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Abstract
Increasing use of machine learning (ML) technologies in
privacy-sensitive domains such as medical diagnoses, lifestyle
predictions, and business decisions highlights the need to bet-
ter understand if these ML technologies are introducing leak-
age of sensitive and proprietary training data. In this paper, we
focus on model inversion attacks where the adversary knows
non-sensitive attributes about records in the training data and
aims to infer the value of a sensitive attribute unknown to the
adversary, using only black-box access to the target classifi-
cation model. We first devise a novel confidence score-based
model inversion attribute inference attack that significantly
outperforms the state-of-the-art. We then introduce a label-
only model inversion attack that relies only on the model’s
predicted labels but still matches our confidence score-based
attack in terms of attack effectiveness. We also extend our
attacks to the scenario where some of the other (non-sensitive)
attributes of a target record are unknown to the adversary. We
evaluate our attacks on two types of machine learning models,
decision tree and deep neural network, trained on three real
datasets. Moreover, we empirically demonstrate the disparate
vulnerability of model inversion attacks, i.e., specific groups
in the training dataset (grouped by gender, race, etc.) could
be more vulnerable to model inversion attacks.

1 Introduction
Across numerous sectors, the use of ML technologies trained
on proprietary and sensitive datasets has increased signifi-
cantly, e.g., in the domains of personalized medicine [1, 2],
product recommendation [3–5], finance and law [6, 7], social
media [8, 9], etc. Companies provide access to such trained
ML models through APIs [10–14] whereas users querying
these models are charged on a pay-per-query basis. With
the increasing use of ML technologies in personal data, we
have seen a recent surge of serious privacy concerns that were
previously ignored [15–18]. Therefore, it is important to inves-
tigate whether public access to such trained models introduces
new attack vectors against the privacy of these proprietary
and sensitive datasets used for training ML models. A model

inversion attack is one of such attacks on ML that turns the
one-way journey from training data to model into a two-way
one, i.e., this attack allows an adversary to infer part of the
training data when it is given access to the target ML model.

Fredrikson et al. [18, 19] proposed two formulations of
model inversion attacks. In the first one, which we call model
inversion attribute inference (MIAI) attack, the adversary
aims to learn a sensitive attribute of an individual whose data
are used to train the target model, and whose other attributes
are known to the adversary. This can be applied, e.g., when
each instance gives information about one individual. In the
second formulation, which we call typical instance recon-
struction (TIR) attack, the adversary is given access to a
classification model and a particular class, and aims to come
up with a typical instance for that class. For example, the
adversary, when given access to a model that recognizes dif-
ferent individuals’ faces, tries to reconstruct an image that is
similar to a target individual’s actual facial image. For TIR
attacks [20–22] to be considered successful, it is not neces-
sary for a reconstructed instance to be quantitatively close to
any specific training instance. In contrast, MIAI attacks are
evaluated by the ability to predict exact attribute values of in-
dividual instances. Evaluation of TIR attacks is typically done
by having humans assess the similarity of the reconstructed
instances (e.g., reconstructed facial images) to training in-
stances. Thus a model that is able to learn the essence of
each class and generalizes well (as opposed to relying on
remembering information specific to training instances) will
likely remain vulnerable to such an attack. Indeed, it has been
proven [22] that a model’s predictive power and its vulner-
ability to such TIR attacks are two sides of the same coin.
This is because highly predictive models are able to estab-
lish a strong correlation between features and labels and this
is the property that an adversary exploits to mount the TIR
attacks [22]. In other words, the existence of TIR attacks is
a feature of good classification models, although the feature
may be undesirable in some settings. We investigate whether
the root cause of TIR attacks (high predictive power) also
applies to MIAI attacks. According to our observation, we
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point out that such is not the case.
In this paper, we focus only on MIAI attacks on classifi-

cation models where data about individuals are used. More
specifically, we consider the attribute inference attacks where
the adversary leverages black-box access to an ML model
to infer the sensitive attributes of a target individual. While
attribute inference in other contexts has been studied exten-
sively in the privacy literature (e.g., user attribute inference
in social networks [23, 24]), there exists little work studying
to what extent model inversion introduces new attribute infer-
ence vulnerabilities. In the rest of the paper, we refer to MIAI
attacks whenever we use the term model inversion attack.

Proposed new model inversion attacks: In this paper, we
devise two new black-box MIAI attacks: (1) confidence score-
based model inversion attack (CSMIA) and (2) label-only
model inversion attack (LOMIA). The confidence score-based
attack assumes that the adversary has access to the target
model’s confidence scores whereas the label-only attack as-
sumes the adversary’s access to the target model’s label pre-
dictions only. To the best of our knowledge, ours is the first
work to propose a label-only MIAI attack. We empirically
show that despite having access to only the predicted labels,
our label-only attack performs on par with the proposed confi-
dence score-based attack. Also, both of our proposed attacks
outperform state-of-the-art attacks significantly. Furthermore,
we note that defense mechanisms [18] that reduce the preci-
sion of confidence scores or introduce noise in the confidence
scores to thwart model inversion attacks are ineffective against
our label-only attack.

While the existing attacks [18, 19] assume that the adver-
sary has full knowledge of other non-sensitive attributes of
the target record, we also propose extensions of our attacks
that work even when some non-sensitive attributes are un-
known to the adversary. We also evaluate cases where an
adversary aims to estimate multiple sensitive attributes of a
target record which also has not been explored in the existing
MIAI attacks [18, 19]. Moreover, we investigate if there are
scenarios when model inversion attacks do not threaten the
privacy of the overall dataset but are effective on some specific
groups of instances (e.g., records grouped by race, gender,
occupation, etc.). We empirically show that there exists such
discrimination across different groups of the training dataset
where a group is more vulnerable than the others. We use the
term disparate vulnerability to represent such discrimination.
We further investigate if model inversion attribute inference
attacks are able to infer the sensitive attributes in data records
that do not belong to the training dataset of the target model
but are drawn from the same distribution. A model inversion
attack with such capability compromises the privacy of not
only the target model’s training dataset but also breaches its
distributional privacy.

We train two models– a decision tree and a deep neural
network with each of the three real datasets in our experiments,
General Social Survey (GSS) [25], Adult dataset [26], and

FiveThirtyEight dataset [27], to evaluate our proposed attacks.
To the best of our knowledge, ours is the first work that studies
MIAI attacks in such details on tabular datasets which is the
most common data type used in real-world ML [28].

Effective evaluation of model inversion attacks: Al-
though the Fredrikson et al. attack [18] primarily uses ac-
curacy to evaluate model inversion attacks, in this paper, we
argue that accuracy is not the best measure. This is because
simply predicting the majority class for all the instances can
achieve very high accuracy which certainly misrepresents
the performances of model inversion attacks. Moreover, we
argue that the F1 score, a widely used metric, is also not suf-
ficient by itself since it emphasizes only the positive class,
and simply predicting the positive class for all the instances
can achieve a significant F1 score. Hence, we propose to
also use G-mean [29] and Matthews correlation coefficient
(MCC) [30] as metrics in addition to precision, recall, ac-
curacy, false positive rate (FPR), and F1 score to design a
framework that can effectively evaluate any model inversion
attack. While the existing MIAI attacks [18,19] evaluate their
performance on binary sensitive attributes only, we evaluate
our attacks on multi-valued sensitive attributes as well. We
use attack confusion matrices to evaluate the attack perfor-
mances in estimating multi-valued sensitive attributes. Finally,
we evaluate the required number of queries to the black-box
target models to perform the proposed attacks.

Comparison with baseline attribute inference attacks:
We also compare the performances of our MIAI attacks with
those from attacks that do not query the target model, e.g., ran-
domly guessing the sensitive attribute according to some dis-
tribution. When a particular model inversion attack deployed
against a target model performs similarly to such attacks, we
can conclude that the target model is not vulnerable to that
particular model inversion attack. Hence, in this paper, we
address the following general research question- is it possible
to identify when a model should be classified as vulnerable to
such model inversion attacks? More specifically, does black-
box access to a particular model really help the adversary to
estimate the sensitive attributes which is otherwise impossible
for the adversary? We demonstrate that our proposed attacks
significantly outperform baseline attribute inference attacks
that do not require access to the target model.

Summary of contributions: In summary, this paper makes
the following contributions:

1. We design two new black-box MIAI attacks: (1) confi-
dence score-based MIAI attack and (2) label-only MIAI
attack. We define the various capabilities of the adver-
sary and provide a detailed threat model.

2. We conduct an extensive evaluation of our attacks using
two types of ML models, decision tree and deep neu-
ral network, trained with three real datasets. Evaluation
results show that our proposed attacks significantly out-
perform the existing attacks in inferring both binary and
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Table 1: Assumption of adversary capabilities/knowledge for different attack strategies.

Attack strategy
Predicted Confidence score Target individuals’ all All possible Marginal prior of Marginal prior Confusion

label along with non-sensitive attributes values of the the sensitive of all other (non- matrix of
predicted label including true label sensitive attribute attribute sensitive) attributes the model

NaiveA X X
RandGA X X(optional)
FJRMIA [18] X X X X X X
CSMIA X X X X
LOMIA X X X X

multi-valued sensitive attributes. Moreover, our label-
only attack performs on par with the proposed confi-
dence score-based MIAI attack despite having access to
only the predicted labels of the target model.

