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Abstract
The incumbent all-or-nothing model of access control on
smartphones has been known to dissatisfy users, due to high
overhead (both cognitive and physical) and lack of device-
sharing support. Several alternative models have been pro-
posed. However, their efficacy has not been evaluated and
compared empirically, due to a lack of detailed quantitative
data on users’ authorization needs. This paper bridges this gap
with a 30-day diary study. We probed a near-representative
sample (N = 55) of US smartphone users to gather a compre-
hensive list of tasks they perform on their phones and their
authorization needs for each task. Using this data, we quan-
tify, for the first time, the efficacy of the all-or-nothing model,
demonstrating frequent unnecessary or missed interventions
(false positive rate (FPR) = 90%, false negative rate (FNR) =
21%). In comparison, we show that app- or task-level models
can improve the FPR up to 88% and the FNR up to 20%,
albeit with a modest (up to 15%) increase in required upfront
configuration. We also demonstrate that the context in which
phone sharing happens is consistent up to 75% of the time,
showing promise for context-based solutions.

1 Introduction

Providing strong physical security for smartphones is of ut-
most importance nowadays. Continued advancements in the
capabilities of phones have enabled their use for a diverse
range of applications, leading to users storing and accessing
highly sensitive data and services (e.g., health data and tax
filings) on the devices [18]. This situation has increased the
damage the users would incur if there were any unauthorized
physical access to their phone [42,43]. Thus, to mitigate such
risk, practitioners and researchers have increased efforts to
improve the physical security system of phones [3].

Generally, any physical security system consists of two
components: the authentication system, which confirms the
user’s identity, and the access-control (a.k.a. authorization)
system, which ensures the authenticated user can access only
allowed functionalities [31].

The improvements to the authentication on smartphones,
so far, have been significant. In the beginning, phones
had the system designed around the something-you-know
model, which translated to knowledge-based unlocking meth-
ods, such as a passcode or pattern. However, due to usabil-
ity [25,47], memorability [32], and security issues [41,68,69]
with these methods, there was a shift toward a something-
you-are model. This is when manufacturers started offer-
ing biometric unlocking methods, such as fingerprint or face
recognition [7, 40, 57]. More recently, implicit authentication
solutions (which leverage behavioral biometrics) have been
developed for smartphones as well [16, 19, 20, 38, 46].

For access control on smartphones, in contrast, there has
not been much change. The system is still based on the all-or-
nothing model; the user can utilize all or none of the phone’s
functionalities based on its unlocked or locked status [29, 45].
This stagnancy is despite ever-increasing evidence that the
system is inefficient in meeting users’ needs in two key areas.

Firstly, the system disregards any differences in task (a.k.a.
fine-grain actions) security requirements. Even though tasks
performed on smartphones have different levels of sensitiv-
ity [14,18,29], the access-control system treats all of them the
same. For example, whether the user wants to read a book or
perform a financial transaction, the phone requires the same
level of unlocking. Studies suggest that users perceive this
model of protection as sometimes unnecessary (e.g., for read-
ing the book) and sometimes insufficient (e.g., for financial
transactions), and, are dissatisfied with it [35, 37, 59].

Secondly, the system lacks support for device sharing, de-
spite the prevalence of the practice. Phone owners share their
devices for a variety of reasons, such as financial necessity
or technical help [24, 35, 44]. Yet the phones do not support
secure sharing [29, 43]. This omission results in the insecure
practice of primary users sharing their passcodes or adding
the biometrics of the secondary users to the phones [44]. This
leads to primary users have limited ability to control what
secondary users can access on the phone, which leads to
unauthorized access and user dissatisfaction [35, 43, 44, 50].

There have been several attempts at addressing these short-
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comings. For example, to facilitate secure phone sharing,
both Android and iOS now allow locking an app on the screen
and not allow switching apps without the passcode [64, 65].
Also, to accommodate differences in task sensitivity, context-
based [28] solutions have been developed.

However, the efficacy of the proposed solutions has not
been evaluated empirically. As such, it is unclear if they suc-
ceed in addressing the shortcomings of the incumbent system.
Worse, a lack of understanding still exists in the literature,
regarding (1) the extent of the all-or-nothing model’s failure
in meeting users’ needs, even in terms of basic measures of a
false positive rate (FPR) and false negative rate (FNR); (2) the
improved level of performance of the proposed alternatives
under the same criteria and the trade-off in terms of increase
in the required up-front configuration; and (3) the consistency
of the contextual factors across sharing instances, to show if
it is practical to use them for better access control.

In this paper, we addressed these gaps by conducting a lon-
gitudinal diary study. We asked a near-representative sample
(N = 55) of the US smartphone-user population to install our
custom Android app on their personal phones for 30 days.
They used it to report their their access control needs, and the
details (e.g., time, location) of their phone-sharing events.

Using this data, we estimated for how many tasks users
perform each authorization solution either forces unnecessary
authentication (i.e., a false negative (FN)) or fails to prevent
unauthorized access (i.e., a false positive (FP)). We also ex-
amined the value distribution of the contextual factors across
all of the reported sharing events.

The results found (unsurprisingly) the all-or-nothing model
to be inefficient, with its average FPR and FNR being as high
as 90.3% and 21.2%, respectively. In contrast, we found that
app-level models could potentially decrease these rates to
4.8% and 11.3%; task-level ones could further improve the
FNR to 1.7% (without changing the FPR), albeit with a 15%
increase in configuration size. Hence, we found that overall
an app-locking solution might strike the best balance between
security and usability for most users. Lastly, we found phone
sharing happens in the same context up to 75% of the time.

In summary, we make the following contributions to the
field of access control on smartphones:

• A detailed quantitative view on users’ authorization
needs. We offer insight into how the needs differ across
the categories of task functionality and among users.

• A quantitative evaluation of how the all-or-nothing
model and its alternatives meet the access-control needs
of users. These measurements provide stronger evidence
as to how and why the status quo is suboptimal.

• A longitudinal investigation into the context of phone
sharing. Given the subsequent consistency of contextual
factors, we demonstrate how incorporating them into
access-control decisions could help with a better balance
between users’ needs for both security and usability.

2 Related Work

2.1 Smartphone Users’ Access-Control Needs

Several studies have qualitatively investigated users’ needs.
For example, Mazurek et al. [45] interviewed 33 smartphone
users. They found that users’ ideal access-control policies
could not be easily defined in standard role-based terms and
depended on factors such as location and presence of certain
individuals. They also found that, as incumbent solutions can-
not uphold such complex policies, users resort to constructing
ad hoc solutions, such as hiding files. Based on such obser-
vations, the authors argued that users require reactive policy
creation and finer-grain access control than an all-or-nothing
model. Similarly, Hayashi et al. [29] interviewed 20 users
and found that their needs go beyond all-or-nothing. Their
participants wanted at least one of their apps to be protected
by a lock, half to be without protection, and 20% to be split
(only parts of them locked). Hence, the authors found that
users’ authorization needs are even finer-grain than app-level.

To understand users’ authorization needs in phone-sharing
settings, Karlson et al. [35] interviewed 12 users to explore
why they shared phones, with whom, and the concerns they
had when sharing. They found that participants expressed
strong preferences about which data and functionality should
be available to each guest user. The authors also found that
sharing preferences might be location dependent. Later, Hang
et al. [24] conducted focus groups with 25 participants and
found sharing to be often impromptu. They also found sharing
preferences to be strongly app and data dependent.

