADV would compromise
this Prover, wait until the predicted block ID appears on
the blockchain, and submit the previous RA evidence. ADV
could thus convince Verifiers that a currently compromised
Prover is in a benign state. This attack vector is not viable,
since block IDs are unpredictable and provide sufficient en-
tropy. Their randomness is influenced by two factors. First,
the consensus mechanism determines the blockchain node
allowed to write the new block. Second, IDs of executed

USENIX Association 31st USENIX Security Symposium 3495

batches/transactions are included in its computation, whether
it is a header hash (as in Bitcoin), or a signature of that hash
(as in Hyperledger).

Message Integrity: ADV that resides on the network or con-
trols the non-secure application of a Prover, may alter or forge
the RA evidence. However, each Prover signs every RA evi-
dence with its unique SK stored in secure memory accessible
only to trusted attestation code. Since we assume correctness
and security of the underlying signature scheme, altered or
fake RA evidence is detectable since ledger validators verify
the signature of each submitted RA evidence (before forward-
ing to ProxyVerifier) using Prover’s PK. Similarly, integrity
of configuration updates is assured. The new configuration
is submitted by the Manufacturer to Manufacturer’s SC using
a transaction signed by its private key. Furthermore, write
access to Manufacturer’s SC is exclusive to the Manufacturer,
as discussed in Section 3.3.

Malicious Brokers: ADV that compromises a Broker can
feed a victim Prover an old or otherwise fake block ID, caus-
ing Prover to produce invalid RA evidence. Such a RA evi-
dence would not be accepted by ProxyVerifier. However, this
can result in substantial DoS, since a malicious Broker can
do the same to all of its Provers, collectively wasting a lot of
resources. Similarly, blockchain validators would waste time
verifying numerous invalid RA evidences. In SCRAPS, the
impact of this attack vector is limited since communication
with the Broker is initiated by Provers.

Impersonation During Registration: An actual IoT device
cannot be impersonated, since registration transactions are
signed with its unique secret key. Of course, an ADV con-
trolling Broker or another IoT device, can generate its own
key-pair and successfully register the public key. However,
the subsequent attestation would fail since there is a binding
between attestation statement and the registered key.

7 Related Work

In this section, we overview RA schemes of various flavors.
One-to-Many cRA Schemes enable a single Verifier to effi-
ciently attest multiple interconnected Provers. In most cases,
a spanning tree rooted at Verifier is used to propagate and
aggregate attestation messages.

The first such scheme, SEDA [12], uses secure hop-by-hop
aggregation of RA evidences. Verifier initiates the process by
broadcasting an attestation request to Provers. As a response,
every Prover attests its children nodes and forwards the accu-
mulated RA evidences to its parent. In the end, Verifier checks
the status of all Provers by verifying only the last RA evidence.
This approach requires the participation and availability of ev-
ery Prover to forward accumulated RA evidences and thereby
do not work with sleeping devices.

LISA [17] and SeED [31] improve on SEDA. In LISA,

neighboring devices communicate to propagate RA evidences.
Also, Provers verify RA evidences of other Provers before for-
warding them, to prevent replay attacks. SeED [31] increases
efficiency and mitigates DoS attacks by allowing Provers to
self-initiate RA. Like SEDA, LISA and SeED do not work
with sleeping devices as they rely on availability of Provers.
DARPA [30] detects physically compromised devices by as-
suming that any physical attack must involve removing or
turning off the device for a non-negligible period of time. To
detect compromised (absent) devices, all Provers periodically
exchange heartbeat messages. SCAPI [34] is an improved
version of DARPA: it includes a leader that periodically gen-
erates and distributes secret session keys among all Provers.
To receive a new session key, Prover must be authenticated
with the previous key. DARPA and SCAPI require Provers
being available at all times to receive periodically exchanged
messages. Thereby, both systems cannot be applied to sleep-
ing devices.

SARA [22] can be characterized as one-to-a-few attes-
tation scheme for Pub/Sub networks. Publishers self-attest
upon request received from trusted Verifier, then propagate
their evidences to Subscribers, who in turn also self-attest,
concatenate their own RA evidence with the one received from
Publishers and submit it to Verifier for verification. As such,
attestation is limited to small IoT services only and requires
Subscribers to be awake soon after attestation by Publisher to
assemble and submit the final attestation evidence.