3. We extend both of our proposed attacks to the scenario
where some of the other (non-sensitive) attributes of a
target record are unknown to the adversary and demon-
strate that the performance of our attacks is not impacted
significantly in those circumstances.

4. We uncover that a particular subset of the training dataset
(grouped by attributes, such as gender, race, etc.) could
be more vulnerable than others to the model inversion
attacks, a phenomenon we call disparate vulnerability.

2 Problem Definition and Existing Attacks
2.1 Model Inversion Attribute Inference
An ML model can be represented using a deterministic func-
tion f where the input of this function is a d-dimensional vec-
tor x = [x1,x2, ...,xd ] that represents d attributes and y′ ∈ Y
is the output. In the case of a regression problem, Y = R .
However, in this work, we focus on classification problems.
Therefore, f outputs y′ if it returns only the predicted label
and outputs R m if it returns the confidence scores as well,
where m is the number of unique class labels (y1,y2, ...,ym)
and R m represents the corresponding confidence scores re-
turned for these m class labels. Finally, the class label with
the highest confidence score is considered as the model’s pre-
diction label. We denote the dataset on which the f model is
trained as DST . From now on, we use the term y to represent
the actual value in the training dataset DST whereas y′ is used
to represent the model output f (x). The values of y and y′ are
the same in the case of a correct prediction and vice versa.

Now, some of the attributes in x could be privacy sensitive.
Without loss of generality, let’s assume that x1 ∈ x is a sensi-
tive attribute that the individual corresponding to a data record
in the training dataset does not want to reveal to the public.
However, a model inversion attack may allow an adversary to
infer this x1 attribute value of a target individual given some
specific capabilities, e.g., access to the black-box target model,
background knowledge about the target individual, etc.

2.2 Threat Model
The adversary is assumed to have all or a subset of the follow-
ing capabilities in different attacks (see Table 1 for details):

• Access to the black-box target model, i.e., the adversary
can query the model with x and obtain y′.

• The confidence scores returned by the target model for
m class labels, i.e., R m.

• Full/partial knowledge of the non-sensitive attributes and
also knowledge of the true label of the target record.

• All possible (k) values of the sensitive attribute x1.
• Knowledge of marginal prior of the sensitive attribute

x1, i.e., p1 = {p1,1, p1,2, ..., p1,k} where k is the number
of all possible values of x1 and p1,k is the probability of
the k−th unique possible value.

• Knowledge of confusion matrix (C ) of the model where
C [y,y′] = Pr[ f (x) = y′|y is the true label]. Here, confu-
sion matrix represents the performance of an ML model
when queried on the entire training dataset [18].

Note that, for the attacks designed in this paper, the ad-
versary does not need the knowledge of marginal priors of
any attributes (sensitive or non-sensitive). While our CSMIA
strategy does not require the knowledge of the target model
confusion matrix, the LOMIA strategy indirectly assumes this
knowledge. The adversary has only black-box access to the
model, i.e., it has no knowledge of the model details (e.g., ar-
chitecture or parameters). Finally, we only consider a passive
adversary that does not aim to corrupt the machine learning
model or influence its output in any way.

2.3 Baseline Attack Strategies
2.3.1 Naive Attack (NaiveA)
A naive model inversion attack assumes that the adversary has
knowledge about the probability distribution (i.e., marginal
prior) of the sensitive attribute and always predicts the sensi-
tive attribute to be the value with the highest marginal prior.
Therefore, this attack does not require access to the target
model. Note that this attack can still achieve significant ac-
curacy if the sensitive attribute is highly unbalanced, e.g., if
the sensitive attribute can take only two values and there is an
80%-20% probability distribution, predicting the value with
higher probability would result in 80% accuracy.

2.3.2 Random Guessing Attack (RandGA)
The adversary in this attack also does not require access to the
target model. The adversary randomly predicts the sensitive
attribute by setting a probability for each possible value. The
adversary may or may not have access to the marginal priors
of the sensitive attribute. Figure 7(a) in Appendix A.1 shows
the optimal performance of random guessing attack in terms
of different metrics when the adversary sets different proba-
bilities for predicting the positive class sensitive attribute is
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independent of its knowledge of marginal prior (0.3 in this
example). Note that, predicting the positive class for all the
instances with this attack (i.e., setting a probability 1 for the
positive class) would result in a significantly high F1 score,
mainly due to a recall of 100% (Figure 7(a) in Appendix).

2.4 Fredrikson et al. Attack [18] (FJRMIA)
This black-box model inversion attack [18] assumes that the
adversary can obtain the model’s predicted label, has knowl-
edge of all the attributes of a targeted record (including the
true y value) except the sensitive attribute, has access to the
marginal priors of all the attributes, and also to the confu-
sion matrix of the target model (see Table 1). The adversary
queries the target model by varying the sensitive attribute (x1)
and obtains the predicted y′ values. After querying the model
k times with k different x1 values (x1,0,x1,1, . . . ,x1,k−1) while
keeping the other known attributes unchanged, the adversary
computes C [y,y′] ∗ p1,i for each possible sensitive attribute
value, where C [y,y′] = Pr[ f (x) = y′| y is the true label] and
p1,i is the marginal prior of i-th possible sensitive attribute
value. Finally, the attack predicts the sensitive attribute value
for which the C [y,y′]∗ p1,i value is the maximum.

3 Metrics for Evaluating MIAI Vulnerability
Understanding a model’s vulnerability to inversion attacks
requires a meaningful metric to evaluate and compare dif-
ferent model inversion attacks. The FJRMIA [18] primarily
uses accuracy. However, if we care only about the accuracy,
the naive attack of simply guessing the majority class for all
the instances can achieve very high accuracy. Another widely
used metric is the F1 score. However, the F1 score of the
positive class emphasizes only that specific class and thus,
as a one-sided evaluation, cannot be considered as the only
metric to evaluate the attacks. Otherwise, always guessing
the positive class may achieve a similar or even better F1
score (mainly due to a recall of 100%) than any sophisticated
model inversions attack that identifies the positive class in-
stances more strategically. Therefore, to understand whether
access to the black-box model considerably contributes to
attack performance and also to compare the baseline attack
strategies (that do not require access to the model, i.e., naive
attack and random guessing attack) to our proposed attacks,
we use the following two metrics in addition to precision, re-
call, accuracy, FPR, and F1 score: G-mean [29] and Matthews
correlation coefficient (MCC) [30], as described below.

G-mean: G-mean is the geometric mean of sensitivity and
specificity [29]. Thus it takes all of the true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN) into account. With this metric, the random guessing
attack can achieve maximum performance of 50%. Note that,
even if the adversary has knowledge of marginal priors of the
sensitive attribute, it is not able to achieve a G-mean value of
more than 50% by setting different probabilities for predicting

the positive class sensitive attribute (Figure 7(a) in Appendix).
For the random guessing attack, the optimal G-mean value
can be achieved by setting the probability to 0.5. The G-mean
for the naive attack is always 0%.

G−mean =

√
T P

T P+FN
∗ T N

T N +FP
(1)

Matthews correlation coefficient (MCC): This MCC met-
ric also takes into account all of TP, TN, FP, and FN, and is a
balanced measure that can be used even if the classes of the
sensitive attribute are of very different sizes [30]. It returns
a value between -1 and +1. A coefficient of +1 represents a
perfect prediction, 0 represents a prediction no better than
the random one, and -1 represents a prediction that is always
incorrect. Note that, even if the adversary has the knowledge
of marginal priors of the sensitive attribute, it is not able to
achieve an MCC value of more than 0 with the random guess-
ing attack strategy (details in Appendix A.1). Also, the naive
attack always results in an MCC of 0, independent of the
marginal prior knowledge (either TP=FP=0 or TN=FN=0).

MCC =
(T P∗T N)− (FP∗FN)√

(T P+FP)∗ (T P+FN)∗ (T N +FP)∗ (T N +FN)
(2)

4 New Model Inversion Attacks
We design two new MIAI attack strategies: (1) confidence
score-based model inversion attack (CSMIA) and (2) label-
only model inversion attack (LOMIA). Table 1 shows the
different adversary capabilities/knowledge assumptions for
these attacks in contrast to the existing attacks.

4.1 Confidence Score-based Attack (CSMIA)
This attack exploits the confidence scores returned by the
target model. Unlike FJRMIA [18], the adversary assumed
in this attack does not have access to the marginal priors or
the confusion matrix. The adversary knows the true labels for
the records it is attacking (Table 1). In many privacy attacks,
the attacker compromises the privacy of just a small subset
of the records. For such a small set of target records (e.g.,
AOL-dataset [31]), it is common to assume that the attacker
knows all information (including the true label) except the
attribute it is attacking. This assumption is consistent with
prior work [18]. The key idea of our CSMIA attack is that
the target model’s returned prediction is more likely to be
correct and the confidence score is more likely to be higher
when it is queried with a record containing the original sen-
sitive attribute value (since the target model encountered the
target record with original sensitive attribute value during
training). In contrast, the target model’s returned prediction
is more likely to be incorrect when it is queried with a record
containing the wrong sensitive attribute value.

