
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Communication-Efficient Triangle Counting
under Local Differential Privacy
Jacob Imola, UC San Diego; Takao Murakami, AIST;

Kamalika Chaudhuri, UC San Diego
https://www.usenix.org/conference/usenixsecurity22/presentation/imola

Communication-Efficient Triangle Counting under Local Differential Privacy

Jacob Imola∗

UC San Diego
Takao Murakami∗

AIST
Kamalika Chaudhuri

UC San Diego

Abstract
Triangle counting in networks under LDP (Local Differen-

tial Privacy) is a fundamental task for analyzing connection
patterns or calculating a clustering coefficient while strongly
protecting sensitive friendships from a central server. In par-
ticular, a recent study proposes an algorithm for this task that
uses two rounds of interaction between users and the server to
significantly reduce estimation error. However, this algorithm
suffers from a prohibitively high communication cost due to
a large noisy graph each user needs to download.

In this work, we propose triangle counting algorithms un-
der LDP with a small estimation error and communication
cost. We first propose two-rounds algorithms consisting of
edge sampling and carefully selecting edges each user down-
loads so that the estimation error is small. Then we propose a
double clipping technique, which clips the number of edges
and then the number of noisy triangles, to significantly reduce
the sensitivity of each user’s query. Through comprehensive
evaluation, we show that our algorithms dramatically reduce
the communication cost of the existing algorithm, e.g., from 6
hours to 8 seconds or less at a 20 Mbps download rate, while
keeping a small estimation error.

1 Introduction

Counting subgraphs (e.g., triangles, stars, cycles) is one of the
most basic tasks for analyzing connection patterns in various
graph data, e.g., social, communication, and collaboration net-
works. For example, a triangle is given by a set of three nodes
with three edges, whereas a k-star is given by a central node
connected to k other nodes. These subgraphs play a crucial
role in calculating a clustering coefficient (= 3×#triangles

#2-stars) (see
Figure 1). The clustering coefficient measures the average
probability that two friends of a user will also be a friend in
a social graph [45]. Therefore, it is useful for measuring the
effectiveness of friend suggestions. In addition, the clustering
coefficient represents the degree to which users tend to cluster

∗The first and second authors made equal contribution.

together. Thus, if it is large in some services/communities,
we can effectively apply social recommendations [38] to the
users. Triangles and k-stars are also useful for constructing
graph models [31, 52]; see also [59] for other applications of
triangle counting. However, graph data often involve sensitive
data such as sensitive edges (friendships), and they can be
leaked from exact numbers of triangles and k-stars [29].

To analyze subgraphs while protecting user privacy, DP
(Differential Privacy) [25] has been widely adopted as a pri-
vacy metric [24,29,36,56,64,65,67]. DP protects user privacy
against adversaries with arbitrary background knowledge and
is known as a gold standard for data privacy. According to
the underlying model, DP can be categorized into central
(or global) DP and LDP (Local DP). Central DP assumes a
scenario where a central server has personal data of all users.
Although accurate analysis of subgraphs is possible under this
model [24,36,67], there is a risk that the entire graph is leaked
from the server by illegal access or internal fraud [18, 43]. In
addition, central DP cannot be applied to decentralized so-
cial networks [4–6, 48] where the entire graph is distributed
across many servers. We can even consider fully decentral-
ized applications where a server does not have any original
edge, e.g., a mobile app that sends a noisy degree (noisy num-
ber of friends) to the server, which then estimates a degree
distribution. Central DP cannot be used in such applications.

In contrast, LDP assumes a scenario where each user obfus-
cates her personal data (friends list in the case of graphs) by
herself and sends the obfuscated data to a possibly malicious
server; i.e., it does not assume trusted servers. Thus, it does
not suffer from a data breach and can also be applied to the
decentralized applications. LDP has been widely studied in
tabular data where each row corresponds to a user’s personal
data (e.g., age, browser setting, location) [8, 12, 27, 33, 44, 60]
and also in graph data [29, 49, 64, 65]. For example, k-star
counts can be very accurately estimated under LDP because
each user can count k-stars of which she is a center and sends
a noisy version of her k-star count to the server [29].

However, more complex subgraphs such as triangles are
much harder to count under LDP because each user cannot see

USENIX Association 31st USENIX Security Symposium 537

#triangles

#2-stars
clustering coeffieicent

Figure 1: Triangles, 2-stars, and clustering coefficient.

edges between other users. For example, in Figure 1, user v1
cannot see edges between v2, v3, and v6 and therefore cannot
count triangles involving v1. Thus, existing algorithms [29,
64, 65] obfuscate each user’s edges (rather than her triangle
count) by RR (Randomized Response) [61] and send noisy
edges to a server. Consequently, the server suffers from a
prohibitively large estimation error (e.g., relative error > 102

in large graphs, as shown in Appendix B) because all three
edges are noisy in any noisy triangle the server sees.

A recent study [29] shows that the estimation error in lo-
cally private triangle counting is significantly reduced by
introducing an additional round of interaction between users
and the server. Specifically, if the server publishes the noisy
graph (all noisy edges) sent by users at the first round, then
each user can count her noisy triangles such that only one edge
is noisy (as she knows two edges connected to her). Thus, the
algorithm in [29] sends each user’s noisy triangle count (with
additional noise) to the server at the second round. Then the
server can accurately estimate the triangle count. This algo-
rithm also requires a much smaller number of interactions
(i.e., only two) than collaborative approaches [34, 55] that
generally require many interactions.

Unfortunately, the algorithm in [29] is still impractical for
a large-scale graph. Specifically, the noisy graph sent by users
is dense, hence extremely large for a large-scale graph, e.g.,
500 Gbits for a graph of a million users. The problem is that
every user needs to download such huge data; e.g., when the
download speed is 20 Mbps (which is a recommended speed
in YouTube [7]), every user needs about 7 hours to download
the noisy graph. Since the communication ability might be
limited for some users, the algorithm in [29] cannot be used
for applications with large and diverse users.

In summary, existing triangle algorithms under LDP suffer
from either a prohibitively large estimation error or a pro-
hibitively high communication cost. They also suffer from
the same issues when calculating the clustering coefficient.
Our Contributions. We propose locally private triangle
counting algorithms with a small estimation error and small
communication cost. Our contributions are as follows:

• We propose two-rounds triangle algorithms consisting
of edge sampling after RR and selecting edges each user
downloads. In particular, we show that a simple exten-
sion of [29] with edge sampling suffers from a large
estimation error for a large or dense graph where the
number of 4-cycles (such as v1-v2-v3-v6-v1 in Figure 1)
is large. To address this issue, we propose some strate-
gies for selecting edges to download to reduce the error

caused by the 4-cycles, which we call the 4-cycle trick.

• We show that the algorithms with the 4-cycle trick still
suffer from a large estimation error due to large Lapla-
cian noise for each user. To significantly reduce the
Laplacian noise, we propose a double clipping technique,
which clips a degree (the number of edges) of each user
with LDP and then clips the number of noisy triangles.

• We evaluate our algorithms using two real datasets. We
show that our entire algorithms with the 4-cycle trick and
double clipping dramatically reduce the communication
cost of [29]. For example, for a graph with about 900000
users, we reduce the download cost from 400 Gbits (6
hours when 20 Mbps) to 160 Mbits (8 seconds) or less
while keeping the relative error much smaller than 1.

Thus, locally private triangle counting is now much more
practical. In Appendix C, we also show that we can estimate
the clustering coefficient with a small estimation error and
download cost. For example, our algorithms are useful for
measuring the effectiveness of friend suggestions or social
recommendations in decentralized social networks, e.g., Di-
aspora [4], Mastodon [5]. Our source code is available at [1].

All the proofs of our privacy and utility analysis are given
in the full version [30].
Technical Novelty. Below we explain more about the tech-
nical novelty of this paper. Although we focus on two-rounds
local algorithms in the same way as [29], we introduce several
new algorithmic ideas previously unknown in the literature.

First, our 4-cycle trick is totally new. Although some stud-
ies focus on 4-cycle counting [13, 35, 40, 42], this work is
the first to use 4-cycles to improve communication efficiency.
Second, selective download of parts of a centrally computed
quantity is also new. This is not limited to graphs – even
in machine learning, there are no such strategic download
techniques previously, to our knowledge. Third, our utility
analysis of our triangle algorithms (Theorem 2) is different
from [29] in that ours introduces subgraphs such as 4-cycles
and k-stars. This leads us to our 4-cycle trick. Fourth, we
propose two triangle algorithms that introduce the 4-cycle
trick and show that the more tricky one provides the best
performance because of its low sensitivity in DP.

Finally, our double clipping is new. Andrew et al. [9] pro-
pose an adaptive clipping technique, which applies clipping
twice. However, they focus on federated averaging, and their
problem setting is different from our graph setting. In partic-
ular, they require a private quantile of the norm distribution.
In contrast, we need only a much simpler estimate: a private
degree. Here, we use the fact that the degree has a small sensi-
tivity (sensitivity = 1) in DP for edges. We also provide a new,
reasonably tight bound on the probability that the noisy trian-
gle count exceeds a clipping threshold (Theorem 4). Thanks
to the two differences, we obtain a significant communication
improvement: two or three orders of magnitude.