Jacobs et al. [34] reported a similar study on couples’ prac-
tices with single-user device access. They conducted 20 in-
terviews and an 8-day diary study. They found that sharing
preferences often depended on content type, making the all-
or-nothing model impractical.

Lastly, Matthews et al. [44] investigated sharing across mul-
tiple devices. They conducted a survey with 99 households
and a 21-day diary study. They found device and account shar-
ing to be common. They also identified six different types of
sharing, ranging from borrowing devices to getting technical
help. They suggested that access control could be designed
differently for each sharing type. They also found that sharing
often happened in the sharer’s presence.

2.2 Alternatives to All-or-Nothing

Several solutions have been proposed to alleviate the deficien-
cies of the all-or-nothing model.

The first set of solutions provides task sensitivity (requiring
authentication only when the app/task being used requires
it). Commercially, both Android and iOS allow lock screen
access to some apps [54]. This solution keeps the all-or-
nothing model mostly intact but allows the user to launch
certain nonsensitive apps (e.g., camera, calculator) without
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Table 1: Summary of proposed and deployed user access-control solutions on smartphones.

Category Approach Proposed and Deployed Solutions

Ta
sk

se
ns

iti
vi

ty All-or-nothing Allows authorized users all functionality but none to
unauthorized Incumbent on current phones

Lock screen access Permits identical access to all-or-nothing, except for
allowing access to a few apps without unlocking Deployed on most phones [54]

App-level access Grants or denies access to each app individually Progressive authentication [59] and
several others [12, 48, 61, 66]

All-or-nothing Allows secondary users full access to the phone State of practice for most users [44]

Ph
on

e
sh

ar
in

g Profile switching Provides a separate profile with isolated apps and
data for each secondary user Deployed on Android phones [30]

Resource based Denies secondary users access to sensitive phone
resources (Wi-Fi, Bluetooth) DiffUser [51]

Session based Specifies individually what apps the secondary user
can access in each shared session xShare [39], app pinning [64]

unlocking the phone. Alternatively, Riva et al. propose a more
elaborate solution called progressive authentication [59]. It
determines a level of confidence in the user’s authenticity and
only prompts for authentication when a launched app requires
high confidence. There have also been several context-based
solutions that allow access to certain apps in specific contexts
(e.g., location) without authentication [12, 48, 61].

Another set of solutions aims to provide better phone-
sharing support. Commercially, profile switching [30] is
the incumbent solution on Android. It allows the device
owner to create separate profiles for secondary users. How-
ever, research has shown that users often do not utilize pro-
files even when set up, due to high physical and cognitive
overhead [9, 17]. Android and iOS also now support app
pinning [64, 65]. It allows the owner to limit sharing to a
single app by fixing the app on the screen and preventing the
switching of apps.

Researchers have proposed more elaborate solutions. Ni
et al. [51] propose DiffUser, which implements a role-based
model of access control. Secondary users are assigned to
a role: administrator, normal user, or guest. Each role has
restricted access to certain resources (e.g., normal users can
access SMS and contacts but cannot install or uninstall apps).
Liu et al. [39] propose xShare, which allows the sharer to
quickly put the phone in a restricted mode before handing it
to a sharee. The sharer must respecify what apps are available
in this mode every time they enable it.

To summarize, Table 1 provides an overview of the exist-
ing solutions, categorizing them based on their approach to
access control. We should note that in this paper we were fo-
cused on solutions that control a human operator’s access to a
phone. Therefore, OS-level solutions that control apps’ or pro-
cesses’ access to system resources, such as FlaskDroid [10]
and others [4, 5, 67, 71], were out of our scope.

2.3 Gaps in the Literature

Overall, we identified several gaps in the literature, which
this paper aims to address. Firstly, while prior studies demon-
strated the existence of issues with all-or-nothing, they did
not offer insights into the prevalence of the issues. For exam-
ple, while all-or-nothing’s obliviousness to task sensitivity is
suboptimal [24, 29], it remained to be investigated what pro-
portion of users’ tasks are actually sensitive or how sensitivity
varies by functionality and across users. Such investigations
would help researchers and developers to understand how dire
these issues really are and whether there is an actual need for
the other solutions. Only when the variance of task sensitivity
among users is high can one argue for solutions that increase
authorization granularity. Otherwise, the high configuration
effort required for such solutions makes them unattractive for
most users. We address this gap in Section 4.1.

Furthermore, even if a need for new solutions is determined,
the literature [24, 34, 35, 44] did not offer quantitative mea-
surements of users’ needs. As such, there could not have been
(and was not) any attempt to evaluate and compare the effi-
cacy of all-or-nothing and its alternatives. This left it unclear
whether the proposed alternatives would succeed in address-
ing the issues with all-or-nothing and if/where there would
be a need for further research. We report our findings on
the efficacy of different access-control models in Section 4.2.
Last but not least, while the existing literature showed that
users’ access-control preferences for phone sharing indeed
depended on contextual factors (e.g., location [45] and con-
tent [29, 34, 44]), the consistency of such factors had not
been demonstrated. To determine the prospects of improving
access-control decisions by incorporating these factors, it is
important to understand how consistent they are. We shed
light on this in Section 4.3.

USENIX Association 31st USENIX Security Symposium    919



3 Methodology

Formalizing what we discussed in Sections 1 and 2, our study
was designed to answer the following research questions
(RQs):

• RQ1: What tasks do smartphone users perform on their
phones? What are their sharing preferences for the tasks?

• RQ2: To what extent, in terms of the FPR and FNR,
do all-or-nothing and the alternative solutions meet the
users’ needs? How do they compare in configuration
size?

• RQ3: How consistent are contextual factors across
phone-sharing events?

As mentioned, we conducted a diary study to answer these
questions. The study involved participants installing our An-
droid app on their phones and using it to report the following
data every day: (1) the tasks they performed with each of their
apps, (2) the people (if any) they would allow to perform each
task, and (3) the details (e.g., time, location) of any instances
of sharing their phone with others.

Inspired by Hayashi et al. [29], we used tasks as the means
to collect users’ authorization needs. Conceptually, we de-
fined a task as a distinct series of actions that could be per-
formed with a mobile app and that was distinguishable in
terms of purpose and sharing preferences. Technically, they
comprise the functionality affordances of a mobile app, simi-
lar to affordances of real-world objects or user interfaces [52].
For example, the app Gmail affords the tasks “Sending email”
and “Reading email,” according to our participants.

To solicit tasks, we asked the participants to declare what
they used an app for, while separating actions that had differ-
ent purposes. We also asked them to further break down a
task if there were parts of it they were unwilling to share with
others. For example, if they had used the SMS app to both
send and receive texts, they were asked to declare sending
and receiving as separate tasks if they were willing to let oth-
ers do one (e.g., the sending) but not the other (the reading).
Otherwise, they could declare “sending and receiving SMS”
as the task.

We used a longitudinal design to accommodate known lim-
itations of human memory [8], only requiring participants
to recall details of their phone usage (e.g., their tasks) over
one day. While this still put some memory burden on the
participants (and thus could have led to recall bias), an al-
ternative cross-sectional design [70] would have been worse,
unrealistically requiring participants to recall at one sitting
the details of their phone usage from over a month.1

1As evidence in support of our design choice, we had only two instances
of a participant stating in a daily diary that they did not remember sharing
their phone.

3.1 Data Collection
Our app kept track of the participants’ daily app usage and
invited them every night to fill out a diary. Using an Android
app, instead of paper- or web-based diaries, allowed us to
avoid asking participants repetitive questions (e.g., asking
them to list all the apps they had used) and to also ask detailed
questions about app usage context, as explained below.