The adversary first queries the model by setting the sensi-
tive attribute value x1 to all possible k values while all other
known input attributes of the target record remain the same.
If the sensitive attribute is continuous, we can use binning
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[𝑥1,0, 𝑥2, … , 𝑥𝑑]

…

[𝑥1,1, 𝑥2, … , 𝑥𝑑]

[𝑥1, 𝑘−1, 𝑥2, … , 𝑥𝑑]

𝒌 queries for a 
record in 𝑫𝑺𝑻

𝑦'0 = 𝑦

𝑦'1 ≠ 𝑦

𝑦'𝑘−1 ≠ 𝑦

…

Target model
𝒇 𝑫𝑺𝓐

Label the record 
with 𝑥1,0

𝑥2, … , 𝑥) , 𝑦] [𝑥1,0

Non-sensitive attributes of a 
target record from 𝑫𝑺𝑻

Labeled records 
from Case (1)

Case (1) 
Only[𝑥1,0, 𝑥2, … , 𝑥𝑑]

returns correct 
prediction

Sensitive 
attribute

Non-sensitive 
attributes

Train attack
model…

Attack model
𝓐: 𝑥2, … , 𝑥) , 𝑦 → 𝒙𝟏

Predicted sensitive attribute 
of the target record

Target model
predictions

Labeling of 
sensitive attribute

[𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝑥1,
known 𝑥2, … , 𝑥𝑑]

Record in 𝑫𝑺𝑻

Figure 1: LOMIA: The adversary collects the case (1) records by querying the target model f , obtains the DSA dataset, and trains
the attack model A . The adversary then leverages the attack model to predict the sensitive attribute values of the target records.

to turn it into a categorical attribute and recover an approx-
imate value. If there are two possible values of a sensitive
attribute (i.e., k = 2, well depicted by a yes/no answer from
an individual in response to a question), the adversary queries
the model by setting the sensitive attribute value x1 to both
yes and no while all other known input attributes of the target
record remain the same. Let y′0 and con f0 be the returned
model prediction and confidence score when the sensitive
attribute is set to no. Similarly, y′1 and con f1 are the model
prediction and confidence score when the sensitive attribute
is set to yes. In order to determine the value of x1, this attack
considers the following three cases:

Case (1) If the target model’s prediction is correct only
for a single sensitive attribute value, e.g., y = y′0 ∧ y != y′1 or
y != y′0 ∧ y = y′1 in the event of a binary sensitive attribute, the
attack selects the sensitive attribute to be the one for which
the prediction is correct. For instance, if y = y′1 ∧ y != y′0,
the attack predicts yes for the sensitive attribute and vice
versa. Note that, for this case, the adversary only requires the
predicted labels and does not require the confidence scores.
We leverage the records that fall into this case in our label-
only attack as described later in Section 4.2.

Case (2) If the model’s prediction is correct for multiple
sensitive attribute values, i.e., y = y′0 ∧ y = y′1, the attack selects
the sensitive attribute to be the one for which the prediction
confidence score is the maximum. In the above example, if
the model’s prediction is correct with higher confidence when
yes value is set for the sensitive attribute, the attack outputs
the yes value for the x1 prediction and vice versa.

Case (3) If the model outputs incorrect predictions for all
possible sensitive attribute values, i.e., y != y′0 ∧ y != y′1, the
attack selects the sensitive attribute to be the one for which
the prediction confidence is the minimum. In the above exam-
ple, if the model outputs the incorrect prediction with higher
confidence when yes value is set for the sensitive attribute,
the attack predicts the no value for x1 and vice versa.

4.2 Label-Only Attack (LOMIA)
This advanced attack assumes the adversary’s access to the
target model’s predicted labels only. Therefore, defense mech-
anisms [18] that reduce the precision of confidence scores or
introduce noise in the confidence scores in order to thwart

model inversion attacks are ineffective against our label-only
attack. The attack has the following steps as shown in Fig-
ure 1: (1) obtaining an attack dataset (DSA ), (2) training an
attack model A from DSA , and (3) leveraging A to infer the
sensitive attributes of target records.

4.2.1 Obtaining Attack Dataset DSA

The key intuition of this attack step is that if the target model
f returns the correct prediction (y) for only one possible value
of the sensitive attribute, it is highly likely that this particular
value represents the original sensitive attribute value, e.g.,
sensitive attribute value x1,0 in Figure 1. Hence, the adversary
then labels the record in this example with x1,0. The adver-
sary collects all such labeled records that fall into Case (1) as
described in Section 4.1 and obtains the DSA dataset. Note
that, the labeling of sensitive attributes might have some er-
rors, e.g., x1,0 in Figure 1 might not be the original sensitive
attribute of the record even though only with this value the
target model returns the correct prediction. Table 3 in Sec-
tion 5.2 shows the sizes of the DSA datasets obtained from
different target models in our experiments and their corre-
sponding accuracy. However, since the LOMIA attacker does
not know the original sensitive attribute values, it uses the
entire DSA datasets to train the attack models.

Note that, while building the attack model dataset DSA , we
assume that the adversary knows the real y attribute of all
the instances in the training dataset. In other words, unlike
CSMIA, the adversary in the LOMIA strategy assumes the
knowledge of the target model confusion matrix (Table 1).

4.2.2 Training Attack Model A
The next step is to train an attack model A where the in-
put would be the set of non-sensitive attributes from a target
record, i.e, a d-dimensional vector [x2, ...,xd ,y] and the out-
put would be a prediction for the sensitive attribute x1. The
adversary trains this attack model using the DSA dataset. The
key goal of this attack step is to learn how the target model
correlates the sensitive attribute with the other non-sensitive
attributes including the target model’s prediction label. Note
that, the dataset used to train the attack model (DSA ) repre-
sents a strong correlation of the sensitive attribute values with
other non-sensitive ones ([x2, ...,xd ,y]) since it considers only
the Case (1) records.
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4.2.3 Performing Sensitive Attribute Inference using A
Once the attack model A is trained, the adversary can simply
query A with the non-sensitive attributes of a target record and
obtain a prediction for the sensitive attribute. It is important
to note that the adversary could also query the model with the
non-sensitive attributes of a record that is not in the training
dataset (DST ), i.e., the record is not used while training the
target model. In Section 5.6, we demonstrate the effectiveness
of our attacks not only in compromising the privacy of the
training dataset but also their performance in breaching the
distributional privacy.

4.3 Estimating Multiple Sensitive Attributes

Our LOMIA and CSMIA strategies can be easily extended
to cases where the adversary aims to estimate multiple sen-
sitive attributes of a target record. Let, x1,x2 be the sensitive
attributes the adversary aims to estimate. Our strategies first
perform two instances of the attacks and then stitch them to-
gether. In other words, while trying to infer x1, the adversary
queries the target model without setting any value for x2 and
vice versa. Making predictions with missing values is com-
mon in APIs provided by companies like BigML, Amazon,
Microsoft, etc. [17]. For example, in a BigML decision tree
model, if an input attribute is missing, there are two strate-
gies to handle such a situation: (1) last prediction strategy
(default), where the model returns the prediction given by
the last node (i.e., parent node) after reaching missing value,
and (2) proportional strategy, where all branches from the
missing value node are considered in majority voting [32].
We adopt the last prediction strategy in our experiments. In
the case of CSMIA, we estimate the values of x1 and x2 in-
dependently by executing the CSMIA strategy for each of
these two attributes as described in Section 4.1. In the case
of LOMIA, we execute the LOMIA strategy independently
for each of these two attributes as described in Section 4.2.1
and train two separate attack models to estimate the values of
x1 and x2. The attack model to estimate x1 does not take x2
as an input (since the adversary does not know x2) and vice
versa. Once the multiple sensitive attributes are estimated, we
evaluate the performance of the attacks on these two attributes
independently.

4.4 Attacks With Partial Knowledge of Target
Record’s Non-sensitive Attributes

Our attacks proposed in this section as well as the FJR-
MIA [18] strategy assume that the adversary has full knowl-
edge of the target record’s non-sensitive attributes. However,
in many cases, it may be difficult or even impossible for an
adversary to obtain all of the non-sensitive attributes of a tar-
get record. Therefore, the goal of this section is to quantify
the risk of MIAI attacks in the cases where all non-sensitive
attributes of a target record are not known to the adversary.

4.4.1 CSMIA With Partial Non-sensitive Attributes
For simplicity, we assume that there is only one non-sensitive
attribute (x2 ∈ x) that is unknown to the adversary. Extending
our attack steps to more than one unknown attribute is straight-
forward. Let u be the number of unique possible values of
x2. The attacker queries the model by varying the unknown
non-sensitive attribute with its different unique possible val-
ues (in the same way we vary the sensitive attribute x1 in
the attacks described in Section 4) while all other known
non-sensitive attributes {x3, ...,xd} remain the same. Hence,
in this attack, we query the model u times for each possible
value of the sensitive attribute. As a result, the complexity of
the attacks described in this section is u times the complexity
of the attacks in Section 4. According to the notations used
in Section 4, let C0=∑

u
i=1(y = y′0_i) be the number of times

the predictions are correct with the sensitive attribute no and
C1=∑

u
i=1(y = y′1_i) be the number of times the predictions are

correct with the sensitive attribute yes. In order to determine
the value of x1, this attack considers the following cases:

Case (1) If C0 != C1, i.e., the number of correct target
model predictions are different for different sensitive attribute
values, the attack selects the sensitive attribute to be the one
for which the number of correct predictions is higher. For
instance, if C1 > C0, the attack predicts yes for the sensitive
attribute and vice versa.

Case (2) If C0 = C1 and both are non-zero, we compute
the sum of the confidence scores (only for the correct pre-
dictions) for each sensitive attribute and the attack selects
the sensitive attribute to be the one for which the sum of the
confidence scores is the maximum.