538 31st USENIX Security Symposium USENIX Association

2 Related Work

Triangle Counting. Triangle counting has been extensively
studied in a non-private setting [14, 15, 21, 26, 54, 57, 58, 62]
(it is almost a sub-field in itself) because it requires high time
complexity for large graphs.

Edge sampling [14, 26, 58, 62] is one of the most basic
techniques to improve scalability. Although edge sampling is
simple, it is quite effective – it is reported in [62] that edge
sampling outperforms other sampling techniques such as node
sampling and triangle sampling. Based on this, we adopt edge
sampling after RR1 with new techniques such as the 4-cycle
trick and double clipping. Our entire algorithms significantly
improve the communication cost, as well as the space and
time complexity, under LDP (see Sections 5.3 and 6).
DP on Graphs. For private graph analysis, DP has been
widely adopted as a privacy metric. Most of them adopt cen-
tral (or global) DP [23, 24, 28, 36, 37, 50, 67], which suffers
from the data breach issue.

LDP on graphs has recently studied in some studies, e.g.,
synthetic data generation [49], subgraph counting [29, 56, 64,
65]. A study in [56] proposes subgraph counting algorithms
in a setting where each user allows her friends to see all her
connections. However, this setting is unsuitable for many
applications; e.g., in Facebook, a user can easily change her
setting so that her friends cannot see her connections.

Thus, we consider a model where each user can see only her
friends. In this model, some one-round algorithms [64,65] and
two-rounds algorithms [29] have been proposed. However,
they suffer from a prohibitively large estimation error or high
communication cost, as explained in Section 1.

Recently proposed network LDP protocols [22] consider,
instead of a central server, collecting private data with user-
to-user communication protocols along a graph. They focus
on sums, histograms, and SGD (Stochastic Gradient Descent)
and do not provide subgraph counting algorithms. Moreover,
they focus on hiding each user’s private dataset rather than
hiding an edge in a graph. Thus, their approach cannot be
applied to our task of subgraph counting under LDP for edges.
The same applies to another work [53] that improves the
utility of an averaging query by correlating the noise of users
according to a graph.
LDP. RR [33, 61] and RAPPOR [27] have been widely used
for tabular data in LDP. Our work uses RR in part of our
algorithm but builds off of it significantly. One noteworthy
result in this area is HR (Hadamard Response) [8], which is
state-of-the-art for tabular data and requires low communi-
cation. However, this result is not applied to graph data and

1We also note that a study in [46] proposes a graph publishing algorithm
in the central model that independently changes 1-cells (edges) to 0-cells (no
edges) with some probability and then changes a fixed number of 0-cells to 1-
cells without replacement. However, each 0-cell is not independently sampled
in this case, and consequently, their proof that relies on the independence of
the noise to each 0-cell is incorrect. In contrast, our algorithms provide DP
because we apply sampling after RR, i.e., post-processing.

does not address the communication issues considered in this
paper. Specifically, applying HR to each bit in a neighbor list
will result in O(n2) (n: #users) download cost in the same
way as the previous work [29] that uses RR. Applying HR
to an entire neighbor list (which has 2n possible values) will
similarly result in O(n log2n) = O(n2) download cost.

Previous work on distribution estimation [33, 44, 60] or
heavy hitters [12] addresses a different problem than ours, as
they assume that every user has i.i.d. (independent and iden-
tically distributed) samples. In our setting, a user’s neighbor
list is non-i.i.d. (as one edge is shared by two users), which
does not fit into their statistical framework.

3 Preliminaries

3.1 Notations
We begin with basic notations. Let N, R, Z≥0, and R≥0 be the
sets of natural numbers, real numbers, non-negative integers,
and non-negative real numbers, respectively. For z ∈N, let [z]
a set of natural numbers from 1 to z; i.e., [z] = {1,2, . . . ,z}.

Let G = (V,E) be an undirected graph, where V is a set
of nodes and E ⊆ V ×V is a set of edges. Let n ∈ N be
the number of nodes in V . Let vi ∈ V be the i-th node; i.e.,
V = {v1, . . . ,vn}. We consider a social graph where each node
in V represents a user and an edge (vi,v j) ∈ E represents that
vi is a friend with v j. Let dmax ∈N be the maximum degree of
G. Let G be a set of graphs with n nodes. Let f4 : G → Z≥0
be a triangle count query that takes G∈G as input and outputs
a triangle count f4(G) (i.e., number of triangles) in G.

Let A=(ai, j)∈{0,1}n×n be a symmetric adjacency matrix
corresponding to G; i.e., ai, j = 1 if and only if (vi,v j) ∈ E.
We consider a local privacy model [29, 49], where each user
obfuscates her neighbor list ai = (ai,1, . . . ,ai,n) ∈ {0,1}n (i.e.,
the i-th row of A) using a local randomizer R i with domain
{0,1}n and sends obfuscated data R i(ai) to a server. We also
assume a two-rounds algorithm in which user vi downloads a
message Mi from the server at the second round.

We also show the basic notations in Table 2 of Appendix A.

3.2 Local Differential Privacy on Graphs
LDP on Graphs. When we apply LDP (Local DP) to graphs,
we follow the direction of edge DP [47, 51] that has been
developed for the central DP model. In edge DP, the existence
of an edge between any two users is protected; i.e., two com-
putations, one using a graph with the edge and one using the
graph without the edge, are indistinguishable. There is also
another privacy notion called node DP [28, 66], which hides
the existence of one user along with all her edges. However,
in the local model, many applications send a user ID to a
server; e.g., each user sends the number of her friends along
with her user ID. For such applications, we cannot use node
DP but can use edge DP to hide her edges, i.e., friends. Thus,

USENIX Association 31st USENIX Security Symposium 539

we focus on edge DP in the local model in the same way
as [29, 49, 56, 64, 65].

Specifically, assume that user vi uses her local randomizer
R i. We assume that the server and other users can be honest-
but-curious adversaries and that they can obtain all edges
except for user vi’s edges as prior knowledge. Then we use
the following definition for R i:

Definition 1 (ε-edge LDP [49]). Let ε ∈ R≥0. For i ∈ [n], let
R i be a local randomizer of user vi that takes ai as input.
We say R i provides ε-edge LDP if for any two neighbor lists
ai,a′i ∈ {0,1}n that differ in one bit and any s ∈ Range(R i),

Pr[R i(ai) = s]≤ eε Pr[R i(a′i) = s]. (1)

For example, a local randomizer R i that applies Warner’s
RR (Randomized Response) [61], which flips 0/1 with proba-
bility 1

eε+1 , to each bit of ai provides ε-edge LDP.
The parameter ε is called the privacy budget. When ε is

small (e.g., ε≤ 1 [39]), each bit is strongly protected by edge
LDP. Edge LDP can also be used to hide multiple bits – by
group privacy [25], two neighbor lists ai,a′i ∈ {0,1}n that
differ in k ∈ N bits are indistinguishable up to the factor kε.

Edge LDP is useful for protecting a neighbor list ai of
each user vi. For example, a user in Facebook can change her
setting so that anyone (except for the central server) cannot
see her friend list ai. Edge LDP hides ai even from the server.

As with regular LDP, the guarantee of edge LDP does not
break even if the server or other users act maliciously. How-
ever, adding or removing an edge affects the neighbor list
of two users. This means that each user needs to trust her
friend to not reveal an edge between them. This also applies
to Facebook – even if vi keeps ai secret, her edge with v j
can be disclosed if v j reveals a j. To protect each edge dur-
ing the whole process, we use another privacy notion called
relationship DP [29]:

Definition 2 (ε-relationship DP [29]). Let ε∈R≥0. For i∈ [n],
let R i be a local randomizer of user vi that takes ai as input.
We say (R 1, . . . ,R n) provides ε-relationship DP if for any
two neighboring graphs G,G′ ∈G that differ in one edge and
any (s1, . . . ,sn) ∈ Range(R 1)× . . .×Range(R n),

Pr[(R 1(a1), . . . ,R n(an)) = (s1, . . . ,sn)]

≤ eε Pr[(R 1(a′1), . . . ,R n(a′n)) = (s1, . . . ,sn)], (2)

where ai (resp. a′i) ∈ {0,1}n is the i-th row of the adjacency
matrix of graph G (resp. G′).

If users vi and v j follow the protocol, (2) holds for graphs
G,G′ that differ in (vi,v j). Thus, relationship DP applies to
all edges of a user whose neighbors are trustworthy.

While users need to trust other friends to maintain a rela-
tionship DP guarantee, only one edge per user is at risk for
each malicious friend that does not follow the protocol. This
is because only one edge can exist between two users. Thus,

although the trust assumption in relationship DP is stronger
than that of LDP, it is much weaker than that of central DP in
which all edges can be revealed by the server.

It is possible to use a tuple of local randomizers with edge
LDP to obtain a relationship DP guarantee:

Proposition 1 (Edge LDP and relationship DP [29]). If
each of local randomizers R 1, . . . ,R n provides ε-edge LDP,
then (R 1, . . . ,R n) provides 2ε-relationship DP. Addition-
ally, if each R i uses only bits ai,1, . . . ,ai,i−1 for users with
smaller IDs (i.e., only the lower triangular part of A), then
(R 1, . . . ,R n) provides ε-relationship DP.