The diary questions were fully structured. First, the partici-
pant was asked if they had shared their phone during the day.
If so, they were shown a list of apps launched on the phone
that day and were asked to indicate which apps were shared
(see Figure A in the paper’s online supplementary material [2]
for an example).

Next, our app would select five apps (either shared or used
by the participant themselves) to probe further about. We
chose five because pilot studies (described later in this section)
showed that it took ten minutes on average to complete a diary
with this number of apps; taking any more time daily would
result in lower data quality and higher chances of skipping
diary questions or even dropping out of the study.

The five apps were selected using an algorithm (see supple-
mentary material [2] for a flowchart). First priority were apps
the participant reported sharing for the first time. We antici-
pated such apps to be rarer. If there were more than five such
apps, we prioritized selecting those with higher usage time
(i.e., those that had more time in the foreground, based on
Android’s UsageStats service [56]). If there were fewer than
five newly shared apps, we selected from apps the participant
used themselves for the first time (while again prioritizing
apps with higher usage time). If these two priorities did not
fill the quota, we filled it by randomly selecting apps.

Next, the participants were asked to provide the following
data about each of the five selected apps:

For both shared and nonshared apps: A list of tasks per-
formed with the app (either the participant had performed
or they believed a sharee had). They could create new tasks
or select from the ones declared previously (see Figure F in
supplementary material [2]). They were also asked to specify
their sharing preferences for each task. The question read,
“For each task, select whom you’d generally allow to perform
it on your phone.” The answer options were “No one,” “Any-
one,” or “Specific people.” If they chose “Specific people,”
they were asked to provide a list of individuals. To reduce
the cognitive load of this option, a list of individuals previ-
ously defined by the participant was provided (see Figure G
in supplementary material [2]).

Specific to shared apps: Participants were shown a list of
times the app in question was launched on the phone. They
were asked to specify whom (either themselves or a sharee)
used the app each time (see Figure C in supplementary mate-
rial [2]). To specify a user/sharee, the participants needed to
give them a nickname to use for any subsequent reporting of
sharing with the same person. They also had to declare their
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Table 2: Demographics of study participants.

Variable Category
% (#) of
Partici-
pants

Gender Female 47.3 (26)
Male 52.7 (29)

Age 18-29 9.1 (5)
30-49 67.3 (37)
50-64 20 (11)
65 and higher 3.6 (2)

Education High school 27.3 (15)
Associate 18.2 (10)
Bachelor 45.5 (25)
Graduate degree 9.1 (5)

Annual income Less than 10 5.5 (3)
(in US$1,000s) 10-29 10.9 (6)

30-60 30.9 (17)
60-100 40.0 (22)
100-150 5.5 (3)
More than 150 7.3 (4)

Ethnicity Asian 1.8 (1)
Black 7.3 (4)
Hispanic 9.1 (5)
White 81.8 (45)

relationship with the sharee (e.g., spouse). Afterward, each
time the app was reported to have been shared the participant
was asked to specify the location where the sharing happened
and whether they were present at the time of sharing (see
Figure E in supplementary material [2]).

3.2 Pilot Studies
We conducted three pilot studies to test our data collection and
analysis design. Detailed descriptions of them are provided
in Appendix A.1. In summary, the results allowed us to refine
the wording of some questions, thereby improving correct
interpretation of the diary questions by participants. We also
used the results to estimate the preferred daily diary time limit
(10 minutes) and length of the study (1 month), and improve
communications in the consent form. These improvements
addressed security and privacy concerns that could have po-
tentially swayed future participants from participating.

3.3 Participant Recruitment
We recruited participants through MTurk. We published an
ad, inviting those interested in a “study of phone usage and
sharing habits” to complete a screening survey (the survey
questions are provided in the online supplementary mate-
rial [2]), for a US$1 compensation. The ad was only visible
to Turkers who were located in North America (according to
MTurk) and had an approval rate of at least 85%. We received

408 responses to the survey and invited 226 of the respondents
to install our app. The sample size was determined by power
analysis, assuming 85% confidence level, 5% margin of error,
and a target population size of 330 million for the US. We
excluded participants who did not have an Android phone
(67 entries) or showed clear signs of duplicate or low-quality
data (20 entries; e.g., claiming to use Face ID on an Android
phone). We also selected randomly from those who had a
surplus of demographic quota in our sample (e.g., younger
age ranges). Out of those invited, 65 installed the app, and 55
eventually completed the study.

Data collection took place between May and August 2021.
At the end of the study, each participant was compensated with
a gift card worth US$20 plus US$2 for every daily diary they
completed. Compensation was paid per diary as a whole, not
per report of sharing, in order to avoid participants providing
bogus data for extra credit. This compensation model was
inspired by other longitudinal studies [13, 36, 62] and was
designed to reduce the probability of early drop out.

Our final sample was fairly representative of the US
smartphone-user population, which is where all of the partici-
pants were located. As Table 2 shows, the sample was diverse
in terms of age, gender, education, and income groups. We
also performed chi-square tests. They showed no statistically
significant differences (p-values > 0.05), in terms of the dis-
tribution of the above demographics, between our sample and
the general US smartphone users as of 2019, as reported by
the Pew Research Center [11]. However, our sample was not
very diverse in terms of ethnicity. Age distribution was also
skewed, even if the difference was not statistically significant.
We discuss sample limitations further in Section 6.

3.4 Ethics

Data collection was conducted according to the policies and
regulations of the University of British Columbia (UBC) and
Canada. All study procedures were reviewed and approved
by UBC’s Behavioural Research Ethics Board (Certificate
ID H20-03155). All types of data that the study app would
collect and the purpose for that collection were disclosed, and
participants consented to its collection. To preserve partic-
ipants’ privacy, four measures were employed: (1) the app
was not programmed to collect any data outside the scope
of the study; (2) the collected data was uploaded on a daily
basis through an SSL-encrypted connection to a server hosted
in Canada, deleted from the phone after upload, and stored
on an encrypted disk; (3) personally identifiable information
(e.g., contact email) was collected as part of the web-based
screening survey but not through the study app; and (4) once
the study ended, the app automatically disabled itself and
prompted the users to uninstall it (see Figure Q in supplemen-
tary material [2]).

USENIX Association 31st USENIX Security Symposium    921



3.5 Data Analysis

RQ1 [Tasks]: To create a cohesive list of tasks, two re-
searchers aggregated the tasks reported by the participants to
merge functionally duplicate ones. They did so by performing
qualitative inductive coding [6]. Every day, each researcher
mapped each newly declared task to one of the existing ones in
our codebook. A mapping meant that the researcher believed
the new task was the same as the previously declared one.
The criteria for mapping tasks was that (1) they would either
be phrased identically or were similar in functionality, and
(2) the researcher could not envision a scenario in which they
would require different security, based on the participant’s
prior data. If a new task could not be mapped to an existing
one, it was added to the codebook as is. The researchers met
once a week to resolve any differences (disagreement rate was
4.5%). All disagreements were resolved; if the researchers
could not agree on an aggregation, both of the declared tasks
would enter the codebook.

Once the task codebook was finalized, the two researchers
performed categorization of the tasks based on functional-
ity. The aim was to use this categorization to investigate the
correlation between functionality and task sensitivity.