Case (3) If C0 = 0 ∧C1 = 0, we compute the sum of the
confidence scores for each sensitive attribute and the attack
selects the sensitive attribute to be the one for which the sum
of the confidence scores is the minimum.
If there is a second non-sensitive attribute that is unknown to
the adversary (e.g., x3 with v unique possible values), the com-
plexity of the attack becomes u∗v times the complexity of the
attacks in Section 4. While CSMIA is prone to combinatorial
explosion with increasing number of unknown non-sensitive
attributes, LOMIA is not, as we describe below.

4.4.2 LOMIA With Partial Non-sensitive Attributes
With partial knowledge of non-sensitive attributes, the at-
tacker first queries the target model omitting the unknown
non-sensitive attributes which is handled using the last pre-
diction strategy explained in section 4.3 and thus the attacker
obtains the DSA dataset. Note that, the attack dataset DSA
for LOMIA is obtained from Case (1) instances, i.e., the in-
stances where only one sensitive attribute value yields the cor-
rect model prediction y while all other known non-sensitive
attributes remain unchanged, see Figure 1. Hence, the attack
models in LOMIA are highly dependent on the y attribute and
are less dependent on other non-sensitive attributes. There-
fore, even if multiple non-sensitive attributes, except the y
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attribute, are not considered in the attack model, the LOMIA
strategy’s performance with partial non-sensitive attributes
does not degrade significantly.

5 Evaluation

In this section, we discuss our experiment setup and evalu-
ate our proposed attacks. The links to all the datasets and
models are available here: https://github.com/smehnaz/
black-boxMIAI.

Table 2: Distribution of sensitive attributes in datasets.
Dataset Sensitive Positive Negative Positive Positive

attribute class label class label class count class %
GSS X-movie Yes No 4002 (3017) 19.7% (19.8%)
Adult Marital status Married Single 21639 (16893) 47.8% (47.9%)
Fivethirtyeight Alcohol Yes No 266 80.3%

5.1 Datasets
General Social Survey (GSS) [25]: FJRMIA [18] uses the
General Social Survey (GSS) dataset to demonstrate their at-
tack effectiveness. This dataset has 51020 records with 11
attributes and is used to train a model that predicts how happy
an individual is in his/her marriage. However, the training
dataset for this model contains sensitive attributes about the
individuals: e.g., responses to the question ‘Have you watched
X-rated movies in the last year?’. Removing the data records
that do not have either the sensitive attribute or the attribute
that is being predicted by the target model (i.e., happiness
in marriage) results in 20314 records that we use in our ex-
periments. Among these 20314 records, 4002 individuals an-
swered yes (sensitive attribute x1 = yes) to the survey question
on whether they watched X-rated movies in the last year, i.e.,
19.7% positive class (see Table 2). In order to understand if
our proposed model inversion attribute inference attacks also
breach the privacy of data that is not in the training dataset of
the target model but is drawn from the same distribution, we
split the dataset and use 75% data to train the target models
(15235 records in DST ) and use the rest 25% data to evaluate
attacks on other data from the same distribution (5079 records
in DSD). To ensure consistency, we evaluate other baseline
attack strategies including FJRMIA [18] on the target models
trained on the DST dataset. Among the 15235 records in the
DST dataset, 3017 individuals answered yes to the question
on x-rated movies, i.e., 19.8% positive class (see Table 2).

Adult [26]: This dataset, also known as Census Income
dataset, is used to predict whether an individual earns over
$50K a year. The number of instances in this dataset is
48842 and it has 14 attributes. We merge the ‘marital sta-
tus’ attribute into two distinct clusters, Married: {Married-
civ-spouse, Married-spouse-absent, Married-AF-spouse} and
Single: {Divorced, Never-married, Separated, Widowed}. We
then consider this attribute (Married/Single) as the sensitive
attribute that the adversary aims to learn. After removing the
data records with missing values, the final dataset consists

Table 3: DSA datasets’ details obtained from target models.

Dataset Target Number of Number of instances with correctly
Model instances in DSA labeled sensitive attribute in DSA

GSS DT 2387 1555
DNN 1011 564

Adult DT 9263 7254
DNN 9960 7430

Fivethirtyeight DT 49 (alcohol) 48
DT 75 (age-group) 72

of 45222 records. Similar to the GSS dataset, we also split
the Adult dataset and use 35222 records to train the target
models (DST ) and use the rest 10000 records to evaluate at-
tacks on data from the same distribution (DSD) but not in DST .
Among the 45222 (35222) records, 21639 (16893) individ-
uals are married (i.e., sensitive attribute x1 = married), i.e.,
47.8% (47.9%) positive class (Table 2). To ensure consis-
tency, we evaluate all attacks against the target models trained
on the DST dataset. The ‘relationship’ attribute in this dataset
(values: husband, wife, unmarried) is directly related to the
marital status sensitive attribute. Hence, for the attack setup
practicality, we have removed the ‘relationship’ attribute from
this dataset since otherwise the adversary could perform a
straightforward attack: if relationship is husband or wife, the
individual is married, otherwise, the individual is single.

Fivethirtyeight [27]: This dataset is from a survey con-
ducted by the Fivethirtyeight Datalab, also used in FJR-
MIA [18]. 553 individuals were surveyed on a variety of
questions. This dataset is used to train a model that predicts
how an individual would like their steak prepared. In order
to evaluate the cases of estimating multivalued and multiple
sensitive attributes, we consider two sensitive attributes in this
dataset: which age-group an individual belongs to (multival-
ued, {18-29, 30-44, 45-60, > 60}) and whether an individual
drinks alcohol (binary, {yes,no}). Removing the data records
missing either the sensitive attributes or the model output re-
sults in 331 data records. Due to its small size, we do not split
this dataset further. Among 331 individuals, 266 answered
yes to the question on drinking alcohol, i.e., 80.3% positive
class (Table 2). The age-group marginal prior distribution is
{21.1%,28.1%,26%,24.8%}, respectively.

5.2 Machine Learning Models
To ensure a fair comparison with [18] which uses decision tree
models, we first trained decision tree (DT) target models on
the three datasets mentioned in Section 5.1. To further demon-
strate the generalizability of our attacks, we also trained deep
neural network (DNN) target models. However, we do not use
the DNN model trained on the Fivethirtyeight dataset as the
model’s performance is very poor due to the small training
set size. The confusion matrices of all the trained models are
given in Tables 4, 5, 6, 7, 8, and 9. Since our attacks are black-
box, the underlying model architecture does not make any dif-
ference in our attacks’ algorithms. We leverage BigML [33],
an ML-as-a-service system, and use its default configurations
(1-click supervised training feature) to train these target mod-
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els. The DT target models use BigML’s memory tree opti-
mization algorithm and smart pruning technique. Each DNN
target model has 3 hidden layers and uses ADAM [34] as
the optimization algorithm with a learning rate of 0.005. The
attack models of LOMIA are trained using BigML’s ensemble
training algorithm with default configurations, i.e., decision
forest algorithm and smart pruning technique. Table 3 shows
the sizes of the DSA datasets obtained from different target
models along with the number of instances with the correctly
labeled sensitive attribute in DSA .

Table 4: Confusion matrix of DT target model trained on GSS
dataset.
XXXXXXXXXXActual

Predicted
Not too happy Pretty happy Very happy Total Recall

Not too happy 5 63 370 438 1.14%
Pretty happy 0 813 4178 4991 16.29%
Very happy 0 526 9280 9806 94.64%
Total 5 1402 13828 15235 Avg. recall 37.36%
Precision 100% 57.99% 67.11% Avg. precision 75.03% Accuracy 66.28%

Table 5: Confusion matrix of DNN target model trained on
GSS dataset.
XXXXXXXXXXActual

Predicted
Not too happy Pretty happy Very happy Total Recall

Not too happy 1 102 335 438 0.23%
Pretty happy 0 565 4426 4991 11.32%
Very happy 0 598 9208 9806 93.90%
Total 1 1265 13969 15235 Avg. recall 35.15%
Precision 100% 44.66% 65.92% Avg. precision 70.19% Accuracy 64.16%

Table 6: Confusion matrix of DT target model trained on
Adult dataset.

XXXXXXXXXXActual
Predicted

<=50K >50K Total Recall

<=50K 24912 1537 26449 94.19%
>50K 3343 5430 8773 61.89%
Total 28255 6967 35222 Avg. recall 78.04%
Precision 88.17% 77.94% Avg. precision 83.05% Accuracy 86.15%

Table 7: Confusion matrix of DNN target model trained on
Adult dataset.

XXXXXXXXXXActual
Predicted

<=50K >50K Total Recall

<=50K 24433 2016 26449 92.38%
>50K 3276 5497 8773 62.66%
Total 27709 7513 35222 Avg. recall 77.52%
Precision 88.18% 73.17% Avg. precision 80.67% Accuracy 84.97%

Table 8: Confusion matrix of DT target model trained on
FiveThirtyEight dataset.
XXXXXXXXXXActual

Predicted Medium Medium Medium Rare Well Total Recall
Well Rare

Medium 105 0 3 0 1 109 96.33%
Medium Well 0 55 1 0 0 56 98.21%
Medium Rare 3 1 122 1 1 128 95.31%
Rare 0 1 0 17 0 18 94.44%
Well 0 0 0 0 20 20 100%
Total 108 57 126 18 22 331 Avg. Rec. 96.9%
Precision 97.2% 96.5% 96.8% 94.4% 90.9% Avg. Prec. 95.2% Acc. 96.4%

Table 9: Confusion matrix of DNN target model trained on
FiveThirtyEight dataset.