Stumpf et al. [57] propose three approaches to realizing
scalable cRA: (1) hashing together multiple requests into a
single one, (2) allowing Prover to self-attest for a given time-
slot, and (3) synchronize Prover and Verifier. None of these
approaches can be applied to networks with asynchronous
communication and sleeping devices, as (1) devices cannot
cooperate and (2)-(3) sleeping devices cannot be synchro-
nized. SALAD [35] is a cRA scheme designed for robustness,
achieved by distributing RA evidences among all devices. Dis-
tributing RA evidences among all devices does not apply to
networks with asynchronous communication and sleeping de-
vices. Rabbani et al. [50] introduced an edge computing layer
between the swarm of Provers and Verifier. Each edge Verifier
attests the underlying swarm in a spanning-tree topology and
forwards the RA evidences to root Verifier. This approach
cannot be applied to sleeping devices as the Verifier cannot
attest an underlying swarm of sleeping Provers. Additionally,
it imposes a single point of failure.

SANA [7] is a scalable cRA scheme that partitions Provers
into multiple subnetworks and aggregates RA evidences until
the entire network is attested. Final aggregated RA evidences
are publicly verifiable by multiple Verifiers. ESDRA [38] is
another cRA scheme that divides the network into clusters
according to the distance between devices. RA relies on a rep-
utation mechanism, which defines the reputation of Provers
based on their prior behaviors.

Bampatsikos et al. [13] proposed BARRETT, a blockchain-

3496 31st USENIX Security Symposium USENIX Association

Schemes Heterogeneity Scalability On-demand Asynchronous Sleeping Configuration Untrusted
Attestation Communication Devices Updates Broker

One-to-Many Protocols
SEDA [12], LISA [17] (X) X X X X X X
SeED [31] (X) X X X X X X
DARPA [30], SCAPI [34] (X) X X X X X X
SARA [22] (X) X X X X X X
Stumpf at al [57] X X X X X X X
Salad [35] (X) (X) X X X X X
Shela [50] (X) X X X X X X
BARRETT [13] (X) X X (X) X X X
SANA [7] (X) (X) X X X X X
ESDRA [38] (X) X X X X X X

Many-to-Many Protocols
PASTA [36] X X X X X X X
Safed [58] X (X) X X X (X) X
TM-Coin [47] X X X X X X X
LegIoT [43] (X) (X) X X X X X

SCRAPS X X X X X X X

Table 2: Comparison of Collaborative Attestation Schemes ((X) indicates only limited support)

based cRA scheme that uses a smart contract to prevent Com-
putational DoS (CDoS) and allowing BARRETT to trans-
mit RA requests from Verifier to Prover asynchronous. RA
evidence is still transmitted directly from Prover to Verifier,
hence asynchronous communication is only partially sup-
ported. The Verifier verifies the received RA evidence and
uploads the outcome to the blockchain. This implies that Veri-
fiers are mutually trusted or RA evidences cannot be reused
by other Verifiers. In SCRAPS, this impractical assumption is
eliminated, while similarly preventing CDoS.
Many-to-Many Attestation: Many-to-Many schemes pro-
vide RA evidences to multiple Verifiers.

Kohnhäuser et al. [36] proposed PASTA, a scheme that
spreads the burden of verification across the entire network.
In PASTA, Provers collaborate periodically to generate tokens
that embed the proofs of all participants. Provers unavailable
during token creation can be mistakenly considered mali-
cious. This implies that support for sleeping Provers is hard
to achieve. In contrast, SCRAPS has no such limitations.

Visintin et al. [58] proposed Safed , a decentralized RA pro-
cess that enables a pair of devices in a swarm to attest each
other without relying on an external Verifier. The system uses
chord protocol and multiple overlays to distribute and main-
tain attestation-relevant data. Unlike SCRAPS, this approach
relies on a specific network structure and requires direct de-
vice interaction during attestation. Therefore, it does not sup-
port asynchronous communication or sleeping devices. The
possibility of potential configuration updates is only briefly
discussed and not implemented nor evaluated but likely to
cause high overhead.