To perform the categorization, each researcher labelled
each task with one of the 32 functionality categories the
Google Play store uses for apps [22]. The researcher used
Google Play’s guidelines [22] to decide which category would
be used for a hypothetical app only affording that task. The
guidelines provide broad examples of what apps should fit
in each category (e.g., for the category “Entertainment,” the
examples read “Streaming video,” “Movies,” “TV,” and “Inter-
active entertainment.”) Next, the researchers met and resolved
all differences in labeling, of which there were 69 instances.
Resolutions were achieved through either agreeing on one
category or merging categories that had all overlapping apps.

RQ2 [Comparing access-control solutions]: We used three
metrics to compare the solutions:

• False positive rate (FPR) was calculated as the ratio of
the number of tasks a solution mistakenly makes avail-
able to unauthorized users (e.g., by making all apps
available to all users after an unlocking, even if only one
app is intended to be shared with the user) by the total
number of tasks. The FPR directly impacts the secu-
rity of a solution, as a higher rate would indicate higher
chances of unauthorized access to private data.

• False negative rate (FNR) was calculated as the ratio of
the number of tasks that a solution mistakenly denies
access to authorized users (e.g., by not letting unauthen-
ticated users access a task that is intended to be shared
with “Anyone”) by the total number of tasks. This mea-
sure reflects on the usability of a solution, as it signifies
the chances that a solution imposes unnecessary unlock-
ing overhead on users.

• Configuration size rate (CSR) was calculated as the ratio
of the number of access-control preferences each user
would have to explicitly specify for a solution (e.g., one
preference would be to indicate that an app should be
available to “Anyone”), by the total number of a user’s
preferences (in this paper, we assume this to be their to-
tal number of tasks). We use the CSR as a basic estimate
of the amount of effort necessary for a user to switch to
a solution, without us having to assume any particular
design for the user experience of the solution. For exam-
ple, a CSR = 100% would mean that the solution expects
the user to explicitly specify their sharing preference for
all their tasks, where as a CSR = 1% would require only
1/100 of that effort.

The metrics were calculated separately for each participant
and then averaged over all participants. It should be noted that
we calculated both the FPR and FNR by counting the number
of tasks, not the number of times a task was performed by a
participant. In the scenarios (described below), we also did
not differentiate between when an unlocked phone is shared
and when the passcode is shared. While these choices could
make the calculated FNR less reflective of the actual user
experience (e.g., the user might face more interruptions from
frequently done tasks), we made them to limit the impact on
the FPR by frequently done nonsensitive tasks, which could
make a solution look unrealistically secure. For example, an
unauthorized execution of a highly sensitive task, such as
banking, could be masked by the many authorized executions
of a trivial task, such as checking the weather.

For task sensitivity, we calculated the metrics in seven
scenarios, each corresponding to one type of solution:

• ALL: This scenario corresponds to one possible case
of the all-or-nothing model. It represents a case where
the user would not enable unlocking. Hence, the FNR
would be zero. However, any task labelled as “No one”
or “Specific people” would constitute an FP because it
would mistakenly be available to anyone. This scenario
is important to consider; it was estimated in 2020 to be
the state of practice for 10% of smartphone users [46].

• NOTHING: This is another possible case for the all-or-
nothing model. Here it is assumed that the user would en-
able authentication but not share their passcode. Hence,
the FPR would be zero. However, any task labelled as
“Anyone” or “Specific people” would constitute an FN
as it would not be available to the corresponding users.
This scenario is also important to consider; it represents
the state of practice for nearly 90% of users [46].

• LOCK_SCREEN_ACCESS: This scenario represents
the lock screen access solution. It is similar to NOTH-
ING, but we assumed camera, calculator, and flashlight
apps would be available before unlocking.
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• APP_CONSERVATIVE: This represents a case where
users would be able to lock apps individually but not
individual tasks within them. It is representative of how
progressive authentication [59] or other app-level solu-
tions (see Table 1) perform. Calculating the FPR and
FNR for it, however, requires resolving conflicts in the
participant’s labeling of an app’s tasks. In this conser-
vative scenario, we assume that the user would want to
lock an app if they label any of its tasks as “No one.”

• APP_MAXIMAL: This is similar to the
APP_CONSERVATIVE scenario but uses a dif-
ferent strategy for conflict resolution. In this case, the
model would assign access to an app based on the
majority vote of the user’s labeling of its tasks.

• TASK_CONSERVATIVE: In this hypothetical sce-
nario, we assume that the system has perfect knowledge
of the user’s sharing preferences. However, inconsistent
labeling of tasks would still constitute FPs/FNs, as they
represent sharing preferences that a task-level system
cannot uphold.2 We devised this scenario to gauge an
upper bound for the efficacy of task-based access control.
To measure the FPR and FNR, a conflict resolution strat-
egy is needed. In this conservative scenario, we assume
that the user would prefer the most restrictive of their
provided labels for each task.

• TASK_MAXIMAL: This is similar to
TASK_CONSERVATIVE but uses a different conflict
resolution strategy. Here we assume that the user would
prefer to have tasks protected according to the majority
vote of its labels. For example, if the user has labeled a
task twice as “No one” and once as “Specific people,”
“No one” would be selected as its final label.

For phone-sharing solutions, we considered four scenarios:

• ALL_OR_NOTHING: We assume that the user either
has not enabled unlocking or has enabled it but has
shared their passcode with the sharee. Hence, we calcu-
late the FPR and FNR by assuming the sharee has access
to all tasks on the phone. This scenario represents the
state of practice among most users [44].

• PROFILE_SWITCHING: This represents a case
where the user would create a separate profile for each
sharee and allow them to install their own apps. Hence,
the FPR and FNR are calculated assuming that sharees
cannot perform any task not explicitly shared with them.

• DIFF_USER: We assume that the user would designate
all sharees as “Guest.” We calculate the FPR and FNR
by determining whether a sharee can perform a task,

2This entails that, to accurately take into account inconsistencies in the
participants’ labeling of tasks, we consider different labels of a task to be
different (finer-grain) tasks that this system cannot distinguish between.

based on what resources (e.g., Wi-Fi) they have access to,
according to DiffUser’s rules [51] (e.g., “Guest” users do
not have access to Bluetooth. Refer to Ni et al. [51] for
the complete list of rules). We determine the resources
needed for performing a task by examining the Android
permissions requested by the app that affords the task.

• X_SHARE: We assume that the participant would put
the phone in restricted mode before sharing it, while only
granting access to the apps they reported sharing in that
session. The FPR and FNR are computed by holding that
the sharee can perform any tasks with shared apps but
none with the other apps. In addition to xShare [39], this
scenario represents how session-based solutions would
perform (see Table 1) as repeatedly unpinning/pinning
apps can achieve the same effect.

Table A.2 in the appendix provides the exact formula used
to calculate each rate for each scenario.

RQ3 [Phone-sharing contextuality]: For each participant,
we examined the variations of the following factors in all
their reported cases of phone sharing: location, participant’s
presence, their relationship with the sharee, and functionality
category of the shared tasks. We focus on these factors only,
as they were reported by prior qualitative work to be correlated
with sharing needs of users (see Section 2). Our goal was to
corroborate such correlations quantitatively.

4 Results

4.1 RQ1: Tasks and Authorization Needs
Overall, the participants reported performing a large and func-
tionally diverse set of tasks. Collectively, they declared 1,149
distinct tasks in total (after aggregation, as described in Sec-
tion 3) for 571 distinct apps. On average, each participant
reported performing 74 tasks (min = 24, max = 142) using 48
apps (min = 12, max = 103).