XXXXXXXXXXActual
Predicted Medium Medium Medium Rare Well Total Recall

Well Rare
Medium 9 0 95 5 0 109 8.26%
Medium Well 10 0 42 4 0 56 0.00%
Medium Rare 12 0 104 11 1 128 81.25%
Rare 2 0 15 1 0 18 5.56%
Well 3 0 13 4 0 20 0.00%
Total 36 0 269 25 1 331 Avg. Rec. 19%
Precision 25% 0% 38.7% 4% 0% Avg. Prec. 13.5% Acc. 34.4%

5.3 Attack Performance Metrics
As described in Section 3, along with precision, recall, accu-
racy, and F1 score, we also use G-mean and MCC metrics to
evaluate our attacks on binary sensitive attributes as well as
to compare their performances with that of the FJRMIA [18]
and the baseline attacks (NaiveA and RandGA). We discuss
the false positive rates (FPR) of the attacks in Section 5.5. In
order to evaluate the proposed and existing attacks on mul-
tivalued sensitive attributes, we compute and compare the
confusion matrices of the attacks as shown in Section 5.4.3.

We also evaluate the number of queries performed to the
target model by the FJRMIA, CSMIA, and LOMIA strate-
gies. Section A.2 in the Appendix presents the details of this
comparison. Note that, while the CSMIA extension for partial
knowledge of non-sensitive attributes suffers from a com-
binatorial explosion and make significantly more queries to
the target model (Appendix A.3), the LOMIA strategy in the
cases of partial knowledge of non-sensitive attributes does not
require any extra query to the target model (see Section 4.4.2).

5.4 New Model Inversion Attacks’ Results
and Comparison with Baseline Attacks

In this section, we compare CSMIA and LOMIA with exist-
ing FJRMIA [18], and also with baseline attack strategies that
do not require access to the target model, i.e., NaiveA and
RandGA. As described in Section 3, the goal behind com-
paring with NaiveA and RandGA is to understand whether
releasing the black-box model really adds more advantage to
the adversary to learn the sensitive attributes in the training
dataset. We pay special attention to the Case (1) instances and
analyze the LOMIA performance on them separately.

In RandGA, always predicting the positive class would
result in 100% recall and thus a high F1 score but a G-mean
of 0%. Therefore, for all the experiments in the following,
RandGA predicts the positive class with a 0.5 probability, thus
maximizing G-mean at 50% and ensuring a recall of 50%.

5.4.1 GSS Dataset
Figures 2(a) and 2(b) show the performances of the proposed
attacks against the DT and DNN target models trained on
the GSS dataset, respectively, and present a comparison with
FJRMIA, NaiveA, and RandGA. Table 12 in Appendix shows
the details of the metrics along with the TP, TN, FP, and FN
values. Since the sensitive attribute in this dataset has an un-
balanced distribution, the NaiveA strategy, also mentioned
in [18], predicts the sensitive attribute as no for all the in-
dividuals and achieves an accuracy of 80.2%. However, the
precision, recall, F1 score, G-mean, and MCC are all 0% as
shown in Figures 2(a) and 2(b). Note that, NaiveA perfor-
mance is independent of the target ML model type.

As demonstrated in Figure 2(a), the FJRMIA [18] achieves
a very low recall and thus low F1 score. This is due to the fact
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Figure 2: Comparison of attacks: FJRMIA [18], CSMIA, and LOMIA with baseline attack strategies NaiveA and RandGA.

Table 10: Attacks against DT target model trained on FiveThirtyEight dataset to infer multivalued ‘age’ sensitive attribute
(a) Attack confusion matrix of FJRMIA

XXXXXXXXXXActual
Predicted

18-29 30-44 45-60 >60 Total Recall

18-29 0 70 0 0 70 0%
30-44 0 93 0 0 93 100%
45-60 0 86 0 0 86 0%
>60 0 82 0 0 82 0%
Total 0 331 0 0 331 Avg. rec. 25%
Precision 0% 28.1% 0% 0% Avg. prec. 7.02% Accuracy 28.1%

(b) Attack confusion matrix of CSMIA
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 40 9 8 13 70 57.14%
30-44 13 49 12 19 93 52.69%
45-60 15 17 36 18 86 41.86%
>60 11 19 21 31 82 37.8%
Total 79 94 77 81 331 Avg. rec. 47.37%
Precision 50.63% 52.13% 46.75% 38.27% Avg. prec. 46.95% Accuracy 47.13%

(c) Attack confusion matrix of LOMIA
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 41 20 9 0 70 58.57%
30-44 21 50 18 4 93 53.76%
45-60 28 24 32 2 86 37.21%
>60 30 30 12 10 82 12.2%
Total 120 124 71 16 331 Avg. rec. 40.43%
Precision 34.17% 40.32% 45.07% 62.5% Avg. prec. 45.51% Accuracy 40.18%

(d) Attack confusion matrix of LOMIA (Case 1)
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 21 0 0 0 21 100%
30-44 0 23 0 0 23 100%
45-60 1 0 19 1 21 90.48%
>60 1 0 0 9 10 90%
Total 23 23 19 10 75 Avg. rec. 95.12%
Precision 91.3% 100% 100% 90% Avg. prec. 95.33% Accuracy 96%

that the FJRMIA [18] relies on the marginal prior of the sensi-
tive attribute while performing the attack. Since the sensitive
attribute in the GSS dataset is unbalanced, the FJRMIA [18]
mostly predicts the negative sensitive attribute (i.e., the indi-
vidual didn’t watch any x-rated movie, marginal prior ∼ 0.8)
and rarely predicts the positive sensitive attribute (i.e., the
individual watched x-rated movies, marginal prior ∼ 0.2). In
contrast, our proposed CSMIA and LOMIA strategies achieve
significantly high recall, F1 score, G-mean, and MCC while
also improving precision. The FJRMIA [18] performs better
only in terms of accuracy. However, note that the NaiveA also
achieves an accuracy of 80.2%, the highest among all attacks,
but there is no attack efficacy (0 true positive, see Table 12).
Our attacks also consistently outperform RandGA in terms
of all metrics. We emphasize that the records that belong to
Case (1) are more vulnerable to model inversion attacks.

It is noteworthy that the LOMIA strategy performs simi-
larly to CSMIA despite having access to only the predicted
labels. Unlike CSMIA, the LOMIA strategy does not have
cases and uses a single attack model for all the target records.

As shown in Figure 2(b), the FJRMIA [18] strategy again
achieves a high accuracy but an extremely low recall. It per-
forms almost like NaiveA with only 1 true positive and 5 false
positives (see Table 12). The RandGA strategy has the same
results as Figure 2(a) since this strategy is independent of the
target model (similar to NaiveA). Our attacks’ performances
against this model are not significantly better than RandGA,
even the LOMIA results on Case (1) are not significant. There-

fore, it may seem that according to the overall performance,
the DNN model trained on the GSS dataset may not be vul-
nerable to model inversion attacks since the RandGA attack
even without access to the model may achieve comparable
performances. However, it is very important to note that the
RandGA strategy predicts the sensitive attribute randomly
whereas the model inversion attacks rely on the outputs of a
model that is trained on the dataset containing the actual sen-
sitive attributes. Even if the overall performance of a model
inversion attack on the entire dataset does not seem to be
a threat, some specific groups of records (e.g., individuals
grouped by race, gender) in the dataset could still be vulnera-
ble. We discuss such discrimination in performances of model
inversion attacks later in Section 5.7.

5.4.2 Adult Dataset
Figure 2(c) shows the performances of the attacks against
the DT target model trained on the Adult dataset. The results
for the DNN target model as shown in Figure 2(d) are very
similar to that of Figure 2(c). Table 13 in Appendix shows the
details along with the TP, TN, FP, and FN values. Since the
sensitive attribute is more balanced in this dataset, the NaiveA
strategy has an accuracy of only 52.1%, and the other metrics
are at 0%. FJRMIA [18] results in a precision comparable
to our attacks but achieves much less in terms of the other
metrics. Our attacks also significantly outperform RandGA
in terms of all metrics except the recall.

Observing the results of the proposed attacks and also the
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performance against Case (1) instances, we conclude that re-
leasing the models trained on the Adult dataset would add
a significant advantage to the adversary in terms of learning
the ‘marital status’ sensitive attribute. This is because all our
proposed attacks that query the target models perform sig-
nificantly better when compared to the NaiveA and RandGA
adversaries that do not need any access to the model.

Overall, the attacks demonstrate more effectiveness against
the target models trained on the Adult dataset than against
the target models trained on the GSS dataset. Therefore, we
investigated if the correlations between the sensitive attributes
and the corresponding target models trained on these datasets
(in other words, the importance of the sensitive attributes
in the target models) differ significantly. According to our
observation, this is not the case. For instance, the importance
of the ‘x-rated-movie’ and ‘marital-status’ sensitive attributes
in their corresponding DT target models are 7.3% and 9.6%,
respectively. Figures 7(b) and 7(c) in Appendix show the
importance of all attributes in these models.