The doubling factor in ε comes from the fact that (2) applies
to an entire edge, whereas (1) applies to just one neighbor list,
and adding an entire edge may cause changes to two neighbor
lists. However, if each R i ignores bits ai,i, . . . ,ai,n for users
with larger IDs, then this doubling factor can be avoided. Our
algorithms also use only the lower triangular part of A to
avoid this doubling issue.
Interaction among Users and Multiple Rounds. While
interaction in LDP has been studied before [32], neither of
Definitions 1 and 2 allows the interaction among users in a
one-round protocol where user vi sends R i(ai) to the server.

However, the interaction among users is possible in a multi-
round protocol. Specifically, at the first round, user vi applies a
randomizer R 1

i and sends R 1
i (ai) to the server. At the second

round, the server calculates a message Mi for vi by performing
some post-processing on R 1

i (ai), possibly with the private
outputs by other users. Let λi be the post-processing algorithm
on R 1

i (ai); i.e., Mi = λi(R 1
i (ai)). The server sends Mi to vi.

Then, vi uses a randomizer R 2
i (Mi) that depends on Mi and

sends R 2
i (Mi)(ai) back to the server. This entire computation

provides DP by a (general) sequential composition [39]:

Proposition 2 (Sequential composition of edge LDP). For
i ∈ [n], let R 1

i be a local randomizer of user vi that takes ai
as input. Let λi be a post-processing algorithm on R 1

i (ai),
and Mi = λi(R 1

i (ai)) be its output. Let R 2
i (Mi) be a local

randomizer of vi that depends on Mi. If R 1
i provides ε1-edge

LDP and for any Mi ∈ Range(λi), R 2
i (Mi) provides ε2-edge

LDP, then the sequential composition (R 1
i (ai),R 2

i (Mi)(ai))
provides (ε1 + ε2)-edge LDP.

We provide a proof of Proposition 2 in the full version [30].
Global Sensitivity. We use the notion of global sensitiv-
ity [25] to provide edge LDP:

Definition 3. In edge LDP (Definition 1), the global sensitiv-
ity of a function f : {0,1}n→ R is given by:

GS f = max
ai,a′i∈{0,1}n,ai∼a′i

| f (ai)− f (a′i)|,

where ai ∼ a′i represents that ai and a′i differ in one bit.

For example, adding the Laplacian noise with mean 0 scale
GS f

ε
(denoted by Lap(GS f

ε
)) to f (ai) provides ε-edge LDP.

540 31st USENIX Security Symposium USENIX Association

3.3 Utility and Communication-Efficiency
Utility. We consider a private estimate of f4(G). Our private
estimator f̂4 : G → R is a post-processing of local randomiz-
ers (R 1, . . . ,R n) that satisfy ε-edge LDP. Following previous
work, we use the l2 loss (i.e., squared error) [33, 44, 60] and
the relative error [16, 19, 63] as utility metrics.

Specifically, let l2
2 be the expected l2 loss function on

a graph G, which maps the estimate f̂4(G) and the true
value f4(G) to the expected l2 loss; i.e., l2

2(f4(G), f̂4(G)) =

E[(f̂4(G)− f4(G))2]. The expectation is taken over the ran-
domness in the estimator f̂ , which is necessarily a randomized
algorithm since it satisfies edge LDP. In our theoretical analy-
sis, we analyze the expected l2 loss, as with [33, 44, 60].

Note that the l2 loss is large when f4(G) is large. There-
fore, in our experiments, we use the relative error given by
| f̂4(G)− f4(G)|
max{ f4(G),η} , where η∈R≥0 is a small value. Following con-

vention [16, 19, 63], we set η to 0.001n. The estimate is very
accurate when the relative error is much smaller than 1.

Communication-Efficiency. A prominent concern when per-
forming local computations is that the computing power of
individual users is often limited. Of particular concern to our
private estimators, and a bottleneck of previous work in locally
private triangle counting [29], is the communication overhead
between users and the server. This communication takes the
form of users downloading any necessary data required to
compute their local randomizers and uploading the output
of their local randomizers. We distinguish the two quantities
because often downloading is cheaper than uploading.

Consider a τ-round protocol, where τ ∈N. At round j ∈ [τ],
user vi applies a local randomizer R j

i (M
j
i) to her neighbor

list ai, where M j
i is a message sent from the server to user vi

during round j. We define the download cost as the number of
bits required to describe M j

i and the upload cost as the number
of bits required to describe R j

i (M
j
i)(ai). Over all rounds and

all users, we evaluate the maximum per-user download/upload
cost, which is given by:

CostDL = maxn
i=1 ∑

τ
j=1E[|M

j
i |] (bits) (3)

CostUL = maxn
i=1 ∑

τ
j=1E[|R

j
i (M

j
i)(ai)|] (bits). (4)

The above expectations go over the probability distributions
of computing the local randomizers and any post-processing
done by the server. We evaluate the maximum of the expected
download/upload cost over users.

4 Communication-Efficient Triangle Count-
ing Algorithms

The current state-of-the-art triangle counting algorithm [29]
under edge LDP suffers from an extremely large per-user
download cost; e.g., every user has to download a message of

User Server

1st Round

noisy edges (ARR)

noisy edges between others
User Server

2nd Round

#noisy triangles
+ corrective term + Lap

ARR (Asymmetric RR)

noisy edges
original edges

Noisy Triangles

1

0

1

0

1

0

Figure 2: Overview of our communication-efficient triangle
counting algorithms (p1 =

eε

eε+1 , p2 ∈ [0,1]).

400 Gbits or more when n = 900000. Therefore, it is imprac-
tical for a large graph. To address this issue, we propose three
communication-efficient triangle algorithms under edge LDP.

We explain the overview and details of our proposed algo-
rithms in Sections 4.1 and 4.2, respectively. Then we analyze
the theoretical properties of our algorithms in Section 4.3.

4.1 Overview
Motivation. The drawback of the triangle algorithm in [29]
is a prohibitively high download cost at the second round.
This comes from the fact that in their algorithm, each user vi
applies Warner’s RR (Randomized Response) [61] to bits for
smaller user IDs in her neighbor list ai (i.e., lower triangular
part of A) and then downloads the whole noisy graph. Since
Warner’s RR outputs 1 (edge) with high probability (e.g.,
about 0.5 when ε is close to 0), the number of edges in the
noisy graph is extremely large—about half of the

(n
2

)
possible

edges will be edges.
In this paper, we address this issue by introducing two

strategies: sampling edges and selecting edges each user
downloads. First, each user vi samples each 1 (edge) after
applying Warner’s RR. Edge sampling has been widely stud-
ied in a non-private triangle counting problem [14, 26, 58, 62].
In particular, Wu et al. [62] compare various non-private trian-
gle algorithms (e.g., edge sampling, node sampling, triangle
sampling) and show that edge sampling provides almost the
lowest estimation error. They also formally prove that edge
sampling outperforms node sampling. Thus, sampling edges
after Warner’s RR is a natural choice for our private setting.

Second, we propose three strategies for selecting edges
each user downloads. The first strategy is to simply select all
noisy edges; i.e., each user downloads the whole noisy graph
in the same way as [29]. The second and third strategies select
some edges (rather than all edges) in a more clever manner so
that the estimation error is significantly reduced. We provide
a more detailed explanation in Section 4.2.

Algorithm Overview. Figure 2 shows the overview of our
proposed algorithms.

At the first round, each user vi obfuscates bits for smaller
user IDs in her neighbor list ai by an LDP mechanism which
we call the ARR (Asymmetric Randomized Response) and

USENIX Association 31st USENIX Security Symposium 541

sends the obfuscated bits to a server. The ARR is a com-
bination of Warner’s RR and edge sampling; i.e., we apply
Warner’s RR that outputs 1 or 0 as it is with probability p1
(= eε

eε+1) and then sample each 1 with probability p2 ∈ [0,1].
Unlike Warner’s RR, the ARR is asymmetric in that the flip
probability in the whole process is different depending on
the input value. As with Warner’s RR, the ARR provides
edge LDP. We can also significantly reduce the number of 1s
(hence the communication cost) by setting p2 small.

At the second round, the server calculates a message Mi
for user vi consisting of some or all noisy edges between
others. We propose three strategies for calculating Mi. User
vi downloads Mi from the server. Then, since user vi knows
her edges, vi can count noisy triangles (vi, v j, vk) such that
j < k < i and only one edge (v j, vk) is noisy, as shown in
Figure 2. The condition j < k < i is imposed to use only the
lower triangular part of A, i.e., to avoid the doubling issue in
Section 3.2. User vi adds a corrective term and the Laplacian
noise to the noisy triangle count and sends it to a server. The
corrective term is added to enable the server to obtain an
unbiased estimate of f4(G). The Laplacian noise provides
edge LDP. Finally, the server calculates an unbiased estimate
of f4(G) from the noisy data sent by users. By composition
(Proposition 2), our algorithms provide edge LDP in total.
Remark. Note that it is also possible for the server to calcu-
late an unbiased estimate of f4(G) at the first round. However,
this results in a prohibitively large estimation error because
all edges sent by users are noisy; i.e., three edges are noisy
in any triangle. In contrast, only one edge is noisy in each
noisy triangle at the second round because each user vi knows
two original edges connected to vi. Consequently, we can ob-
tain an unbiased estimate with a much smaller variance. See
Appendix B for a detailed comparison.

4.2 Algorithms

ARR. First, we formally define the ARR. The ARR has two
parameters: ε ∈ R≥0 and µ ∈ [0, eε

eε+1]. The parameter ε is the
privacy budget, and µ controls the communication cost.