Examining the participants’ access-control preferences for
the tasks, we found them to be highly complex. The partic-
ipants indicated they were willing to share a large portion
(nearly 43%) of their tasks with others. Specifically, 23.7% of
the tasks were labeled as being shareable with “Specific peo-
ple,” whereas 19.4% were shareable with “Anyone.”3 How-
ever, these “Specific people,” were not limited to a narrow
group of individuals, corroborating the qualitative findings
of others [35, 44, 45]. Additionally, our results provide a
more detailed distribution of the sharee-sharer relationships:
spouses and boy/girlfriends comprised the largest groups of
preferred sharees (64.6% of all “Specific people” tasks), fol-
lowed by parents (13.7% of tasks), children (13.1%), and
friends (3.6%). This allows us to argue for the feasibility of
implicit user identification, as we discuss in Section 5.

3Note that labeling a task as shareable does not indicate that the participant
actually shared it. We discuss actual sharing in Section 4.3.
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Figure 1: Distribution of sharing preferences of performed tasks for each study participant.
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Figure 2: Distribution of sharing preferences across task functionality groups.

Adding more complexity to the matter, we found the access-
control preferences to be highly individualized, as Figure 1
illustrates: About 22% of the participants were unwilling
to share any tasks with anyone (e.g., participants P01, P02,
and P04). We refer to them in the paper as private users. A
small fraction, 5%, are referred to as public users, and they
wanted to share everything with certain people (e.g., P24).
Unsurprisingly, the majority (73%) were in between these
extremes. We refer to them as semiprivate users (e.g., P7).
Obviously, for public or private users, an all-or-nothing model
of access control would suffice. However, a more complex
system is needed for the majority: semiprivate users.

However, we found the abovementioned groups to be fairly
heterogeneous in terms of demographic or phone-usage fac-
tors. This makes predicting one’s access control needs by any
potential future solution challenging. We tested the associ-
ation between access-control categorization (i.e., whether a
participant is a private, public, or semiprivate user) and sev-
eral demographic and phone-usage factors. These included
age (suggested by Qiu et al. [57] to be correlated with phone-
locking habits), education level, hours of phone usage per
day, depth of smartphone adoption (measured by the privacy
app adoption questionnaire by Mehrabi et al. [38], which was
based on the one by Marques et al. [43]), and whether the par-
ticipant lived with someone else or shared phones with them
(anticipating this would lead to different sharing habits). How-
ever, apart from age, none of the test results (see Table A.1 in

the appendix) were statistically significant (p-values > 0.05)
or strong (Cramér’s V < 0.5). For age, while the link was
statistically significant, it was not strong.

Next, we examined the correlation between functionality
and task sensitivity, to gauge the feasibility of functionality-
specific authorization solutions. From the categorization pro-
cess we described in Section 3, we identified 19 separate
functionality categories of tasks. We observed that the tasks
were distributed relatively evenly among these categories, as
demonstrated in Figure A.1. More importantly, however, we
found a nonuniformity of access-control preferences among
the task categories. As Figure 2 illustrates, while some tasks
were mostly off-limits to others (e.g., the “Personalization”
and “Dating” categories), other categories (e.g., “Food and
Drink” and “Weather”) were very often labeled as shareable,
either with “Specific people” or with “Anyone.” This findings
suggest that (1) there is indeed a need for varying access-
control treatment based on task functionality, and (2) such
solutions might actually be feasible.

Next, we examined the data with higher granularity to com-
pare how participants’ task- and app-level preferences align.
This was to gauge if there is a real need for higher granularity
than app-level. Firstly, we found that apps often afford tasks
with conflicting functionality. Our participants declared two
different tasks per app on average, which were often from
different categories. For example, business apps sometimes
afforded tasks from “Communication,” “Productivity,” “Edu-
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Figure 3: Distribution of app shareability categories among semiprivate study participants.

cation,” or “Personalization” categories.
Consequently, we found apps to be incohesive in share-

ability. We observed that for each participant apps generally
fell into one of the following categories when it came to the
shareability of the tasks they afford:

• Public apps exclusively afford tasks shareable with “Any-
one.” Hence, conceptually, they would require no form
of authentication before accessing them.

• Private apps are in direct contrast to public apps and
afford exclusively “No one” tasks. Therefore they would
almost always require user authentication in advance.

• Shareable apps exclusively afford tasks that are share-
able with “Specific people.” Hence they would require
multi-user identification support.

• Split apps afford tasks with different levels of shareabil-
ity and, as such, require not only user identification, but
also granular authorization support.

Obviously, for public and private users all apps fell either
into the public or the private app categories. However, for the
majority of the participants (73%) the distribution of apps was
not just between these two categories, as Figure 3 illustrates.
The majority used split apps, which require a fine-grain model
of access control. This result corroborates the findings of
Hayashi et al. [29] that smartphone users consider a significant
number of apps they use as split. However, our data provides
a clearer picture of this issue by (1) showing the relatively
high proportion of such tasks, and (2) demonstrating that the
number of split apps varies significantly between users. This
observation suggests the need for personalized access control,
as opposed to one finer-grain solution for all.

Lastly, we also found that the perception of the shareability
of an app was not consistent across study participants. Among
the 206 apps that were used by more than one participant, 137
(66.5%) were categorized inconsistently by their users. For
example, in the case of the Amazon shopping app, 65% of its
users categorized it as private, 29% as split, 3% as shareable,
and 3% as public.

In summary, we found users performing a large (1,149) and
functionally diverse set of tasks (19 different categories) with

their phones. We also found their access-control preferences
for the tasks to be highly complex and varied by sharee (see
Figure 1) and functionality (see Figure 2). Lastly, in agree-
ment with previous work, we found apps to be incoherent
units in terms of access-control requirements, with significant
variance in the functionality and shareability of tasks they
afford (see Figure 3). Overall, therefore, the results show
quantitatively that there is indeed a need for more granular
and customizable authorization solutions on smartphones.

4.2 RQ2: Comparison of Solutions
To start with, we unsurprisingly found the incumbent all-or-
nothing solution to be inefficient. As Table 3 illustrates, the
FPR of the ALL scenario was estimated at 90.3%, meaning
~90% of the users’ tasks would be exposed to unauthorized
users. This result clearly demonstrates the high risk associ-
ated with this scenario, even though 10% of users choose
it anyway [46]. This acceptance of risk, however, becomes
somewhat justifiable when we consider the NOTHING sce-
nario. While NOTHING exposes no tasks to unauthorized
users (FPR = 0%), a 21.2% FNR would be incurred, meaning
up to 20% of the users’ unlockings could be unnecessary.

We found the commercial solutions did not offer much
improvement either. Obviously, the ultimate goal of a
task-sensitive solution would be to reduce the FNR com-
pared to the NOTHING scenario without increasing the
CSR or FPR substantially. Yet, as Table 3 shows, the
LOCK_SCREEN_ACCESS scenario fails to do so. It re-
duces the FPR by less than 1% only but with no change to
the other metrics. This is unsurprising given the limited num-
ber of tasks afforded by the common lock screen apps (e.g.,
camera, calculator).

What seems to be effective, however, is increasing the
granularity of access control. As the table shows, app-level
models reduce the FPR by 7% with modest increases in the
CSR and FNR (~0.5% and 5.5%, respectively), as in the case
for both the CONSERVATIVE and MAXIMAL scenarios.
This suggests increased granularity is beneficial, even when
app-level decisions are made based on most-restrictive task
labels, as in the CONSERVATIVE case. It is out of the scope
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Table 3: The calculated FPR, FNR, and CSR of the evaluated scenarios.