5.4.3 FiveThirtyEight Dataset

In this section, we perform two sets of attack experiments
against the DT target model trained on the FiveThirtyEight
dataset: (i) inferring multivalued sensitive attribute age-group,
when all other non-sensitive attributes are known to the adver-
sary, and (ii) inferring both alcohol and age-group, i.e., the
case of estimating multiple sensitive attributes.

(i) Estimating Multivalued Sensitive Attributes: Ta-
bles 10 (a), (b), and (c) show the performances of the FJR-
MIA, CSMIA, and LOMIA strategies, respectively, in terms
of estimating a multivalued sensitive attribute, i.e., age in the
FiveThirtyEight dataset. FJRMIA [18] predicts the age-group
30−44 for all the target records (i.e., it boils down to NaiveA,
age-group 30−44 has the highest marginal prior among all,
28.1%). Also, the RandGA strategy would achieve maximum
accuracy of 25% in estimating this multivalued sensitive at-
tribute (not shown in tables). In contrast, our proposed CSMIA
and LOMIA strategies achieve significantly better results. The
results in Table 10 (d) show the performance of LOMIA on
Case (1) instances which has an accuracy of 96%. Hence, we
emphasize that the records in Case (1) are significantly more
vulnerable to model inversion attacks.

(ii) Estimating Multiple Sensitive Attributes: In this attack
setting, the adversary estimates both the age-group and alco-
hol sensitive attributes of a target individual. The attack results
for estimating the multivalued age-group attribute, in this case,
are similar to that of Table 10. Due to space constrains, the
attack results for estimating the binary attribute alcohol are
given in Table 15 in Appendix. Also, we demonstrate the
results of the FJRMIA, CSMIA, LOMIA, and LOMIA Case
(1) in terms of estimating the age-group attribute in Table 16.
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Figure 3: Comparison among different attack strategies in
terms of FPR and other metrics. Marginal priors: alcohol
positive class 80.3%, x-movie positive class 19.8%.

5.5 False Positive Rates and Attack Stability

In order to demonstrate the false positive rate (FPR) com-
parison between our proposed attacks and the existing FJR-
MIA [18] strategy, we perform experiments with two sce-
narios: (1) estimating the ‘alcohol’ sensitive attribute in
the FiveThirtyEight dataset which has 80.3% positive class
marginal prior (i.e., alcohol=yes), and (2) estimating the ‘x-
movie’ sensitive attribute in the GSS dataset which has only
19.8% positive class marginal prior (i.e., x-movie=yes), see
Table 2. Figure 3 shows the comparison among FJRMIA,
CSMIA, and LOMIA in terms of FPR and other metrics. The
solid lines represent the attack performances of estimating al-
cohol in the FiveThirtyEight dataset whereas the dashed lines
represent the attack performances of estimating x-movie in
the GSS dataset. Since FJRMIA is heavily dependent on the
marginal priors of the sensitive attributes, it achieves extreme
FPRs in these two scenarios: 100% FPR in estimating alcohol
and 4.17% FPR is estimating x-movie. In contrast, our pro-
posed attacks are more stable and their superior performances
in both scenarios are evident by the G-mean and MCC metrics
in Figure 3. The comparison of these attacks’ FPRs for the
Adult dataset where the sensitive attribute is more balanced
is given in Table 13. The FPRs of our proposed attacks are
comparable to that of FJRMIA (∼ 6% vs. ∼ 3%). However,
our attacks outperform FJRMIA in terms of other metrics as
shown in Figures 2(c) and 2(d). Also, note that, lower FPR
may not always indicate a better attack, e.g., NaiveA has an
FPR of 0% but the attack has no efficacy.

In the following, we characterize the datasets for which
our proposed attacks may have higher FPR and vice versa.
In a dataset, if the sensitive attribute’s positive class has a
high marginal prior, our proposed attacks achieve lower FPRs
than FJRMIA (e.g., FiveThirtEight dataset in Figure 3). On
the other hand, if the sensitive attribute has lower positive
class marginal prior, our attacks result in higher FPRs than
FJRMIA (e.g., GSS dataset in Figure 3). Finally, if the sensi-
tive attribute has a more balanced marginal prior, our attacks
achieve FPRs comparable to FJRMIA (e.g., Adult dataset in
Table 13). However, irrespective of the marginal priors, for dif-
ferent datasets, our attacks consistently outperform FJRMIA
in terms of G-mean and MCC metrics.
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Figure 4: (a) Privacy leakage for DST and DSD, (b) disparate vulnerability of LOMIA for different gender and race groups.

5.6 Distributional Privacy Leakage

In order to investigate if our MIAI attacks also breach the
privacy of data that is not in the training dataset of the target
model but is drawn from the same distribution, we evaluate
our attacks on the corresponding DSD datasets as described
in Section 5.1. Figure 4(a) compares the performance of our
attacks as well as the performance of FJRMIA on the DT
model trained on the Adult dataset. Our observation shows
that our attacks are equally effective against the records in
the training dataset (DST ) and the records outside of the train-
ing dataset but drawn from the same distribution (DSD). We
observe similar trends in the proposed attacks against other
target models as shown in Figure 8 in Appendix.

5.7 Disparate Vulnerability of MIAI Attacks

In this section, we further investigate the vulnerability of
model inversion attacks by analyzing the attack performances
on different groups in the dataset. If a particular group in
a dataset is more vulnerable to these attacks than others, it
raises serious privacy concerns for that particular group.

Figure 4(b) shows the contrast in the performances of LO-
MIA against different gender and race populations. The attack
is performed against the DNN model trained on the Adult
dataset. The x-axis represents gender/race identities along
with the number of records in the training dataset that belong
to the particular subgroups. For instance, the numbers of fe-
male and male individuals in the Adult dataset are 11,486
and 23,736, respectively. According to our observation, LO-
MIA predicts correct marital status for 85.9% of the female
population whereas it predicts correct marital status for only
62.4% of the male population. LOMIA also shows disparate
attack performance against different race groups and is most
successful against the Black race subgroup with 78.2% ac-
curacy. Since the attack model of LOMIA is trained on DSA
dataset obtained from the Case (1) instances, we investigated
what percentage of records of each of the female and male
subgroups are labeled with correct sensitive attributes in DSA
dataset and if that has any impact on such disparate vulnera-
bility. However, we observe that around a similar percentage
(∼ 21%) of both female and male records, i.e., 2593 and 4837,
respectively, are labeled with the correct sensitive attribute

(single/married) in the DSA dataset, which is shown using Cor-
rect Case (1) bar in Figure 4(b). We also investigated if the
accuracy of the target model for different subgroups plays a
role in disparate vulnerability, shown using the TM Accuracy
bar in Figure 4(b). We observe that the target model is 92.4%
accurate for the female population and only 81.4% accurate
for the male population in predicting their income, which
correlates with the disparate vulnerability. However, we have
not observed this correlation consistently, e.g., in the case of
disparate vulnerability for race subgroups. LOMIA shows dis-
parate vulnerability against other subgroups, such as religions
(DT model trained on GSS dataset) and occupations (DNN
model trained on Adult dataset). The results are demonstrated
in Appendix (see Figures 9 and 10, respectively). Note that,
we have observed disparate vulnerability across all datasets
and models but reported the most interesting results only.

The performance of an adversary with RandGA strategy
would not differ significantly for these different groups be-
cause of their random prediction. Due to the differences in the
underlying distributions of the married individuals in these
groups, the RandGA strategy would only show slightly dif-
ferent performance in terms of precision and thus in the F1
score. While our findings here show only a few instances of
such disparity in the model inversion attack performances on
different groups, this is a potentially serious issue and needs to
be further investigated. Otherwise, while it may seem that the
attack performance on the overall dataset is not a significant
threat, some specific groups in the dataset could still remain
significantly vulnerable to MIAI attacks.

5.8 Attack Results With Partial Knowledge of
Target Record’s Non-sensitive Attributes

Figure 5(a) shows the performance details of LOMIA against
the DT model trained on the Adult dataset when 1-9 non-
sensitive attributes (NSA) increasingly become unknown (u)
to the adversary in the following order: work-class, sex, race,
fnlwgt, occupation, education, hours-per-week, capital-gain,
and capital-loss. This order reflects the importance of the
Adult dataset attributes in the LOMIA attack model trained
against the DT target model (see Figure 6). Since the ‘income’
attribute occupies 90.4% importance in the LOMIA attack
model, the unavailability of 9 other non-sensitive attributes
does not degrade the performance of LOMIA. Figure 5(b)
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Figure 5: LOMIA performance against the (a) DT and (b) DNN target models trained on Adult dataset when 1-9 non-sensitive
attributes (NSA) are unknown (u) to the adversary.
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Figure 6: Adult dataset attributes’ importance in the LOMIA
attack model trained against the DT target model.

Table 11: Attack performance against the DT target model
trained on Adult dataset.