Let ARRε,µ be the ARR with parameters ε and µ. It takes
0/1 as input and outputs 0/1 with the following probability:

Pr[ARRε,µ(1) = b] =

{
µ (b = 1)
1−µ (b = 0)

(5)

Pr[ARRε,µ(0) = b] =

{
µρ (b = 1)
1−µρ (b = 0),

(6)

where ρ = e−ε. By Figure 2, we can view this randomizer as
a combination of Warner’s RR [61] and edge sampling, where
µ = p1 p2. In fact, the ARR with µ = p1 =

eε

eε+1 (i.e., p2 = 1)
is equivalent to Warner’s RR.

Each user vi applies the ARR to bits for smaller user
IDs in her neighbor list ai; i.e., R i(ai) = (ARRε,µ(ai,1), . . . ,

ARRε,µ(ai,i−1)). Then vi sends R i(ai) to the server. Since ap-
plying Warner’s RR to ai provides ε-edge LDP (as described
in Section 3.2) and the sampling is a post-processing process,
applying the ARR to ai also provides ε-edge LDP by the
immunity to post-processing [25].

Let E ′ ⊆V ×V be a set of noisy edges sent by users.

Which Noisy Edges to Download? Now, the main question
tackled in this paper is: Which noisy edges should each user
vi download at the second round? Note that user vi is not
allowed to download only a set of noisy edges that form
noisy triangles (i.e., {(v j,vk) ∈ E ′|(vi,v j) ∈ E,(vi,vk) ∈ E}),
because it tells the server who are friends with vi. In other
words, user vi cannot leak her original edges to the server
when she downloads noisy edges; the server must choose
which part of E ′ to include in the message Mi it sends her.

Thus, a natural solution would be to download all noisy
edges between others (with smaller user IDs); i.e., Mi =
{(v j,vk) ∈ E ′| j < k < i}. We denote our algorithm with this
full download strategy by ARRFull4. The (inefficient) two-
rounds algorithm in [29] is a special case of ARRFull4 without
sampling (µ = p1). In other words, ARRFull4 is a generaliza-
tion of the two-rounds algorithm in [29] using the ARR.

In this paper, we show that we can do much better than AR-
RFull4. Specifically, we prove in Section 4.3 that ARRFull4
results in a high estimation error when the number of 4-cycles
(cycles of length 4) in G is large. Intuitively, this can be ex-
plained as follows. Suppose that vi, v j, vi′ , and vk (j < k < i,
j < k < i′) form a 4-cycle. There is no triangle in this graph.
However, if there is a noisy edge between v j and vk, then
two (incorrect) noisy triangles appear: (vi, v j, vk) counted
by vi and (vi′ , v j, vk) counted by vi′ . More generally, let Ei jk
(resp. Ei′ jk) ∈ {0,1} be a random variable that takes 1 if (vi,
v j, vk) (resp. (vi′ , v j, vk)) forms a noisy triangle and 0 other-
wise. Then, the covariance Cov(Ei jk,Ei′ jk) between Ei jk and
Ei′ jk is large because the presence/absence of a single noisy
edge (v j, vk) affects the two noisy triangles.

To address this issue, we introduce a trick that makes the
two noisy triangles less correlated with each other. We call
this the 4-cycle trick. Specifically, we propose two algorithms
in which the server uses noisy edges connected to vi when
it calculates a message Mi for vi. In the first algorithm, the
server selects noisy edges (v j,vk) such that one noisy edge
is connected from vk to vi; i.e., Mi = {(v j,vk) ∈ E ′|(vi,vk) ∈
E ′, j < k < i}. We call this algorithm ARROneNS4, as one
noisy edge is connected to vi. In the second algorithm, the
server selects noisy edges (v j,vk) such that two noisy edges
are connected from these nodes to vi; i.e., Mi = {(v j,vk) ∈
E ′|(vi,v j)∈E ′,(vi,vk)∈E ′, j < k< i}. We call this algorithm
ARRTwoNS4, as two noisy edges are connected to vi. Note
that user vi does not leak her original edges to the server at
the time of download in these algorithms, because the server
uses only noisy edges E ′ sent by users to calculate Mi.

Figure 3 shows our three algorithms. The download
cost CostDL in (3) is O(µn2 logn), O(µ2n2 logn), and

542 31st USENIX Security Symposium USENIX Association

Noisy edges between
others (and) to DL

Figure 3: Noisy edges to download in our three algorithms.

noisy edgesoriginal edges

Original Graph

Figure 4: 4-cycle trick. ARRFull4 counts two (incorrect) noisy
triangles when one noisy edge appears. ARROneNS4 and
ARRTwoNS4 avoid this by increasing independent noise.

O(µ3n2 logn), respectively, when we regard ε as a constant.
In our experiments, we set the parameter µ in the ARR so that
µ in ARRFull4 is equal to µ2 in ARROneNS4 and also equal
to µ3 in ARRTwoNS4; e.g., µ = 10−6, 10−3, and 10−2 in AR-
RFull4, ARROneNS4, and ARRTwoNS4, respectively. Then
the download cost is the same between the three algorithms.

Figure 4 shows our 4-cycle trick. ARRFull4 counts two
(incorrect) noisy triangles when a noisy edge (v j, vk) appears.
In contrast, ARROneNS4 (resp. ARRTwoNS4) counts both
the two noisy triangles only when three (resp. five) indepen-
dent noisy edges appear, as shown in Figure 4. Thus, this bad
event happens with a much smaller probability. For example,
ARRFull4 (µ = 10−6), ARROneNS4 (µ = 10−3), and ARRT-
woNS4 (µ = 10−2) count both the two noisy triangles with
probability 10−6, 10−9, and 10−10, respectively. The covari-
ance Cov(Ei jk,Ei′ jk) of ARROneNS4 and ARRTwoNS4 is
also much smaller than that of ARRFull4.

In our experiments, we show that ARROneNS4 and ARRT-
woNS4 significantly outperforms ARRFull4 for a large-scale
graph or dense graph, in both of which the number of 4-cycles
in G is large.

ARROneNS4 vs. ARRTwoNS4. One might expect that AR-
RTwoNS4 outperforms ARROneNS4 because ARRTwoNS4
addresses the 4-cycle issue more aggressively; i.e., the number
of independent noisy edges in a 4-cycle is larger in ARRT-
woNS4, as shown in Figure 4. However, ARROneNS4 can
reduce the global sensitivity of the Laplacian noise at the sec-
ond round more effectively than ARRTwoNS4, as explained
in Section 5. Consequently, ARROneNS4, which is the most
tricky algorithm, achieves the smallest estimation error in our
experiments. See Sections 5 and 6 for details of the global
sensitivity and experiments, respectively.

Three Algorithms. Below we explain the details of our three
algorithms. For ease of explanation, we assume that the max-

Input: Graph G ∈ G represented as neighbor lists
a1, . . . ,an ∈ {0,1}n, privacy budgets
ε1,ε2 ∈ R≥0, dmax ∈ Z≥0, µ ∈ [0, eε1

eε1+1].
Output: Private estimate f̂4(G) of f4(G).

1 [s] ρ← e−ε1 ;
2 [vi, s] µ∗← µ, µ2, and µ3 in F, O, and T, respectively;
/* First round. */

3 for i = 1 to n do
4 [vi] ri← (ARRε1,µ(ai,1), . . . ,ARRε1,µ(ai,i−1));
5 [vi] Upload ri = (ri,1, . . . ,ri,i−1) to the server;
6 end
7 [s] E ′ = {(v j,vk) : rk, j = 1, j < k};
/* Second round. */

8 for i = 1 to n do
9 [s] Compute Mi by (7), (8), and (9) in F, O, and T,

respectively;
10 [vi] Download Mi from the server;
11 [vi] ti← |{(vi,v j,vk) : ai, j = ai,k = 1,(v j,vk) ∈

Mi, j < k < i}|;
12 [vi] si← |{(vi,v j,vk) : ai, j = ai,k = 1, j < k < i}|;
13 [vi] wi← ti−µ∗ρsi;
14 [vi] ŵi← wi +Lap(dmax

ε2
);

15 [vi] Upload ŵi to the server;
16 end
17 [s] f̂4(G)← 1

µ∗(1−ρ) ∑
n
i=1 ŵi;

18 return f̂4(G)

Algorithm 1: Our three algorithms. “F”, “O”, “T” are
shorthands for ARRFull4, ARROneNS4, and ARRT-
woNS4, respectively. [vi] and [s] represent that the
process is run by vi and the server, respectively.

imum degree dmax is public in Section 4.22. Note, however,
that our double clipping (which is proposed to significantly
reduce the global sensitivity) in Section 5 does not assume
that dmax is public. Consequently, our entire algorithms do
not require the assumption that dmax is public.