Scenario FPR (%) FNR (%) CSR (%)
ALL 90.3 0.0 0.0

Ta
sk

se
ns

iti
vi

ty NOTHING 0.0 21.2 0.0

LOCK_SCREEN_ACCESS 0.0 20.5 0.0

APP_CONSERVATIVE 0.0 14.0 4.8

APP_MAXIMAL 1.2 11.3 5.9

TASK_CONSERVATIVE 0.0 5.5 18.1

TASK_MAXIMAL 2.3 1.7 18.1

Ph
on

e
sh

ar
in

g ALL_OR_NOTHING 18.1 0.0 1.8

PROFILE_SWITCHING 0.0 0.0 16.0

DIFF_USER 15.5 0.1 3.5

X_SHARE 1.4 0.1 3.1

of this paper to gauge which scenario would be preferable
to the end users (as it would largely depend on the final user
experience). However, on a conceptual level it is clear that
app-level access control can achieve the ultimate goal of a
task-sensitive solution, as we described before.

Lastly, increasing the access-control granularity to task
level was found to be even more beneficial, albeit with
a more noticeable trade-off. As Table 3 shows, the
TASK_CONSERVATIVE and TASK_MAXIMAL scenarios
could further reduce the FPR as low as 1.7% but with an
18.1% increase in the CSR. This increase could be man-
ageable, however. Considering our earlier finding that users
perform 74 tasks on their phones on average, an 18% CSR
would mean that users would need to specify as few as 13
sharing preferences to configure such a system. However,
in contrast, configuring the NOTHING scenario would only
require a one-time setup of unlocking, which could still be a
noticeable gain based on a user’s tolerance for an FP vs. their
desire for a reduced FNR.

As for support for phone sharing, we again found the all-
or-nothing model to be inefficient. As Table 3 shows, the
ALL_OR_NOTHING scenario would lead to sharees not fac-
ing any unnecessary restrictions (FNR = 0% because we
assume the passcode is shared with the sharee). However,
more than 20% of the sharer’s tasks would be exposed to
unauthorized users as well, increasing the potential for secu-
rity/privacy violations by social insiders, which other studies
have reported to be prevalent [42, 43].

In comparison, profile switching might appear to be
the ideal solution. Naturally (and in direct opposition to
task sensitivity), the ultimate goal for any phone-sharing
solution would be to reduce the FPR compared to the
ALL_OR_NOTHING scenario without a substantial increase
in the FNR or CSR. Profile switching, as shown in Table 3,
seems to achieve this goal, as it makes the FPR and FNR zero.
However, as the table also shows, the scheme comes with a

substantial increase in the CSR, which seems to explain why
users are reluctant to use it [9, 17].

The resource-based solution (the DIFF_USER scenario)
does not seem to offer much improvement either. While
it can reduce the FPR by ~5%, it also increases the FNR
and CSR by 0.1% and 1.7% respectively, which somewhat
diminishes its FPR gains. This is unsurprising given our
previous finding on the multifaceted nature of current apps
in terms of functionality and shareability (see Section 4.1),
which could complicate mapping resources to tasks. For
example, many tasks in an app might use Wi-Fi; these tasks
can vary in sensitivity. Thus, it is not trivial to assert Wi-Fi as
a sensitive resource.

Finally, the X_SHARE scenario appears to provide the best
balance between usability and security. As seen in Table 3, it
eliminates most of the false positives (FPR = 1.4%) while not
increasing the FNR at all and the CSR by only 1.3%. Thus,
among all the models it seems limiting access per session
could be the most promising solution.

In summary, our results show the inefficacy of the all-or-
nothing model and offer evidence that the current commercial
solutions (e.g., the LOCK_SCREEN_ACCESS scenario) do
not offer much improvement. Furthermore, our results show
that app-level models could afford the best usability-security-
configuration trade-off in order to support task sensitivity. For
phone sharing, session-based control appears to offer the best
such balance.

4.3 RQ3: Contextuality of Phone Sharing
To begin with, we found actual sharing of phones (as opposed
to a willingness to share tasks, which was the basis of RQ1
and RQ2 results) to be less prevalent than reported in previous
studies. Among our participants, only 16 (29%) reported
sharing their phones with others. And 58 sharing events were
reported in total over the course of the study. In contrast,
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Figure 4: Distribution of functionality cate-
gories of reported shared tasks.
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Figure 5: Distribution of reported sha-
ree relationships.
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Figure 6: Distribution of reported
phone-sharing locations.

Jacobs et al. [34] estimated that nearly 50% of users would
share phones, and Matthews et al. [44] reported 14 sharing
instances per participant (N = 25) over 21 days. Although it
was out of our scope to investigate, we anticipate the decline in
sharing is due to the increase in smartphone penetration of the
consumer markets since the time of those studies (2016) [63],
and the effects of the COVID-19 pandemic [53].

However, similar to a willingness to share, we found the ten-
dency to actually share phones less easily distinguishable us-
ing demographic factors. Most of our anticipated antecedents
showed no statistically significant correlation with a partici-
pant reporting at least one instance of sharing (p-value > 0.05,
as Table A.1 shows).

Interestingly, the practice of sharing does not seem to be
strictly aligned with access-control preferences either. Among
the participants who reported sharing, one was a private user,
one was public, and the rest (14) were semiprivate. Even
though at least one participant (the private user) reported
being unwilling to share any of their tasks with anyone, they
reported sharing their phones on one occasion anyway. Hence,
it seems sharing can indeed be impromptu sometimes, as
found by prior work [34, 44].

As for the contextual factors of phone sharing, we found
them to be fairly consistent. However, we should note in
advance that our results might be affected by the COVID-19
pandemic and the stay-at-home orders. These circumstances
might have forced participants to always share phones in the
same locations and/or with the same people.

To study the contextual factors, we first examined the cor-
relation between content and sharing preferences. Prior qual-
itative studies demonstrated that sharing is indeed content
dependent [29, 34, 45]. Our results confirm this quantita-
tively. We observed that only specific task categories were
reported as shared. As Figure 4 shows, most of the shared
tasks were from a few specific categories (e.g., “Food and
Drink,” “Entertainment”), while tasks in some other cate-
gories (e.g., “Personalization”) were never shared. Overall,
11 categories (58%) had at least one reported case of sharing,
with 70% of all shared tasks being from 3 categories: “Enter-
tainment,” “Communication,” and “Maps and Navigation.” At

the same time, tasks in 8 categories (42%) were never shared.
This aligns well with the participants’ reported willingness to
share tasks (see Figure 1).

Next, we found the sharer’s presence to be a determinant
as well. Matthews et al. [44] found sharing to happen often
when the sharer is present. Our data confirmed this finding
while also showing high consistency. We found the majority
(56 of 58 instances (96.6%)) of sharing events were reported
to have happened in the presence of the sharer. (These are
the sharing events known to the sharer, as our study relied on
self-reported data.)

We also found the relationship between the phone owner
and the sharee to be a significant factor. Prior studies demon-
strated that users’ sharing preferences depend significantly on
who the phone is being shared with [9, 35, 45]. Our results
confirmed this finding, too, while again showing high consis-
tency. We observed a great majority of sharing events were
with people the sharer was familiar with. As Figure 5 depicts,
more than half (52%) of all sharings happened with roman-
tic partners. Sharing with children and parents was the next
most frequent, at 21% and 16% respectively. Overall, 89%
of sharing instances happened with the immediate family of
the sharer. This finding also aligns well with the preferences
reported by the participants, discussed in Section 4.1.