Target model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 scoreclass label

<=50K
FJRMIA [18] 13 17108 13 9315 50% 0.14% 64.73% 0.28%
CSMIA 127 17018 103 9201 55.22% 1.36% 64.82% 2.66%
LOMIA 26 17085 36 9302 41.94% 0.28% 64.69% 0.55%

>50K
FJRMIA [18] 3775 710 498 3790 88.34% 49.9% 51.12% 63.78%
CSMIA 7537 67 1141 28 86.85% 99.63% 86.68% 92.8%
LOMIA 7548 47 1161 17 86.67% 99.78% 86.57% 92.76%

shows a similar performance of LOMIA against the DNN
model trained on the Adult dataset. Note that, the income
attribute occupies 100% importance in the LOMIA attack
model trained against the DNN target model. Hence, we use
the same order shown in Figure 6 to make 1-9 non-sensitive at-
tributes (NSA) increasingly unknown (u) to the adversary. We
have observed similar LOMIA results against the target mod-
els trained on GSS datasets. Figure 11 in Appendix shows the
importance of the GSS dataset attributes in the LOMIA attack
model against the DT target model and the corresponding per-
formance details of LOMIA when 9 non-sensitive attributes
(NSA) increasingly become unknown. Figure 12 shows the
same for the DNN target model trained on the GSS dataset.

These results not only show an increased vulnerability of
model inversion attacks but also escalate the practicability
of such attacks in the real world where the adversary may
not know all other attributes of a target record. Due to space
constraints, the performance details of the CSMIA partial
knowledge attack have been discussed in Appendix A.3.

5.9 Attacks’ Efficacy on Different Class La-
bels of Target Model

In this section, we aim to understand the efficacy of model
inversion attacks for different class labels of the target model
and focus on the DT model trained on the Adult dataset.

Table 11 shows a comparison among FJRMIA [18],
CSMIA, and LOMIA performances for different class labels
of the target model. Note that, the attack performances are
significantly different for the two class labels, e.g., the recall
values of identifying ‘married’ individuals in class <=50K
are significantly low when compared to the recall values of
identifying ‘married’ individuals in class >50K. The preci-
sion values also demonstrate disparate attack performances
on these two target model class labels.

5.10 Discussion and Limitations

5.10.1 Discussion

To our knowledge, ours is the first work that studies MIAI
attacks in such details on tabular datasets which is the most
common data type used in real-world machine learning [28].
We discuss some of our notable findings in the following:
TIR vs. MIAI: As mentioned in Section 1, the TIR attacks
have strong correlations with the model’s predictive power.
This is because highly predictive models are able to establish
a strong correlation between features and labels, and this is
the property that an adversary exploits to mount the TIR at-
tacks [22]. However, we argue that such is not the case for
MIAI attacks. Table 6 shows the confusion matrix for the DT
model trained on Adult dataset. From the matrix, it is evident
that the target model’s performance (both precision and re-
call) is better for class label <= 50K than that of for class
label > 50K. If the root causes of MIAI attacks were similar
to that of TIR attacks, the attacks would be more effective
against the records of class label <= 50K. On the contrary,
in Section 5.9, we demonstrate that the MIAI attacks (both
existing and proposed) perform better against the records of
class label > 50K.
Importance of sensitive attribute in target model: As dis-
cussed in Section 5.4.2, the importance of sensitive attributes

4590    31st USENIX Security Symposium USENIX Association



in the corresponding target models trained on GSS and Adult
datasets do not differ significantly whereas the proposed MIAI
attacks against target models trained on the Adult dataset are
significantly more effective than that of against the target mod-
els trained on GSS dataset. This indicates that only controlling
the importance of the sensitive attributes in the target model
may not be always sufficient to reduce the risk of model in-
version attacks. We identify the difference in the distribution
of sensitive attributes in these datasets (Adult dataset 47.9%
positive class vs. GSS dataset 19.8% positive class) as a factor
that has contributed to this attack performance difference. We
leave investigating this and other factors to future work.
Disparate vulnerability: We have investigated correct Case
(1) percentage and target model accuracy for different sub-
groups as possible factors behind disparate vulnerability. It
is evident that further investigation is required to better un-
derstand the disparate impact on different groups of records
which is a serious threat of model inversion attacks.
Distributional privacy breach: Existing research [19, 22]
shows that differential privacy (DP)-based defense mecha-
nisms against model inversion attacks suffer from significant
loss of model utility. Moreover, DP mechanisms provide pri-
vacy guarantees to only the training data records. In con-
trast, our experiments show that model inversion attacks not
only breach the privacy of sensitive training datasets but also
leak distributional privacy. Therefore, the effectiveness of DP
mechanisms against model inversion attacks needs further
investigation.

5.10.2 Limitations

Attribute inference attack is not a real threat when a dataset
has a lot of attributes, since the model prediction is likely to
depend very little on each individual attribute. Therefore, in
this paper, we study the MIAI attacks only on datasets with
fewer attributes. Also, in certain datasets, where the sensitive
attribute has lower positive class marginal prior, our attacks
result in high FPRs. We leave the investigation of designing
improved model inversion attacks that ensure marginal prior
agnostic lower FPRs to future work.

6 Related Work
In [19], Fredrikson et al. introduced the concept of model
inversion attacks and applied their attack to linear regression
models. In [18], Fredrikson et al. extended their attack so that
it could also be applicable to non-linear models, such as deci-
sion trees. The later work presents two types of applications
of the model inversion attack. The first one assumes an adver-
sary who has access to a model (for querying) and aims to
learn the sensitive attributes in the dataset that has been used
to train that model. In the second setting, the adversary aims
to reconstruct instances similar to ones in the training dataset
using gradient descent. As mentioned earlier, we focus on
the first one, i.e., attribute inference attack. Subsequently, Wu

et al. [35] presented a methodology to formalize the model
inversion attack.

A number of attribute inference attacks have been shown
to be effective in different domains, such as social me-
dia [23, 24, 36–40] and recommender systems [41, 42]. In
these attacks, the adversary first trains a machine learning
classifier that takes as input the public attributes and then
outputs the private attributes. However, in order to build such
a classifier, these attacks [23, 24, 36–41] have to rely on the
users who also share their private attributes (e.g., gender, polit-
ical views, locations visited) along with their public attributes
(e.g., pages liked, movie ratings). Therefore, the adversary’s
machine learning classifier can be built only in those scenar-
ios where it can collect the private-public attribute pairs of
real users. In contrast to the adversaries assumed in these
attacks [23,24,36–41], the adversaries assumed in our attacks
are not assumed to be able to obtain a dataset from the same
population the DST dataset has been obtained from. This is
because in many scenarios such an assumption (adversary
having access to a similar dataset) may not be valid. There-
fore, while designing our attacks, it has been part of our goal
to incorporate these practical scenarios in our attack surface
so that our proposed attacks could be applied more widely.

Most of the work mentioned above assumes that the at-
tributes of a target individual, except the sensitive attribute,
are known to the adversary. Hidano et al. [43] proposed a
method to infer the sensitive attributes without the knowledge
of non-sensitive attributes. However, unlike our model inver-
sion attacks, they consider an online machine learning model
and assume that the adversary has the capability to poison the
model with malicious training data. In contrast, our model
inversion attack with partial knowledge of the target individ-
ual’s non-sensitive attributes does not require poisoning and
performs similar to scenarios where the adversary has full
knowledge of the target individual’s non-sensitive attributes.

7 Conclusion and Future Work
In this paper, we demonstrate two new black-box model in-
version attacks: (1) confidence score-based attack (CSMIA)
and (2) label-only attack (LOMIA). We perform an extensive
evaluation of our attacks using two types of ML models, deci-
sion tree and deep neural network, that are trained with three
real datasets [25–27]. Our evaluation results show that the
proposed attacks significantly outperform the existing ones.
Moreover, we empirically show that model inversion attacks
have disparate vulnerability property. We also evaluate the
risks incurred by model inversion attacks when the adversary
does not have the knowledge of all other non-sensitive at-
tributes of a target record and demonstrate that our attacks’
performance is not impacted significantly in those scenar-
ios. Designing effective defense methods that protect privacy
against our label-only MIAI attack without degrading the
target model’s performance is left as future work.
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A Appendix

A.1 Random Guessing Attack Performances
In this attack, the adversary randomly predicts the sensitive
attribute by setting a probability for the positive class sensi-
tive attribute value. Fig. 7(a) shows the optimal performance
of random guessing attack when the marginal prior of the
positive class sensitive attribute is 0.3 and the adversary sets
different probabilities to predict the positive class sensitive
attribute value (probabilities in x-axis). As shown in the fig-
ure, the maximum G-mean a random guessing attack can
achieve is 50%, independent of the knowledge of marginal
prior. The precision for predicting the positive class sensi-
tive attribute is constant and equals the marginal prior of that
class as long as the set probability is > 0. This is because
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Figure 7: (a) RandGA performance. Importance of (b) GSS and (c) Adult dataset attributes in their respective DT target models.

when the attack randomly assigns the positive class label to
the records, approximately 30% of those records’ sensitive
attributes would turn out to be originally positive according
to the marginal prior of the positive class sensitive attribute
which is 0.3. The recall of the random guessing attack in-
creases with the probability set to predict the positive class
sensitive attribute. For example, if the adversary reports all
the records’ sensitive attributes as positive, there is no false
negative left and thus recall reaches 100%. The MCC of the
random guessing attacks is always 0.