Recall that the server calculates a message Mi for vi as:

Mi={(v j,vk) ∈ E ′| j < k < i} (7)
Mi={(v j,vk) ∈ E ′|(vi,vk) ∈ E ′, j < k < i} (8)
Mi={(v j,vk) ∈ E ′|(vi,v j) ∈ E ′,(vi,vk) ∈ E ′, j < k < i} (9)

in ARRFull4, ARROneNS4, ARRTwoNS4, respectively.
Algorithm 1 shows our three algorithms. These algorithms

are processed differently in lines 2 and 9; “F”, “O”, “T” are
shorthands for ARRFull4, ARROneNS4, and ARRTwoNS4,

2For example, dmax is public in Facebook: dmax = 5000 [3]. If the server
does not have prior knowledge about dmax, she can privately estimate dmax
and use graph projection to guarantee that each user’s degree never exceeds
the private estimate of dmax [29]. In any case, the assumption in Section 4.2
does not undermine our algorithms, because our entire algorithms with double
clipping in Section 5 does not assume that dmax is public.

USENIX Association 31st USENIX Security Symposium 543

respectively. The privacy budgets for the first and second
rounds are ε1,ε2 ∈ R≥0, respectively.

The first round appears in lines 3-7 of Algorithm 1. In this
round, each user applies ARRε1,µ defined by (5) and (6) to bits
ai,1, . . . ,ai,i−1 for smaller user IDs in her neighbor list ai, i.e.,
lower triangular part of A. Let ri =(ri,1, . . . ,ri,i−1)∈{0,1}i−1

be the obfuscated bits of vi. User vi uploads ri to the server.
Then the server combines the noisy edges together, forming
E ′ = {(v j,vk) : rk, j = 1, j < k}.

The second round appears in lines 8-17 of Algorithm 1.
In this round, the server computes a message Mi by (7), (8),
or (9), and user vi downloads it. Then user vi calculates the
number ti ∈ Z≥0 of noisy triangles (vi, v j, vk) such that only
one edge (v j, vk) is noisy, as shown in Figure 2. User vi also
calculate a corrective term si ∈ Z≥0. The corrective term si is
the number of possible triangles involving vi and is computed
to obtain an unbiased estimate of f4(G). User vi calculates
wi = ti−µ∗ρsi, where ρ = e−ε1 and µ∗ = µ, µ2, and µ3 in “F”,
“O”, and “T”, respectively. Then vi adds the Laplacian noise
Lap(dmax

ε2
) to wi to provide ε2-edge LDP and sends the noisy

value ŵi (= wi +Lap(dmax
ε2

)) to the server. Note that adding
one edge increases both ti and si by at most dmax. Thus, the
global sensitivity of wi is at most dmax. Finally, the server
calculates an estimate of f4(G) as: f̂4(G) = 1

µ∗(1−ρ) ∑
n
i=1 ŵi.

As we prove later, f̂4(G) is an unbiased estimate of f4(G).

4.3 Theoretical Analysis

We now introduce the theoretical guarantees on the privacy,
communication, and utility of our algorithms.

Privacy. We first show the privacy guarantees:

Theorem 1. For i ∈ [n], let R 1
i ,R 2

i (Mi) be the randomiz-
ers used by user vi in rounds 1 and 2 of Algorithm 1. Let
R i(ai) = (R 1

i (ai),R 2
i (Mi)(ai)) be the composition of the

two randomizers. Then, R i satisfies (ε1 + ε2)-edge LDP and
(R 1, . . . ,R n) satisfies (ε1 + ε2)-relationship DP.

Note that the doubling issue in Section 3.2 does not occur,
because we use only the lower triangular part of A. By the
immunity to post-processing, the estimate f̂4(G) also satisfies
(ε1 + ε2)-edge LDP and (ε1 + ε2)-relationship DP.

Communication. Recall that we evaluate the algorithms
based on their download cost (3) and upload cost (4).

Download Cost: The download cost is the number of bits
required to download Mi. Mi can be represented as a list of
edges between others, and each edge can be identified with
two indices (user IDs), i.e., 2 logn bits. There are (n−1)(n−2)

2 ≈
n2

2 edges between others. ARRε1,µ outputs 1 with probability
at most µ. In addition, each noisy triangle must have 1, 2, and
3 noisy edges in ARRFull4, ARROneNS4, and ARRTwoNS4,
respectively, as shown in Figure 3.

Thus, the download cost in Algorithm 1 can be written as:

CostDL ≤ µ∗n2 logn, (10)

where µ∗ = µ, µ2, and µ3 in ARRFull4, ARROneNS4, and
ARRTwoNS4, respectively. In (10), we upper-bounded CostDL
by using the fact that ARRε1,µ outputs 1 with probability at
most µ. However, when dmax � n, ARRε1,µ outputs 1 with
probability µe−ε1 in most cases. In that case, we can roughly
approximate CostDL by replacing µ with µe−ε1 in (10).

Upload Cost: The upload cost comes from the number of
bits required to upload R 1

i (ai) and R 2
i (Mi)(ai). Uploading

R 1
i (ai) involves uploading ri (line 5), which is a list of up

to n noisy neighbors. By sending just the indices (user IDs)
of the 1s in ri, each user sends ‖ri‖1 logn bits, where ‖ri‖1
is the number of 1s in ri. When we use ARRε1,µ, we have
E[‖ri‖1]≤ µn. Uploading R 2

i (Mi) involves uploading a sin-
gle real number ŵi (line 15), which is negligibly small (e.g.,
64 bits when we use a double-precision floating-point).

Thus, the upload cost in Algorithm 1 can be written as:

CostUL ≤ µn logn. (11)

Clearly, CostUL is much smaller than CostDL for large n.
Utility. Analyzing the expected l2 loss l2

2(f4(G), f̂4(G)) of
the algorithms involves first proving that the estimator f̂4 is
unbiased and then analyzing the variance V[f̂4(G)] to obtain
an upper-bound on l2

2(f4(G), f̂4(G)). This is given in the
following:

Theorem 2. Let G ∈ G , ε1,ε2 ∈ R≥0, and µ ∈ [0, eε1
eε1+1]. Let

f̂ F
4(G), f̂ O

4(G), and f̂ T
4(G) be the estimates output respec-

tively by ARRFull4, ARROneNS4, and ARRTwoNS4 in Algo-
rithm 1. Then, E[f̂ F

4(G)] = E[f̂ O
4(G)] = E[f̂ T

4(G)] = f4(G)
(i.e., estimates are unbiased) and

l2
2(f4(G), f̂ F

4(G))≤ 2C4(G)+S2(G)
µ(1−eε1)2 + 2nd2

max
µ2(1−eε1)2ε2

2

l2
2(f4(G), f̂ O

4(G))≤ µ(2C4(G)+6S3(G))+S2(G)
µ2(1−eε1)2 + 2nd2

max
µ4(1−eε1)2ε2

2

l2
2(f4(G), f̂ T

4(G))≤ µ2(2C4(G)+6S3(G))+S2(G)
µ3(1−eε1)2 + 2nd2

max
µ6(1−eε1)2ε2

2
,

where C4(G) is the number of 4-cycles in G and Sk(G) is the
number of k-stars in G.

For each of the three upper-bounds in Theorem 2, the first
and second terms are the estimation errors caused by empirical
estimation and the Laplacian noise, respectively. We also
note that C4(G) = S3(G) = O(nd3

max) and S2(G) = O(nd2
max).

Thus, for small µ, the l2 loss of empirical estimation can be
expressed as O(nd3

max), O(nd2
max), and O(nd2

max) in ARRFull4,
ARROneNS4, ARRTwoNS4, respectively (as the factors of
C4(G) and S3(G) diminish for small µ).

This highlights our 4-cycle trick. The large l2 loss of AR-
RFull4 is caused by the number C4(G) = O(nd3

max) of 4-
cycles. ARROneNS4 and ARRTwoNS4 addresses this issue
by increasing independent noise, as shown in Figure 4.

544 31st USENIX Security Symposium USENIX Association

5 Double Clipping

In Section 4, we showed that the estimation error caused
by empirical estimation (i.e., the first term in Theorem 2)
is significantly reduced by the 4-cycle trick. However, the
estimation error is still very large in our algorithms presented
in Section 4, as shown in our experiments. This is because the
estimation error by the Laplacian noise (i.e., the second term
in Theorem 2) is very large, especially for small ε2 or µ. This
error term is tight and unavoidable as long as we use dmax
as a global sensitivity, which suggests that we need a better
global sensitivity analysis. To significantly reduce the global
sensitivity, we propose a novel double clipping technique.

We describe the overview and details of our double clip-
ping in Sections 5.1 and 5.2, respectively. Then we perform
theoretical analysis in Section 5.3.

5.1 Overview
Motivation. Figure 5 shows noisy triangles involving edge
(vi,v j) counted by user vi in our three algorithms. Our al-
gorithms in Section 4 use the fact that the number of such
noisy triangles (hence the global sensitivity) is upper-bounded
by the maximum degree dmax because adding one edge in-
creases the triangle count by at most dmax. Unfortunately, this
upper-bound is too large, as shown in our experiments.

In this paper, we significantly reduce this upper-bound
by using the parameter µ in the ARR and user vi’s degree
di ∈ Z≥0 for users with smaller IDs. For example, the number
of noisy triangles involving (vi,v j) in ARRFull4is expected
to be around µdi because one noisy edge is included in each
noisy triangle (as shown in Figure 5) and all noisy edges are
independent. µdi is very small, especially when we set µ� 1
to reduce the communication cost.

However, we cannot directly use µdi as an upper-bound of
the global sensitivity in ARRFull4for two reasons. First, µdi
leaks the exact value of user vi’s degree di and violates edge
LDP. Second, the number of noisy triangles involving (vi,v j)
exceeds µdi with high probability (about 0.5). Thus, the noisy
triangle count cannot be upper-bounded by µdi.