Lastly, we found location to also be a fairly consistent
determinant across sharing events. As Figure 6 shows, 66%
of the events happened at the sharer’s home. Sharing within
the homes of parents and romantic partners was the next most
frequent, at 10% each. And only 5% of the events happened
at other locations, such as schools or other public places.

In summary, we found sharing to be universal (not limited
to a specific group of users). We also found the contextual
factors of phone sharing to be highly consistent (~75% of the
time). Even though we found sharing to be less prevalent than
previously reported, we observed phones being shared often
with family members and partners, at familiar locations, in
the presence of sharers, and for limited categories of tasks.
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5 Discussion

Putting all of our results together, it is clear that modern
smartphone users have diverse and complex access-control
needs. They perform a functionally diverse set of tasks with
a large number of apps. And they prefer to share several
(sometimes even partially overlapping) subsets of tasks with
different individuals (see Section 4.1) and in varying contexts
(discussed in Section 4.3).

Making matters more complex, authorization needs vary
significantly by task functionality (see Figure 1) and per user
(see Figure 3). And it is difficult to predict users’ prefer-
ences based on their demographic or phone-usage factors (see
Section 4.1). Also, no functionality categories dominate the
users’ tasks to therefore limit the scope of access control to
certain activities on the phone (see Section 4.1).

All these circumstances reduce the chance that any ad
hoc solution (e.g., lock screen access) catering only to spe-
cific tasks or groups of users could achieve adequate efficacy.
Hence, the need for robust and general-purpose access control
on smartphones is now clearer than ever.

Yet the incumbent all-or-nothing solution falls short of this
ideal. Firstly, it fails to provide timely and secure access to
tasks, as its assumption that all tasks require the same level of
protection is invalid. Our findings (Section 4.2) suggest that it
could mistakenly expose more than 90% of the users’ private
tasks to unauthorized individuals or, conversely, unnecessarily
hinder the users’ access to 21% of their tasks.

Secondly, the solution fails to assert adequate control when
users share their phones. We found that it could expose up
to 20% of the users’ private tasks to unauthorized sharees,
as it forces the users to share passcodes (Section 4.2). This
is especially important considering the clear distinction the
users make between “Anyone” and “Specific people” tasks
(Section 4.1). To them, a shared task is not necessarily a
public one. So, even if they are willing to share a task, it is
important to control with whom that task is shared.

As such, the dilemma users face when using the incumbent
system is clearer now. They have to either (1) enable unlock-
ing and face the overhead of 20% unnecessary authentications
or (2) disable unlocking altogether for more convenience and
risk 90% of their tasks being available to unauthorized users
(as 10% of users actually do [46]).

Making the situation direr, most of the pro-
posed/implemented alternative solutions do not seem
to provide much improvement. The lock screen access
solution only provides an insignificant improvement to the
FNR (0.7%). And phone-sharing solutions, such as DiffUser,
rely on restricting access to system resources to assert control,
which nearly doubles the CSR in exchange for reducing the
FPR marginally (see Section 4.2).

Profile switching presents more of a conflicted situation.
Even though our results show it could theoretically eliminate
FPs all together, its high CSR explains why most users decide

not to adopt it [9, 17]. Moreover, we found evidence for the
need to support impromptu phone sharing (see Section 4.3).
However, profile switching does not easily support impromptu
sharing, since it would require creating profiles on the spot.4

It seems, therefore, that users are left with neither timely
access to their tasks nor proper control over whom performs
them. But hope exists.

We found designs that could lead to better access control.
To support task sensitivity, we found increased granularity
a good starting point. The app-level models we examined
were found to have nearly half the FNR of the widely used
all-or-nothing system (11% vs. 21%) but with only modest
increases in the CSR and FPR (see Section 4.2). However,
the app-level model seems to be the sweet spot of granularity;
creating even finer-grain task-level solutions would halve the
FNR once more, while imposing a substantial increase in the
CSR (18%). Thus, overall, our data supports wider adoption
of app-locking solutions, which are currently only deployed
on some Android phones [66].

For deliberate phone sharing, our results endorse session-
based solutions. Approaches such as xShare [39] and app
pinning, which allow users to quickly select which apps to
share in each session, showed substantial reduction in the
FNR (~20%), only a modest increase in the CSR (~1%), and
no increase at all in the FPR (see Table 3 and Section 4.3).

Finally, our data also shows promise for context-based
phone-sharing solutions. We found several contextual factors
to be highly consistent (see Section 4.3), which could be
incorporated into future solutions:

• Content. Only certain categories of tasks were shared
by our participants. Thus, future access-control schemes
could further reduce the FPR with a default denial of
access to task categories universally perceived as private.

• Presence of the sharer. Deliberate sharing often happens
in this situation (see Section 4.3). Thus, detecting the
owner’s presence (e.g., through smartwatches or other
wearables) seems to be a promising approach to detect
unauthorized access.

• The sharee. Phone sharing often happened with the same
group of people (see Figure 5). Thus, an a priori pol-
icy definition and user isolation solutions (e.g., profile
switching) could indeed work but, as discussed before,
need to be made more convenient. The high proportion
of close family members in the sharee distributions sug-
gests automatic user identification (e.g., through behav-
ioral biometrics [49]) could be one way of achieving this
goal and poses a promising avenue of future research.

• Location. Most of the reported sharing events happened
at familiar places, such as at home (see Figure 6). As
such, location detection (e.g., using Wi-Fi or GPS as

4This creation would only be needed if the shared tasks were for “Specific
people.” Otherwise a “Guest” profile would suffice.
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done by Google Smart Lock for Android [23]) could
provide better access control by limiting unauthorized
access in unfamiliar locations.

In the end, we should note that our findings also demon-
strate the need for flexibility in access control, as any one-
size-fits-all solution would have unjustifiable trade-offs for
some users. For example, if all users were forced to a highly
granular task level, some users could benefit. But this level of
access control would also impose a high CSR on semiprivate
users, with no improvements in the FPR or FNR for them
(e.g., P03 in Figure 3 who has few public apps and no split
apps). For such users, an app-level system would be a better
fit. Hence, it is important to consider solutions that increase
granularity only when needed or only for those users who
need it. This could certainly be achieved manually (e.g., by
asking users directly to use a task-level system). However,
as observed with profile switching (see Section 4.2), the in-
creased cognitive load makes adoption an issue. An avenue
for future research, therefore, can be to investigate the feasi-
bility of automating this process (possibly like our implicit
identification suggestion for profile switching).

6 Limitations

Any generalization of our results needs to be performed care-
fully due to the study’s limitations.

Firstly, similar to other studies on smartphone usage [15,
27,33], our sample was not representative of the global smart-
phone user population. For example, it has been shown that
cultural factors affect users’ unlocking behavior [26] and pri-
vacy attitudes [60]. However, due to limited resources we
only included US participants in our study; as a result, one
cannot generalize the results to non-US users. Cross-cultural
studies are required to explore the link between culture and
access control.

Secondly, our sample is not fully representative of the US
smartphone user population either. While MTurk is shown to
provide quality data for research in usable security [58], its
known limitations (e.g., lack of diversity, tech savviness) [55]
apply to our study too (for example, our participants are more
than 80% white). Lack of diversity is a common limitation
of smartphone studies [15, 29, 44] However, we believe that
our findings are still valuable, as they provide the very first
quantitative insight into users’ access-control needs.