TM-Coin [47] uses blockchain as a trustworthy decentral-
ized database to store RA evidences. The miners perform RA
of a Prover, validate the received RA evidence and add the

result to the blockchain. Afterward, any Verifier that trusts the
miner that conducted the attestation can query the ledger and
receive the already verified RA evidence. SCRAPS does not
place any additional trust in miners.

LegIoT [43] is a decentralized attestation and trust manage-
ment framework that aims to decrease the number of required
RA instances by building trust relations across the whole net-
work. Trust relations are represented as a graph stored and
maintained by a distributed ledger. SCRAPS differs from
LegIoT in that it does not involve direct Prover-Verifier com-
munication and uses ProxyVerifier as an intermediary.

Table 2 summarizes related work and compares properties
of the current schemes with those of SCRAPS. It shows that
SCRAPS is the only scheme that satisfies all requirements
formulated in Section 2.3.

8 Conclusions

Motivated by the need to improve the scalability of
cRA in large Pub/Sub IoT networks that feature battery-
powered, often-disconnected and sleeping devices, we pro-
pose SCRAPS, a new cRA scheme that is a blend of one-to-
many and many-to-many approaches that inherit advantages
of both. It utilizes smart ledger technology to build a decen-
tralized ProxyVerifier– an entity which acts as a proxy and con-
ducts attestation on behalf of actual Verifiers. In comparison
to other cRA schemes, SCRAPS offers better scalability and
handles heterogeneous devices, while providing on-demand
attestation, support for the Pub/Sub networks, sleeping de-
vices and configuration updates.

USENIX Association 31st USENIX Security Symposium 3497

Availability

The prototype implementation of SCRAPS and evalua-
tion scripts are publicly available at https://github.com/sss-
wue/scraps.

Acknowledgments

The research team from Würzburg has been funded by the Fed-
eral Ministry of Education and Research of Germany (BMBF)
in the framework KMU-innovativ-Verbundprojekt: Secure In-
ternet of Things Management Platform - SIMPL [49] (project
number 16KIS0852).

G. Tsudik’s research was supported in part by funding from
NSF Awards SATC-1956393 and CICI-1840197, as well as a
subcontract from Peraton Labs.

References

[1] Hyperledger Sawtooth. https://www.hyperledger.
org/use/sawtooth. Accessed 12.10.2021.

[2] The standard for IoT messaging. https://mqtt.org/,
2020. Accessed 12.10.2021.

[3] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg,
Thomas Nyman, Andrew Paverd, Ahmad-Reza Sadeghi,
and Gene Tsudik. C-FLAT: Control-flow attestation for
embedded systems software. In ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
743–754, 2016.

[4] Mussab Alaa, Aws Alaa Zaidan, Bilal Bahaa Zaidan,
Mohammed Talal, and Miss Laiha Mat Kiah. A review
of smart home applications based on Internet of Things.
Journal of Network and Computer Applications, 97:48–
65, 2017.

[5] Muhammad Naveed Aman, Mohamed Haroon Basheer,
Siddhant Dash, Jun Wen Wong, Jia Xu, Hoon Wei Lim,
and Biplab Sikdar. HAtt: Hybrid remote attestation
for the internet of things with high availability. IEEE
Internet of Things Journal, 7(8):7220–7233, 2020.

[6] Muhammad Naveed Aman and Biplab Sikdar. ATT-
Auth: A hybrid protocol for industrial iot attestation
with authentication. IEEE Internet of Things Journal,
5(6):5119–5131, 2018.

[7] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim,
Gregory Neven, Ahmad-Reza Sadeghi, and Matthias
Schunter. SANA: Secure and scalable aggregate net-
work attestation. In ACM SIGSAC Conference on Com-
puter and Communications Security, pages 731–742,
2016.

[8] Moreno Ambrosin, Mauro Conti, Riccardo Lazzeretti,
Md Masoom Rabbani, and Silvio Ranise. Collective
remote attestation at the internet of things scale: State-
of-the-art and future challenges. IEEE Communications
Surveys & Tutorials, 22(4):2447–2461, 2020.