To address these two issues, we propose a double clipping
technique, which is explained below.

Algorithm Overview. Figure 6 shows the overview of our
double clipping, which consists of an edge clipping and noisy
triangle clipping. The edge clipping addresses the first issue
(i.e., leakage of di) as follows. It privately computes a noisy
version of di (denoted by d̃i) with edge LDP. Then it removes
some neighbors from a neighbor list ai so that the degree of
vi never exceeds the noisy degree d̃i. This removal process is
also known as graph projection [23,24,37,50]. Edge clipping
is used in [29] to obtain a noisy version of dmax.

The main novelty in our double clipping lies at the noisy
triangle clipping to address the second issue (i.e., excess of
the noisy triangle count). This issue appears when we attempt

noisy edgesoriginal edges

Figure 5: Noisy triangles involving edge (vi,v j) counted by
user vi (j < k, l,m < i).

(1) (2)

(1) edge clipping () (2) noisy triangle clipping ()

Figure 6: Overview of double clipping applied to edge (v1,v7).

to reduce the global sensitivity by using a very small sam-
pling probability for each edge. Therefore, the noisy triangle
clipping has not been studied in the existing works on private
triangle counting [24, 29, 36, 37, 56, 64, 65, 67], because they
do not apply a sampling technique.

Our noisy triangle clipping reduces the noisy triangle count
so that it never exceeds a user-dependent clipping threshold
κi ∈ R≥0. Then a crucial issue is how to set an appropriate
threshold κi. We theoretically analyze the probability that the
noisy triangle count exceeds κi (referred to as the triangle
excess probability) as a function of the ARR parameter µ and
the noisy degree d̃i. Then we set κi so that the triangle excess
probability is very small (= 10−6 in our experiments).

We use the clipping threshold κi as a global sensitivity.
Note that κi provides edge LDP because d̃i provides edge
LDP, i.e., immunity to post-processing [25]. κi is also very
small when µ� 1, as it is determined based on µ.

5.2 Algorithms
Algorithm 2 shows our double clipping algorithm. All the
processes are run by user vi at the second round. Thus, there
is no interaction with the server in Algorithm 2.

Edge Clipping. The edge clipping appears in lines 2-3 of
Algorithm 2. It uses a privacy budget ε0 ∈ R≥0.

In line 2, user vi adds the Laplacian noise Lap(1
ε0
) to her

degree di. Since adding/removing one edge changes di by at
most 1, this process provides ε0-edge LDP. vi also adds some
non-negative constant α∈R≥0 to di. We add this value so that
edge removal (in line 3) occurs with a very small probability;
e.g., in our experiments, we set α = 150, where edge removal
occurs with probability 1.5×10−7 when ε0 = 0.1. A similar
technique is introduced in [56] to provide (ε,δ)-DP [25] with
small δ. The difference between ours and [56] is that we
perform edge clipping to always provide ε-DP; i.e., δ = 0. Let
d̃i ∈ R≥0 be the noisy degree of vi.

USENIX Association 31st USENIX Security Symposium 545

Input: Neighbor list ai ∈ {0,1}n, privacy budget
ε0 ∈ R≥0 µ ∈ [0, eε1

eε1+1], α ∈ R≥0, β ∈ R≥0.
Output: ŵi.

1 µ∗← µ, µ2, and µ3 in F, O, and T, respectively;
/* Edge clipping. */

2 d̃i = max{di +Lap(1
ε0
)+α, 0};

/* Remove di−bd̃ic neighbors if di > d̃i. */

3 ai← GraphProjection(ai, d̃i);
/* Noisy triangle clipping. */

4 for j such that ai, j = 1 and j < i do
5 ti, j← |{(vi,v j,vk) : ai,k = 1,(v j,vk) ∈Mi, j <

k < i}|;
6 end
/* Calculate κi ∈ [µ∗d̃i, d̃i] s.t. the triangle

excess probability is β or less. */

7 κi← ClippingThreshold(µ, d̃i,β);
8 ti← ∑ai, j=1, j<i min{ti, j,κi};
9 si← |{(vi,v j,vk) : ai, j = ai,k = 1, j < k < i}|;

10 wi← ti−µ∗ρsi;
11 ŵi← wi +Lap(κi

ε2
);

12 return ŵi

Algorithm 2: Our double clipping algorithm. “F”,
“O”, “T” are shorthands for ARRFull4, ARROneNS4,
and ARRTwoNS4, respectively. All the processes are
run by user vi.

In line 3, user vi calls the function GraphProjection,
which performs graph projection as follows; if di > d̃i, ran-
domly remove di − bd̃ic neighbors from ai; otherwise, do
nothing. Consequently, the degree of vi never exceeds d̃i.

Noisy Triangle Clipping. The noisy triangle clipping ap-
pears in lines 4-11 of Algorithm 2.

In lines 4-6, user vi calculates the number ti, j ∈Z≥0 of noisy
triangles (vi,v j,vk) (j < k < i) involving (vi,v j) (as shown
in Figure 5). Note that the total number ti of noisy triangles
of vi can be expressed as: ti = ∑ai, j=1, j<i ti, j. In line 7, vi
calls the function ClippingThreshold, which calculates a
clipping threshold κi ∈ [µ∗d̃i, d̃i] (µ∗ = µ, µ2, and µ3 in “F”,
“O”, and “T”, respectively) based on the ARR parameter µ
and the noisy degree d̃i so that the triangle excess probability
does not exceed some constant β ∈ R≥0. We explain how to
calculate the triangle excess probability in Section 5.3. In
line 8, vi calculates the total number ti of noisy triangles by
summing up ti, j, with the exception that vi adds κi if ti, j > κi.
In other words, triangle removal occurs if ti, j > κi. Then, the
number of noisy triangles involving (vi,v j) never exceeds κi.

Lines 9-11 in Algorithm 2 are the same as lines 12-14 in
Algorithm 1, except that the global sensitivity in the former
(resp. latter) is κi (resp. dmax). Line 11 in Algorithm 2 pro-
vides ε2-edge LDP because the number of triangles involving
(vi,v j) is now upper-bounded by κi.

Our Entire Algorithms with Double Clipping. We can run
our algorithms ARRFull4, ARROneNS4, ARRTwoNS4 with
double clipping just by replacing lines 11-14 in Algorithm 1
with lines 2-11 in Algorithm 2. That is, after calculating ŵi
by Algorithm 2, vi uploads ŵi to the server. Then the server
calculates an estimate of f4(G) as f̂4(G) = 1

µ∗(1−ρ) ∑
n
i=1 ŵi.

We also note that the input dmax in Algorithm 1 is no longer
necessary thanks to the edge clipping; i.e., our entire algo-
rithms with double clipping do not assume that dmax is public.

5.3 Theoretical Analysis
We now perform a theoretical analysis on the privacy and
utility of our double clipping.
Privacy. We begin with the privacy guarantees:

Theorem 3. For i ∈ [n], let R 1
i ,R 2

i (Mi) be the randomiz-
ers used by user vi in rounds 1 and 2 of our algorithms
with double clipping (Algorithms 1 and 2). Let R i(ai) =
(R 1

i (ai),R 2
i (Mi)(ai)) be the composition of the two ran-

domizers. Then, R i satisfies (ε0 + ε1 + ε2)-edge LDP, and
(R 1, . . . ,R n) satisfies (ε0 + ε1 + ε2)-relationship DP.

Utility. Next, we show the triangle excess probability:

Theorem 4. In Algorithm 2, the triangle excess probability
(i.e., probability that the number of noisy triangles ti, j involv-
ing edge (vi,v j) exceeds a clipping threshold κi) is:

Pr(ti, j > κi)≤ exp
[
−d̃iD

(
κi
d̃i
‖ µ
)]

(12)

Pr(ti, j > κi)≤ exp
[
−d̃iD

(
κi
d̃i
‖ µ2

)]
(13)

Pr(ti, j > κi)≤ µexp
[
−d̃iD

(
max{κi,µ2d̃i}

d̃i
‖ µ2

)]
(14)

in ARRFull4, ARROneNS4, and ARRTwoNS4, respectively,
where D(p1 ‖ p2) is the Kullback-Leibler divergence between
two Bernoulli distributions; i.e.,

D(p1 ‖ p2) = p1 log p1
p2
+(1− p1) log 1−p1

1−p2
.