Thirdly, due to technical limitations we only included An-
droid users in our study. Recent evidence suggests there are no
significant differences in security/privacy attitudes between
iOS and Android users [1]. However, cross-platform studies
are required to investigate this matter further.

Fourthly, our results are based on self-reported data from
the participants. Thus, as a general limitation of such studies,
our data might sometimes be of lower ecological validity and
not perfectly reflective of the users’ true behavior [21, 46].

Also, the reported sharing events might be affected by the
users’ prolonged use of the all-or-nothing system. For exam-
ple, the type of tasks they shared might have been influenced
by what they felt comfortable sharing given the limitations of
the incumbent system. Also, all-or-nothing might have caused
participants to misinterpret the diary questions and believe
that “Whom you’d generally allow to perform the task” meant
only when they were physically presiding over the sharing. To
mitigate this risk, we conducted several pilot studies (see 3.2)
and did not find evidence of such varying misinterpretations.
But they are still a possibility and could have caused us to un-
derestimate the number of “Anyone” tasks. Having more such
tasks, however, could only strengthen our argument that the
all-or-nothing system is suboptimal, as these tasks increase
its FPR (already over 20%) even further.

Lastly, as discussed in Section 4.3, our results might have
been affected by the COVID-19 pandemic. For example,
work-from-home orders might have influenced users’ secu-
rity/privacy preferences for their personal devices, which
might contain work-related information [53]. Also, the con-
sistency of location in phone-sharing events might have been
due to stay-at-home orders.

7 Conclusion

Smartphones, nowadays, require strong physical security as
they host an ever-increasing array of data and services. Yet
most of the research and development so far has been to-
ward their authentication systems. Their access-control sys-
tems have remained largely unchanged, still using the all-or-
nothing model. In this paper, we solicited detailed task data
from users and quantified just how inefficiently this model
serves the users. We examined the status quo and found that
most proposed/implemented alternatives do not provide much
improvement either. Instead, we found that increasing the
granularity of access up to a point and providing session- and
context-based control might be two promising avenues for
designing future systems that better support users’ needs.
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A Appendix

A.1 Description of Pilot Studies
We performed three pilot studies to test our methodology and
app design. The first study involved lab testing sessions and
qualitative interviews to evaluate the app’s usability. We used
our university’s study-participant mailing list to recruit six
participants (three of them male, ages 23-65). They performed
a series of tasks with our app (e.g., filling out a daily diary)
while we observed if they encountered any difficulties. We
also interviewed them about their impressions of the app.
Based on the results, we improved the app setup process and
the wordings of some diary questions, and fixed a few bugs.
For the second pilot study, we used the same mailing list again
to recruit 7 participants (5 of them females, ages 27–37). They
installed the app on their personal phones and used it to fill
out diaries for two weeks. Then we interviewed them about
their experience. Based on the results, we found it would be
optimal if the diaries did not take more than 10 minutes per
day. We also further improved the wordings of some questions
and fixed some more bugs. More importantly, we found a lot
of duplication of task declarations, which took unnecessary
time from participants. To reduce fatigue, we implemented a
system where each participant could see, anonymously, what
tasks others had declared for each app. This way they could
either select one of those tasks or declare a new one.

Interviews also showed that some participants might have
privacy concerns with installing our app on their personal
devices. To alleviate such concerns, we made it clearer in
our study advertisement and consent form that the app would
not collect any personal data, such as location or log-in cre-
dentials. We also invited participants to ask any questions
they might have about the app or the purpose of the study,
and let them know they can withdraw from the study at any
time without repercussions. As a result of these changes, we
observed in our screening surveys that very few potential par-
ticipants of the main study declared privacy concerns as a
reason for not joining the study.

The third pilot study was aimed at evaluating the efficacy
of the intended recruitment channel (MTurk) and reverifying
the study procedures. Specifically, we wanted to see if show-
ing tasks defined by one participant to others would result in
reduced diversity of declared tasks and eventually bias in the
results. We recruited 8 participants from MTurk (4 of them
female, ages 21–44) and asked them to install and use the app
for 2 to 3 weeks. We found MTurk to be able to provide us
with sufficiently diverse samples. We also observed being
near theoretical saturation for task declarations after three
weeks (i.e., very few new tasks were being declared). Hence
we decided on one month as the length of the main study.
Lastly, study results showed no signs of reduced task diver-
sity; instead, an even more diverse set of tasks was defined
compared to the second study.
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A.2 Additional Methodology Details and Data Analysis Results

Table A.1: Results of chi-squared tests between access-
control categorizations and our anticipated antecedents.

Public or
(Semi)Private

Whether They
Share Phone

Age p = 0.002

V = 0.433

p = 0.048

V = 0.379

Education p = 0.293

V = 0.258

p = 0.367

V = 0.240

Hours of phone
usage per day

p = 0.350

V = 0.201

p = 0.967

V = 0.035

Privacy app
adoption

p = 0.654

V = 0.149

p = 0.279

V = 0.215

Living with
others

p = 0.577

V = 0.141

p = 0.158

V = 0.190
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Figure A.1: Distribution of participants’ declared tasks across
functionality categories.

Table A.2: Formulas used to compute FPR, FNR, and CSR of the scenarios. CSR formulas assume a default “No one” policy.
Set of “No one”/“Specific people”/“Anyone”/all tasks are denoted by NN/SP/AO/T. SPC indicates SP excluding current sharee.
CA/MA indicate set of apps available to anyone, based on CONSERVATIVE/MAXIMAL strategy. FC/FM(t) indicate final
CONSERVATIVE/MAXIMAL label of task t. X(Y) indicates sub-setting X based on Y (e.g., NN(MA) indicates NN tasks that
are afforded only by apps in MA). As for strictness, NN is considered stricter than SP, which is stricter than AO.

Scenario FPR FNR CSR

ALL |NN|+ |SP|
|T |

0
|T |

0
|T |

Ta
sk

se
ns

iti
vi

ty

NOTHING 0
|T |

|SP|+ |AO|
|T |

1
|T |

LOCK_SCREEN_ACCESS |NN(Lock_screen_apps)|
|T |

|SP|+ |AO|− |T (Lock_screen_apps)|
|T |

0
|T |

APP_CONSERVATIVE |NN(CA)|
|T |

|AO|+ |SP(CA)|
|T |

|CA|
|T |

APP_MAXIMAL |NN(MA)|
|T |

|AO|+ |SP(MA)|
|T |

|MA|
|T |

TASK_CONSERVATIVE ∑ t∈T |Stricter_labels_than_FC(t)|
|T |

∑ t∈T |Laxer_labels_than_FC(t)|
|T |

|SP|+ |AO|
|T |

TASK_MAXIMAL ∑ t∈T |Stricter_labels_than_FM(t)|
|T |

∑ t∈T |Laxer_labels_than_FM(t)|
|T |

|SP|+ |AO|
|T |

Ph
on

e
sh

ar
in

g ALL_OR_NOTHING ∑ t∈T |NN(t)|+ |SPC(t)|
|T |

0
|T |

1
|T |

PROFILE_SWITCHING 0
|T |

0
|T |

|Sharees|+ |Apps_shared_w_each_sharee|
|T |

DIFF_USER ∑ t∈T (Apps_w/o_sensitive_permissions) |NN(t)|
|T |

∑ t∈T (Apps_w_sensitive_perms) |SP(t)|+ |AO(t)|
|T |

|Sharees|
|T |

X_SHARE ∑ t∈T (Shared_apps) |NN(t)|+ |SPC(t)|
|T |

0
|T |

|Shared_apps|+1
|T |
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