[9] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik.
Simple: A remote attestation approach for resource-
constrained IoT devices. In ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), pages
247–258, 2020.

[10] Keith April G Arano, Shengjing Sun, Joaquin Ordieres-
Mere, et al. The use of the internet of things for estimat-
ing personal pollution exposure. International journal of
environmental research and public health, 16(17):3130,
2019.

[11] Will Arthur, David Challener, and Kenneth Goldman.
A Practical Guide to TPM 2.0: Using the New Trusted
Platform Module in the New Age of Security. Apress,
USA, 1st edition, 2015.

[12] Nadarajah Asokan, Ferdinand Brasser, Ahmad Ibrahim,
Ahmad-Reza Sadeghi, Matthias Schunter, Gene Tsudik,
and Christian Wachsmann. SEDA: Scalable embedded
device attestation. In ACM SIGSAC Conference on
Computer and Communications Security, pages 964–
975, 2015.

[13] Michail Bampatsikos, Christoforos Ntantogian, Chris-
tos Xenakis, and Stelios C. A. Thomopoulos. BAR-
RETT blockchain regulated remote attestation. In
IEEE/WIC/ACM International Conference on Web In-
telligence Workshops (WI 2019 companion), pages 256–
262, 2019.

[14] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Ter-
minology for constrained-node networks. Internet Engi-
neering Task Force (IETF): Fremont, CA, USA, pages
2070–1721, 2014.

[15] Carsten Bormann and Paul E. Hoffman. Concise binary
object representation (CBOR). RFC, 8949:1–66, 2013.

[16] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza
Sadeghi, Christian Wachsmann, and Patrick Koeberl.
TyTAN: Tiny trust anchor for tiny devices. In
ACM/EDAC/IEEE Design Automation Conference
(DAC), 2015.

[17] Xavier Carpent, Karim ElDefrawy, Norrathep Rat-
tanavipanon, and Gene Tsudik. Lightweight swarm
attestation: A tale of two lisa-s. In ACM on Asia Confer-
ence on Computer and Communications Security, 2017.

3498 31st USENIX Security Symposium USENIX Association

https://github.com/sss-wue/scraps
https://github.com/sss-wue/scraps
https://www.hyperledger.org/use/sawtooth
https://www.hyperledger.org/use/sawtooth
https://mqtt.org/

[18] Claude Castelluccia, Aurélien Francillon, Daniele Per-
ito, and Claudio Soriente. On the difficulty of software-
based attestation of embedded devices. In ACM Confer-
ence on Computer and Communications Security, page
400–409, 2009.

[19] Miguel Castro, Barbara Liskov, et al. Practical byzantine
fault tolerance. In OSDI, volume 99, pages 173–186,
1999.

[20] Vinay Chamola, Vikas Hassija, Vatsal Gupta, and
Mohsen Guizani. A comprehensive review of the covid-
19 pandemic and the role of IoT, drones, AI, blockchain,
and 5G in managing its impact. IEEE access, 8:90225–
90265, 2020.

[21] Wilfried Daniels, Danny Hughes, Mahmoud Ammar,
Bruno Crispo, Nelson Matthys, and Wouter Joosen.
SµV - the security microvisor: a virtualisation-based
security middleware for the Internet of Things. In
ACM/IFIP/USENIX Middleware Conference: Industrial
Track, pages 36–42, 2017.

[22] Edlira Dushku, Md Masoom Rabbani, Mauro Conti,
Luigi V. Mancini, and Silvio Ranise. Sara: Secure asyn-
chronous remote attestation for iot systems. IEEE Trans-
actions on Information Forensics and Security, 15:3123–
3136, 2020.

[23] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. HYDRA: Hybrid design for remote attestation
(using a formally verified microkernel). In ACM Con-
ference on Security and Privacy in wireless and Mobile
Networks, pages 99–110, 2017.

[24] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. SMART: Secure and minimal ar-
chitecture for(establishing a dynamic) root of trust. In
NDSS, volume 12, pages 1–15, 2012.