In all of (12), (13), and (14), we use the Chernoff bound,
which is known to be reasonably tight [10].
Setting κi. The function ClippingThreshold in Algo-
rithm 2 sets a clipping threshold κi of user vi based on The-
orem 4. Specifically, we set κi = λiµ∗d̃i, where λi ∈ N, and
calculate λi as follows. We initially set λi = 1 and keep in-
creasing λi by 1 until the upper-bound (i.e., right-hand side
of (12), (13), or (14)) is smaller than or equal to the triangle
excess probability β. In our experiments, we set β = 10−6.
Large κi of ARRTwoNS4. By (12) and (13), the upper-
bound on the triangle excess probability is the same be-
tween ARRFull4 and ARROneNS4. In contrast, ARRTwoNS4
has a larger upper-bound. For example, when κi = 15µ∗d̃i,
µ∗ = 10−3, and d̃i = 1000, the right-hand sides of (12), (13),

546 31st USENIX Security Symposium USENIX Association

ARRFull4 ARROneNS4 ARRTwoNS4
Privacy (ε0 + ε1 + ε2)-edge LDP and (ε0 + ε1 + ε2)-relationship DP

Expected l2 loss O
(

nd3
max

µ(1−e−ε1)2 +
2∑

n
i=1 κ2

i
µ2(1−e−ε1)2ε2

2

)
O
(

nd2
max

µ2(1−e−ε1)2 +
2∑

n
i=1 κ2

i
µ4(1−e−ε1)2ε2

2

)
O
(

nd2
max

µ3(1−e−ε1)2 +
2∑

n
i=1 κ2

i
µ6(1−e−ε1)2ε2

2

)
CostDL µn2 logn µ2n2 logn µ3n2 logn
CostUL µn logn µn logn µn logn

Table 1: Performance guarantees of our three algorithms with double clipping when the edge removal and triangle removal do
not occur. The expected l2 loss assumes that µ is small. The download (resp. upload) cost is an upper-bound in (10) (resp. (11)).

and (14) are 2.5× 10−12, 2.5× 10−12, and 3.3× 10−2, re-
spectively. Consequently, ARRTwoNS4 has a larger global
sensitivity κi for the same value of β.

We can explain a large global sensitivity κi of ARRTwoNS4
as follows. The number ti, j of noisy triangles involving (vi,v j)
in ARRFull4 is expected to be around µdi because one noisy
edge is in each noisy triangle (as in Figure 5) and all noisy
edges are independent. For the same reason, ti, j in ARRO-
neNS4 is expected to be around µ2di. However, ti, j in AR-
RTwoNS4 is not expected to be around µ3di, because all the
noisy triangles have noisy edge (vi,v j) in common (as in
Figure 5). Then, the expectation of ti, j largely depends on
the presence/absence of the noisy edge (vi,v j); i.e., if noisy
edge (vi,v j) exists, it is µ2di; otherwise, 0. Thus, κi cannot be
effectively reduced by double clipping.

Summary. The performance guarantees of our three algo-
rithms with double clipping can be summarized in Table 1.

The first and second terms of the expected l2 loss are the l2
loss of empirical estimation and that of the Laplacian noise,
respectively. For small µ, the l2 loss of empirical estimation
can be expressed as O(nd3

max), O(nd2
max), and O(nd2

max) in
ARRFull4, ARROneNS4, ARRTwoNS4, respectively, as ex-
plained in Section 4.3. The l2 loss of the Laplacian noise is
O(∑n

i=1 κ2
i), which is much smaller than O(nd2

max). Thus, our
ARROneNS4 that effectively reduces κi provides the smallest
error, as shown in our experiments.

We also note that both the space and the time complexity
to compute and send Mi in our algorithms are O(µ∗n2) (as
|E ′|= O(µ∗n2)), which is much smaller than [29] (= O(n2)).

6 Experiments

To evaluate each component of our algorithms in Sections 4
and 5 as well as our entire algorithms (i.e., ARRFull4, AR-
ROneNS4, ARRTwoNS4with double clipping), we pose the
following three research questions:

RQ1. How do our three triangle counting algorithms (i.e.,
ARRFull4, ARROneNS4, ARRTwoNS4) in Section 4
compare with each other in terms of accuracy?

RQ2. How much does our double clipping technique in Sec-
tion 5 decrease the estimation error?

RQ3. How much do our entire algorithms reduce the commu-
nication cost, compared to the existing algorithm [29],
while keeping high utility (e.g., relative error� 1)?

In Appendix B, we also compare our entire algorithms with
one-round algorithms.

6.1 Experimental Set-up

In our experiments, we used two real graph datasets:

Gplus. The Google+ dataset [41] (denoted by Gplus) was
collected from users who had shared circles. From the dataset,
we constructed a social graph G = (V,E) with 107614 nodes
(users) and 12238285 edges, where edge (vi,v j) ∈ E rep-
resents that vi follows or is followed by v j. The average
(resp. maximum) degree in G is 113.7 (resp. 20127).

IMDB. The IMDB (Internet Movie Database) [2] (denoted by
IMDB) includes a bipartite graph between 896308 actors and
428440 movies. From this, we constructed a graph G = (V,E)
with 896308 nodes (actors) and 57064358 edges, where edge
(vi,v j) ∈ E represents that vi and v j have played in the same
movie. The average (resp. maximum) degree in G is 63.7
(resp. 15451). Thus, IMDB is more sparse than Gplus.

In the full version [30], we also evaluate our algorithms us-
ing a synthetic graph based on the Barabási-Albert model [11],
which has a power-law degree distribution.

We evaluated our algorithms while changing µ∗, where
µ∗ = µ, µ2, and µ3 in ARRFull4, ARROneNS4, and ARRT-
woNS4, respectively. CostDL is the same between the three
algorithms. We typically set the total privacy budget ε to
ε = 1 (at most 2) because it is acceptable in many practical
scenarios [39].

In our double clipping, we set α = 150 and β = 10−6 so
that both edge removal and triangle removal occur with a
very small probability (≤ 10−6 when ε0 = 0.1). Then for
each algorithm, we evaluated the relative error between the
true triangle count f4(G) and its estimate f̂4(G). Since the
estimate f̂4(G) varies depending on the randomness of LDP
mechanisms, we ran each algorithm τ ∈ N times (τ = 20 and
10 for Gplus and IMDB, respectively) and averaged the relative
error over the τ cases.

USENIX Association 31st USENIX Security Symposium 547

R
el

at
iv

e
E

rr
or

0.08

Gplus ()

0.06

0.04

0.02

0
Gplus ()

0.04

IMDB ()

0.03

0.02

0.01

0
IMDB ()

0.08

0.06

0.04

0.02

0

0.04

0.03

0.02

0.01

0

Figure 7: Relative error of our three algorithms with double
clipping (“DC”) when ε = 1 or 2 and µ∗ = 10−3 (n = 107614
in Gplus, n = 896308 in IMDB).

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

1

(a) Gplus ()

102

103

10

(b) IMDB ()

(c) Gplus () (d) IMDB ()

10-6

R
el

at
iv

e
E

rr
or

10-5 10-4 10-3 10-2 10-1 1
10-3

10-2

10-1

1

102

103

10

104

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-6

R
el

at
iv

e
E

rr
or

10-5 10-4 10-3 10-2 10-1 1

10-3

10-2

10-1

1

102

103

10

104

10-3

10-2
10-1

1

102
103

10

104

10-4

105

16M 160M 1.6G 16G 160G 1.6T 16T190K 1.9M 19M 190M 1.9G 19G 190G
(400G)(6G)

Figure 8: Relative error of our three algorithms with (“DC”)
or without (“dmax”) double clipping (n = 107614 in Gplus,
n = 896308 in IMDB). RRFull4(dmax) is the algorithm in [29].
CostDL is an upper-bound in (10). When µ∗ ≥ 0.1, CostDL can
be 6 Gbits and 400 Gbits in Gplus and IMDB, respectively, by
downloading only 0/1 for each pair of users (v j,vk).

6.2 Experimental Results

Performance Comparison. First, we evaluated our algo-
rithms with the Laplacian noise. Specifically, we evaluated
all possible combinations of our three algorithms with and
without our double clipping (six combinations in total) and
compared them with the existing two-rounds algorithm in [29].
For algorithms with double clipping, we divided the total pri-
vacy budget ε as: ε0 =

ε

10 and ε1 = ε2 =
9ε

20 . Here, we set a
very small budget (ε0 = ε

10) for edge clipping because the
degree has a small sensitivity (sensitivity= 1). For algorithms
without double clipping, we divided ε as ε1 = ε2 =

ε

2 and used
the maximum degree dmax as the global sensitivity.

Figures 7 and 8 show the results. Figure 7 highlights the rel-
ative error of our three algorithms with double clipping when

ε = 1 or 2 and µ∗ = 10−3. “DC” (resp. “dmax”) represents al-
gorithms with (resp. without) double clipping. RRFull4(dmax)
(marked with purple square) in Figure 8 (c) and (d) represents
the two-rounds algorithm in [29]. Note that this is a special
case of our ARRFull4 without sampling (µ = eε1

eε1+1 = 0.62).
Figure 8 (c) and (d) also show the download cost CostDL
calculated by (10). Note that when µ∗ ≥ 0.1 (marked with
squares), CostDL can be 6Gbits and 400Gbits in Gplus and
IMDB, respectively, by downloading only 0/1 for each pair of
users (v j,vk); CostDL = (n−1)(n−2)

2 in this case.
Figures 7 and 8 show that our ARROneNS4 (DC) provides

the best (or almost the best) performance in all cases. This
is because ARROneNS4 (DC) introduces the 4-cycle trick
and effectively reduces the global sensitivity of the Laplacian
noise by double clipping. Later, we will investigate the ef-
fectiveness of the 4-cycle trick in detail by not adding the
Laplacian noise. We will also investigate the impact of the
Laplacian noise while changing n.

Figure 8 also shows that the relative error is almost the
same between our three algorithms without double clipping
(“dmax”) and that it is too large. This is because Lap(dmax

ε2
)

is too large and dominant. The relative error is significantly
reduced by introducing our double clipping in all cases. For
example, when µ∗ = 10−3, our double clipping reduces the
relative error of ARROneNS4 by two or three orders of mag-
nitude. The improvement is larger for smaller µ∗.