A.2 Comparison of Attacks’ Query Numbers
In FJRMIA, the adversary predicts sensitive attribute value
from all possible values based on the score C [y,y′]∗ p1,i, i.e.,
the attack selects the sensitive attribute value that maximizes
this score (see section 2.4). Since for each instance in the
training dataset the adversary queries k times (k is the number
of possible values of the sensitive attribute), it requires k ∗n
queries in total, where n is the number of instances in the train-
ing dataset. Our CSMIA strategy performs queries similarly,
i.e., during the attack, but instead of comparing C [y,y′]∗ p1,i
for different sensitive attribute values, it compares the confi-
dence scores returned by queries (see section 4.1). Therefore,

both FJRMIA and CSMIA require k ∗ n queries while at-
tacking the entire training dataset. For LOMIA, the number
of queries to the target model is the same as CSMIA and
FJRMIA to perform the attack on the entire training dataset.
However, these queries are performed to generate the Case
(1) attack dataset and to train the attack model rather than
while performing the attack as in CSMIA and FJRMIA. Once
the attack model is built, the attacker in LOMIA does not
need to query the target model anymore, it queries the attack
model instead. We present the target model query numbers
for different attacks on different datasets in Table 14.

For example, GSS DST dataset has 15235 instances (n =
15235) and sensitive attribute x_movie has two possible values
(k = 2). Therefore, the total number of queries for all attacks
in this dataset is k ∗n =15235x2=30470. The total number of
queries for estimating single sensitive attributes in Adult (i.e.,
marital-status) and FiveThirtyEight datasets (i.e., alcohol or
age-group) are calculated similarly. For multiple sensitive at-
tribute inference, i.e., estimating age-group and alcohol in the
FiveThirtyEight dataset, we consider one sensitive attribute
to be missing [32] and query the target model with all possi-
ble values of the other sensitive attribute. Therefore, the total
number of queries while simultaneously estimating age-group

Table 12: Attack performance against the DT and DNN target models trained on GSS dataset.

Target Model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC FPR
DT/DNN NaiveA 0 12218 0 3017 0% 0% 80.2% 0% 0% 0% 0%
DT FJRMIA [18] 131 11709 509 2886 20.47% 4.34% 77.72% 7.16% 20.39% 0.3% 4.17%
DT CSMIA 1490 7844 4373 1528 25.41% 49.37% 61.27% 33.55% 56.3% 11.1% 35.79%
DT LOMIA 1782 5565 6653 1235 21.13% 59.07% 48.22% 31.12% 51.87% 3.7% 54.45%
DNN FJRMIA [18] 1 12213 5 3016 16.67% 0.03% 80.17% 0.07% 1.82% −0.2% 0.04%
DNN CSMIA 1212 8058 4160 1805 22.56% 40.17% 60.85% 28.89% 51.47% 5.1% 34.05%
DNN LOMIA 1225 8015 4203 1792 22.57% 40.6% 60.65% 29.01% 51.61% 5.16% 34.4%

Table 13: Attack performance against the DT and DNN target models trained on Adult dataset.

Target Model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC FPR
DT/DNN NaiveA 0 18329 0 16893 0% 0% 52.04% 0% 0% 0% 0%
DT FJRMIA [18] 3788 17818 511 13105 88.11% 22.42% 61.34% 35.75% 46.69% 29.9% 2.79%
DT CSMIA 7664 17085 1244 9229 86.04% 45.37% 70.27% 59.41% 65.03% 44.3% 6.79%
DT LOMIA 7574 17132 1197 9319 86.35% 44.84% 70.14% 59.02% 64.74% 44.3% 6.53%
DNN FJRMIA [18] 3592 17717 612 13301 85.44% 21.26% 60.5% 34.05% 45.34% 27.6% 3.34%
DNN CSMIA 7490 17139 1190 9403 86.29% 44.34% 69.93% 58.58% 64.39% 43.9% 6.49%
DNN LOMIA 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.2% 6.59%
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Figure 8: Privacy leakage for DST and DSD: against (a) DNN target model trained on Adult dataset, (b) DT target model trained
on GSS dataset, and (c) DNN target model trained on GSS dataset.
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Figure 9: Disparate vulnerability of LOMIA for different religion groups (attack on the DT model trained on GSS dataset)
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Figure 10: Disparate vulnerability of LOMIA for different occupation groups (attack on the DNN model trained on Adult dataset)

Table 14: Query Numbers for Different Attacks

Attack Strategy
GSS, Adult, Fivethirtyeight , Fivethirtyeight, Fivethirtyeight

(x-movie) (marital-status) (alcohol) (age-group) (age-group & alcohol)
Section 5.4.1 Section 5.4.2 Section 5.5 Section 5.4.3 (i) Section 5.4.3 (ii)

FJRMIA 30470 70444 662 1324 1986
CSMIA 30470 70444 662 1324 1986
LOMIA 30470 70444 662 1324 1986

and alcohol sensitive attributes is 331x(4+2)=1986.

A.3 CSMIA Results With Partial Knowledge
of Non-sensitive Attributes

Excluding the sensitive attribute (‘marital status’) and the out-
put of the target model (‘income’), we first consider each of
the remaining (non-sensitive) attributes to be unknown to the
adversary once at a time, i.e., denoting those as x2. Figure 13
shows the performance of CSMIA on the DT target model
trained on the Adult dataset when some of the non-sensitive
attributes are unknown to the adversary. The x-axis shows the
non-sensitive attributes that are unknown along with the num-
ber of queries to the target model. The attributes are sorted
(from left to right) according to their importance in the model,
a parameter computed by BigML. We also present the origi-
nal results (i.e., when none of the non-sensitive attributes is
unknown to the adversary) to compare how the partial knowl-
edge of the target individual’s non-sensitive attributes impacts

our attacks’ performances. As demonstrated in Figure 13, we
observe that the performance of our attack does not deteriorate
and remains almost the same when some of the non-sensitive
attributes are unknown to the adversary, independent of the im-
portance of the attributes in the target model. We observe only
slightly lower precision and slightly higher recall when the
‘capital-loss’ attribute is unknown to the adversary. We also
perform experiments where a combination of non-sensitive
attributes are unknown to the adversary– ‘occupation and
capital-gain’ (combined importance 37.8%), ‘occupation and
hours-per-week’ (combined importance 33.3%), and ‘occu-
pation and capital-loss’ (combined importance 30.4%). As
demonstrated in Figure 13, our attack does not show any sig-
nificant deterioration. Due to the combinatorial complexity
of our CSMIA partial knowledge attack and increasing num-
ber of target model queries, we limit the number of unknown
non-sensitive attributes to two for these experiments.

Table 15: Inferring the sensitive attribute alcohol (alcohol=yes
80.3% marginal prior), attack performances against the DT
target model trained on FiveThirtyEight dataset (adversary
also estimates the age-group sensitive attribute).

Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [18] 256 5 60 10 81.01% 96.24% 78.85% 87.97% 27.21% 7.51%
CSMIA 151 34 31 115 82.97% 56.77% 55.89% 67.41% 54.49% 7.25%
LOMIA 192 19 46 74 80.67% 72.18% 63.75% 76.19% 45.93% 1.25%
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Figure 11: (a) GSS dataset attributes’ importance in the LOMIA attack model trained against the DT target model. (b) LOMIA
performance against the DT model trained on GSS dataset when 1-9 non-sensitive attributes (NSA) are unknown (u) to the
adversary in the following order: divorce, race, religion, sex, education, age, year, number-of-children, and porn-law.
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Figure 12: (a) GSS dataset attributes’ importance in the LOMIA attack model trained against the DNN target model. (b) LOMIA
performance against the DNN model trained on GSS dataset when 1-9 non-sensitive attributes (NSA) are unknown (u) to the
adversary in the following order: divorce, year, sex, age, number-of-children, race, religion, porn-law, and education.
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Figure 13: CSMIA performance against the DT model trained on Adult dataset when some of the other (non-sensitive) attributes
of a target individual are also unknown to the adversary.

Table 16: Attacks against DT target model trained on FiveThirtyEight dataset to infer multivalued age-group sensitive attribute
(along with inferring binary sensitive attribute alcohol)

(a) Attack confusion matrix of FJRMIA
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 0 64 0 6 70 0%
30-44 0 88 0 5 93 94.62%
45-60 0 84 0 2 86 0%
>60 0 77 0 5 82 6.1%
Total 0 313 0 18 331 Avg. recall 25.18%
Precision 0% 28.12% 0% 27.78% Avg. precision 13.97% Accuracy 28.1%

(b) Attack confusion matrix of CSMIA
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 35 12 7 16 70 0.5%
30-44 14 52 12 15 93 55.91%
45-60 16 14 36 20 86 41.86%
>60 16 24 17 25 82 30.49%
Total 81 102 72 76 331 Avg. recall 44.57%
Precision 43.21% 50.98% 50% 32.89% Avg. precision 44.27% Accuracy 44.71%

(c) Attack confusion matrix of LOMIA
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 33 23 13 1 70 47.14%
30-44 24 48 15 6 93 51.61%
45-60 19 29 33 5 86 38.37%
>60 21 34 15 12 82 14.63%
Total 97 134 76 24 331 Avg. recall 37.94%
Precision 34.02% 35.82% 43.42% 50% Avg. precision 40.82% Accuracy 38.07%

(d) Attack confusion matrix of LOMIA (Case 1)
XXXXXXXXXXActual

Predicted
18-29 30-44 45-60 >60 Total Recall

18-29 15 1 0 0 16 93.75%
30-44 0 18 0 1 19 94.74%
45-60 1 0 16 2 19 84.21%
>60 1 1 0 6 8 75%
Total 17 20 16 9 62 Avg. recall 86.92%
Precision 88.24% 90% 100% 66.67% Avg. precision 86.23% Accuracy 88.71%
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