[25] Bahar Farahani, Farshad Firouzi, Victor Chang, Mustafa
Badaroglu, Nicholas Constant, and Kunal Mankodiya.
Towards fog-driven IoT eHealth: Promises and chal-
lenges of IoT in medicine and healthcare. Future Gen-
eration Computer Systems, 78:659–676, 2018.

[26] DDS Foundation. Data distribution services. https:
//www.dds-foundation.org/. Accessed 12.10.2021.

[27] Google. Google cloud IoT - fully managed IoT ser-
vices. https://cloud.google.com/solutions/iot.
Accessed 12.10.2021.

[28] Google. Protocol buffers; google developers. https://
developers.google.com/protocol-buffers. Ac-
cessed 12.10.2021.

[29] Stefan Hristozov, Johann Heyszl, Steffen Wagner, and
Georg Sigl. Practical runtime attestation for tiny IoT de-
vices. In NDSS Workshop on Decentralized IoT Security
and Standards (DISS), volume 10, 2018.

[30] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik,
and Shaza Zeitouni. DARPA: Device attestation resilient
to physical attacks. In ACM Conference on Security
and Privacy in Wireless and Mobile Networks, page
171–182, 2016.

[31] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza
Zeitouni. SeED: Secure non-interactive attestation for
embedded devices. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pages 64–74,
2017.

[32] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel® software guard
extensions: Epid provisioning and attestation services.
White Paper, 1(1-10):119, 2016.

[33] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,
and Vijay Varadharajan. TrustLite: A security archi-
tecture for tiny embedded devices. In ACM European
Conference on Computer Systems, pages 1–14, 2014.

[34] Florian Kohnhäuser, Niklas Büscher, Sebastian Gab-
meyer, and Stefan Katzenbeisser. SCAPI: A scalable
attestation protocol to detect software and physical at-
tacks. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 75–86, 2017.

[35] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzen-
beisser. SALAD: Secure and lightweight attestation
of highly dynamic and disruptive networks. In Asia
Conference on Computer and Communications Security,
pages 329–342, 2018.

[36] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzen-
beisser. A practical attestation protocol for autonomous
embedded systems. In IEEE European Symposium on
Security and Privacy (EuroS&P), pages 263–278, 2019.

[37] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. DDoS in the IoT: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[38] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang
Su, and Yuqing Zhang. ESDRA: An efficient and secure
distributed remote attestation scheme for iot swarms.
IEEE Internet of Things Journal, 6(5):8372–8383, 2019.

[39] Yanlin Li, Jonathan M. McCune, and Adrian Perrig.
VIPER: Verifying the integrity of peripherals’ firmware.
page 3–16. ACM conference on Computer and commu-
nications security, 2011.

USENIX Association 31st USENIX Security Symposium 3499

https://www.dds-foundation.org/
https://www.dds-foundation.org/
https://cloud.google.com/solutions/iot
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

[40] Artur Marzano, David Alexander, Osvaldo Fonseca,
Elverton Fazzion, Cristine Hoepers, Klaus Steding-
Jessen, Marcelo HPC Chaves, Ítalo Cunha, Dorgival
Guedes, and Wagner Meira. The evolution of bashlite
and Mirai IoT botnets. In 2018 IEEE Symposium on
Computers and Communications (ISCC), pages 00813–
00818, 2018.

[41] Vasileios A Memos, Kostas E Psannis, Yutaka Ishibashi,
Byung-Gyu Kim, and Brij B Gupta. An efficient algo-
rithm for media-based surveillance system (EAMSuS)
in IoT smart city framework. Future Generation Com-
puter Systems, 83:619–628, 2018.

[42] A. Miles, A. Zaslavsky, and C. Browne. Iot-based de-
cision support system for monitoring and mitigating at-
mospheric pollution in smart cities. Journal of Decision
Systems, 27(sup1):56–67, 2018.

[43] Jens Neureither, Alexandra Dmitrienko, David Koisser,
Ferdinand Brasser, and Ahmad-Reza Sadeghi. LegIoT:
Ledgered trust management platform for IoT. In Eu-
ropean Symposium on Research in Computer Security,
pages 377–396, 2020.

[44] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Felix
Freiling. Sancus 2.0: A low-cost security architecture
for IoT devices. ACM Transactions on Privacy and
Security (TOPS), 20(3):1–33, 2017.

[45] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep
Rattanavipanon, Michael Steiner, and Gene Tsudik.
VRASED: A verified hardware/software co-design for
remote attestation. In USENIX Security Symposium
(USENIX Security 19), 2019.

[46] OASIS. Advanced message queuing protocol. https:
//www.amqp.org/. Accessed 12.10.2021.

[47] Jaemin Park and Kwangjo Kim. TM-Coin: Trustwor-
thy management of TCB measurements in IoT. In
IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops),
pages 654–659, 2017.

[48] Prakash Pawar et al. Design and development of ad-
vanced smart energy management system integrated
with IoT framework in smart grid environment. Journal
of Energy Storage, 25:100846, 2019.

[49] Thomas Prantl, Ala Eddine Ben Yahya, Alexandra
Dmitrienko, Samuel Kounev, Fabian Lipp, David Hock,
Christoph Rathfelder, and Martin Hofherr. Simpl: Se-
cure iot management platform. 2020.

[50] Md Masoom Rabbani, Jo Vliegen, Jori Winderickx,
Mauro Conti, and Nele Mentens. SHeLA: Scalable
heterogeneous layered attestationm. IEEE Internet of
Things Journal, 6(6):10240–10250, 2019.

[51] Jagriti Saini, Maitreyee Dutta, and Gonçalo Marques.
Indoor air quality monitoring with iot: Predicting pm10
for enhanced decision support. In International Confer-
ence on Decision Aid Sciences and Application (DASA),
pages 504–508, 2020.

[52] Amazon Web Services. Transform your Business with
AWS IoT. https://aws.amazon.com/iot/. Ac-
cessed 12.10.2021.

[53] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded de-
vices. In IEEE Symposium on Security and Privacy,
pages 272–282, 2004.

[54] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert
Van Doorn, and Pradeep Khosla. SCUBA: Secure code
update by attestation in sensor networks. In ACM Work-
shop on Wireless Security, pages 85–94, 2006.

[55] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher,
and Yongdae Kim. Remote software-based attestation
for wireless sensors. In European Workshop on Security
in Ad-hoc and Sensor Networks, pages 27–41, 2005.

[56] Ravi Pratap Singh, Mohd Javaid, Abid Haleem, and Ra-
jiv Suman. Internet of things (IoT) applications to fight
against covid-19 pandemic. Diabetes & Metabolic Syn-
drome: Clinical Research & Reviews, 14(4):521–524,
2020.

[57] Frederic Stumpf, Andreas Fuchs, Stefan Katzenbeisser,
and Claudia Eckert. Improving the scalability of plat-
form attestation. In ACM Workshop on Scalable Trusted
Computing, pages 1–10, 2008.

[58] Alessandro Visintin, Flavio Toffalini, Mauro Conti, and
Jianying Zhou. Safeˆ d: Self-attestation for networks
of heterogeneous embedded devices. arXiv preprint
arXiv:1909.08168, 2019.

[59] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao.
Distributed software-based attestation for node com-
promise detection in sensor networks. In IEEE Inter-
national Symposium on Reliable Distributed Systems
(SRDS 2007), pages 219–230. IEEE, 2007.

[60] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. Se-
curity analysis of internet-of-things: A case study of au-
gust smart lock. In IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages
499–504. IEEE, 2017.

3500 31st USENIX Security Symposium USENIX Association

https://www.amqp.org/
https://www.amqp.org/
https://aws.amazon.com/iot/

[61] Joseph Yiu. ARMv8-M architecture technical overview.
ARM white paper, 2015.

[62] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean
Sullivan, Ahmad Ibrahim, Yier Jin, and Ahmad-Reza
Sadeghi. ATRIUM: Runtime attestation resilient under
memory attacks. In IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 384–
391, 2017.

[63] Ray Y Zhong, Xun Xu, and Lihui Wang. IoT-enabled
smart factory visibility and traceability using laser-
scanners. Procedia Manufacturing, 10:1–14, 2017.

Appendix A One-to-One Remote Attestation

One-to-one RA is a challenge-response protocol between
a client (Prover) and a remote host (Verifier) for reporting
Prover’s hardware and software configuration (e.g., the in-
ternal state of RAM, flash, etc.) to the host. An example of
RA protocol is shown in Figure 9. Typically, Verifier initiates
the protocol by sending a challenge to a Prover, which needs
to measure its own integrity and create a fresh and authentic
evidence of being in a trustworthy state. The process of in-
tegrity measurement may vary, for instance, it may involve
computing an encryption-based MAC or a keyed hash over its
memory [53], or randomly placed verification bits [5]. Such
an evidence is then transmitted to Verifier, who is assumed to
know all possible reference measurement(s) for Prover that
correspond to Prover’s valid (i.e, good or safe) state(s).

Figure 9: One-To-One RA

Prover is assumed to have a trust anchor, which makes sure
that the integrity measurement is taken and reported correctly,
even if the platform is compromised. The trust anchor helps
to establish protected resources (memory, processor, RAM)
exclusively for attestation purposes, and, thus, one can say
that it divides the Prover ’s platform into a secure and non-
secure worlds. While the latter holds general-purpose code
(application/service specific), the secure world is used to safe-
guard attestation key(s) in protected memory, store and run an
immutable RA code securely and atomically. The two parts
of the device communicate through a secure gateway.

Based on a way used to establish a trust anchor on a com-
puting platform, RA schemes can be roughly divided into
three categories: software-based, hardware-based, and hybrid.
Hardware-based solutions [3, 44, 62] rely on dedicated
(optionally, tamper-resistant) hardware components, such as
Trusted Platform Module (TPM) [11], Intel SGX [32] or ARM
TrustZone [61] to provide a Root-of-Trust (RoT). All services
and information provided by RoT can be considered reliable,
and thereby secrets like cryptographic keys can be stored
securely. RA schemes that leverage hardware-based trust an-
chors provide highest security guarantees among all the cate-
gories, but require specific hardware for Prover’s platforms,
which may or may not be available in practice.
Software-based schemes [39, 53–55, 59] impose no assump-
tions on underlying hardware. Consequently, there cannot be
any secrets securely stored on Prover. As a workaround, these
schemes use side-channel information (e.g., precise timing
of execution of certain algorithms) to detect malicious behav-
ior. This makes software-based schemes applicable to, and
appealing for, legacy devices. However, they rely on strong as-
sumptions, e.g., Prover must be directly connected to Verifier.
This greatly limits their applicability [18].

One recent scheme called SIMPLE [9] is a software-based
RA scheme which does not involve the usual assumptions and
restrictions of other software-based RA schemes. It emulates
the functionality of secure hardware in a thin software layer,
a hypervisor, instantiated using an open-source and formally-
verified Security MicroVisor (SMV) [21]. It provides security
guarantees similar to hardware-based RA schemes while oper-
ating fully in software. However, it assumes DMA-less Prover
operation and rules out non-invasive physical attacks.
Hybrid schemes [5,6,16,23,24,29,33,45] blend software and
hardware features to achieve RA while aiming to minimize
requirements on underlying hardware. They provide much
stronger security guarantees than software-based schemes,
while requiring only minimal security features in hardware
(such as Read Only Memory (ROM) and Memory Protection
Unit (MPU) for secure storage), which are readily available
on many platforms.

USENIX Association 31st USENIX Security Symposium 3501

	Introduction
	Challenges & Requirements
	Pub/Sub IoT Networks
	Challenges
	Requirements

	Design
	System and Adversary Model
	Design Challenges
	SCRAPS Phases and Workflows
	Pre-deployment Phase
	Operational Phase

	Prototype Implementation
	Evaluation
	Performance Evaluation
	Scalability Evaluation
	Preliminaries
	Evaluation Scenarios

	Security Analysis
	Related Work
	Conclusions
	One-to-One Remote Attestation