In the full version [30], we also evaluate the effect of edge
clipping and noisy triangle clipping independently and show
that each component significantly reduces the relative error.

Communication Cost. From Figure 8 (c) and (d), we can
explain how much our algorithms can reduce the download
cost while keeping high utility, e.g., relative error� 1.

For example, when we use the algorithm in [29], the down-
load cost is CostDL = 400 Gbits in IMDB. Thus, when the
download speed is 20 Mbps (recommended speed in YouTube
[7]), every user vi needs 6 hours to download the message
Mi, which is far from practical. In contrast, our ARROneNS4
(DC) can reduce it to 160 Mbits (8 seconds when 20 Mbps
download rate) or less while keeping relative error = 0.21,
which is practical and a dramatic improvement over [29].

We also note that since dmax� n in IMDB, CostDL of our
ARROneNS4 (DC) can also be roughly approximated by 60
Mbits (3 seconds) by replacing µ with µe−ε1 in (10).

4-Cycle Trick. We also investigated the effectiveness of our
4-cycle trick in ARROneNS4 and ARRTwoNS4 in detail. To
this end, we evaluated our three algorithms when we did not
add the Laplacian noise at the second round. Note that they
do not provide edge LDP, as ε2 = ∞. The purpose here is to
purely investigate the effectiveness of the 4-cycle trick related
to our first research question RQ1.

Figure 9 shows the results, where ε1 and µ∗ are changed to
various values. Figure 9 shows that ARROneNS4 and ARRT-
woNS4 significantly outperform ARRFull4 when µ∗ is small.

548 31st USENIX Security Symposium USENIX Association

10-6

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

1
(a) Gplus ()

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

1
(b) IMDB ()

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

10

1

10-4

10-5 10-4 10-3 10-2 10-1 1 10-6

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

10

1

10-4

10-5 10-4 10-3 10-2 10-1 1

(c) Gplus () (d) IMDB ()

Figure 9: Relative error of our three algorithms without the
Laplacian noise (n = 107614 in Gplus, n = 896308 in IMDB).

0 2 12

R
el

at
iv

e
E

rr
or

(a) Gplus

0 1 2

R
el

at
iv

e
E

rr
or

(b) IMDB

4 6 8 10
10-2

10-1

1

102

10

3 4 5 6 7 8 9
10-2

10-1

1

10

Figure 10: Relative error of our three algorithms with double
clipping for various values of n (ε = 1, µ∗ = 10−3).

This is because in both ARROneNS4 and ARRTwoNS4, the
factors of C4 (#4-cycles) and S3 (#3-stars) in the expected
l2 loss diminish for small µ, as explained in Section 4.3. In
other words, ARROneNS4 and ARRTwoNS4 effectively ad-
dress the 4-cycle issue. Figure 9 also shows that ARRTwoNS4
slightly outperforms ARROneNS4 when µ∗ is small. This is
because the factors of C4 and S3 diminish more rapidly; i.e.,
ARRTwoNS4 addresses the 4-cycle issue more aggressively.

However, when we add the Laplacian noise, ARRTwoNS4
(DC) is outperformed by ARROneNS4 (DC), as shown in
Figure 8. This is because ARRTwoNS4 cannot effectively
reduce the global sensitivity by double clipping. In Figure 8,
the difference between ARROneNS4 (DC) and ARRFull4
(DC) is also small for very small ε or µ∗ (e.g., ε = 0.1, µ∗ =
10−6) because the Laplacian noise is dominant in this case.

Changing nnn. We finally evaluated our three algorithms with
double clipping while changing the number n of users. In
both Gplus and IMDB, we randomly selected n users from all
users and extracted a graph with n users. Then we evaluated
the relative error while changing n to various values.

Figure 10 shows the results, where ε = 1 (ε0 = 0.1, ε1 =
ε2 = 0.45) and µ∗ = 10−3. In all three algorithms, the rela-

R
el

at
iv

e
E

rr
or

10-2

10-1

1

102

10

10-3

(a) Gplus (b) IMDB

10-2

10-1

10

1

10-3

10-4

Figure 11: Relative error of empirical estimation and the
Laplacian noise in our three algorithms with double clipping
(ε = 1, µ∗ = 10−3).

0 2 4 6 8

Gplus

0 1 2 3 4 5 6 7 8 9

IMDB

10 12

Figure 12: #4-cycles C4.

tive error decreases with increase in n. This is because the
expected l2 loss can be expressed as O(nd3

max) or O(nd2
max) in

these algorithms as shown in Section 5.3 and the square of the
true triangle count can be expressed as Ω(n2). In other words,
when dmax� n, the relative error becomes smaller for larger n.
Figure 10 also shows that for small n, ARRTwoNS4 provides
the worst performance and ARROneNS4 performs almost the
same as ARRFull4. For large n, ARRFull4 performs the worst
and ARROneNS4 performs the best.

To investigate the reason for this, we decomposed the esti-
mation error into two components – the first error caused by
empirical estimation and the second error caused by the Lapla-
cian noise. Specifically, for each algorithm, we evaluated the
first error by calculating the relative error when we did not add
the Laplacian noise (ε1 = 0.45). Then we evaluated the sec-
ond error by subtracting the first error from the relative error
when we used double clipping (ε0 = 0.1, ε1 = ε2 = 0.45).

Figure 11 shows the results for some values of n, where
“emp” represents the first error by empirical estimation and
“Lap” represents the second error by the Laplacian noise. We
observe that the second error rapidly decreases with increase
in n. In addition, the first error of ARRFull4 is much larger
than those of ARROneNS4 and ARRTwoNS4 when n is large.

We also examined the number C4 of 4-cycles as a function
of n. Figure 12 shows the results. We observe that C4 (which
is O(nd3

max)) is quartic in n; e.g., C4 is increased by 24 ≈ 10
and 64 ≈ 103 when n is multiplied by 2 and 6, respectively.
This is because we randomly selected n users from all users
and dmax is almost proportional to n (though dmax� n).

Based on Figures 11 and 12, we can explain Figure 10
as follows. As shown in Section 5.3, the l2 loss of empiri-
cal estimation can be expressed as O(nd3

max), O(nd2
max), and

USENIX Association 31st USENIX Security Symposium 549

O(nd2
max) in ARRFull4, ARROneNS4, and ARRTwoNS4, re-

spectively. The large l2 loss of ARRFull4 is caused by a large
value of C4. The expected l2 loss of the Laplacian noise is
O(∑n

i=1 κ2
i), which is much smaller than O(nd2

max). Thus, as n
increases, the Laplacian noise becomes relatively very small,
as shown in Figure 11. Consequently, ARROneNS4 provides
the best performance for large n because it addresses the 4-
cycle issue and effectively reduces the global sensitivity. This
explains the results in Figure 10. It is also interesting that
when n ≈ 105, ARRFull4 performs the worst in Gplus and
almost the same as ARROneNS4 in IMDB (see Figure 10).
This is because Gplus is more dense than IMDB and C4 is
much larger in Gplus when n≈ 105, as in Figure 12.

In other words, Figures 10, 11, and 12 are consistent with
our theoretical results in Section 5.3. From these results, we
conclude that ARROneNS4 is effective especially for a large
graph (e.g., n≈ 106) or dense graph (e.g., Gplus) where the
number C4 of 4-cycles is large.

Summary. In summary, our answers to our three research
questions RQ1-3 are as follows. [RQ1]: Our ARROneNS4
achieves almost the smallest estimation error in all cases and
outperforms the other two, especially for a large graph or
dense graph where C4 is large. [RQ2]: Our double clipping
reduces the estimation error by two or three orders of magni-
tude. [RQ3]: Our entire algorithm (ARROneNS4 with double
clipping) dramatically reduces the communication cost, e.g.,
from 6 hours to 8 seconds or less (relative error = 0.21) in
IMDB at a 20 Mbps download rate [7].

Thus, triangle counting under edge LDP is now much more
practical. In Appendix C, we show that the clustering coeffi-
cient can also be accurately estimated using our algorithms.

7 Conclusions

We proposed triangle counting algorithms under edge LDP
with a small estimation error and small communication cost.
We showed that our entire algorithms with the 4-cycle trick
and double clipping dramatically reduce the download cost
of [29], e.g., from 6 hours to 8 seconds or less.

We assumed that each user vi honestly inputs her neighbor
list ai, as in most previous work on LDP. However, recent
studies [17, 20] show that the estimate in LDP can be skewed
by data poisoning attacks. As future work, we would like to
analyze the impact of data poisoning on our algorithms and
develop defenses (e.g., detection) against it.

Acknowledgments

Kamalika Chaudhuri and Jacob Imola would like to thank
ONR under N00014-20-1-2334 and UC Lab Fees under LFR
18-548554 for research support. Takao Murakami was sup-
ported in part by JSPS KAKENHI JP19H04113.

References

[1] Tools: TriangleLDP. https://github.com/
TriangleLDP/TriangleLDP.

[2] 12th Annual Graph Drawing Contest. http://mozart.
diei.unipg.it/gdcontest/contest2005/index.
html, 2005.

[3] What to Do When Your Facebook Profile is Maxed
Out on Friends. https://authoritypublishing.
com/social-media/what-to-do-when-your-
facebook-profile-is-maxed-out-on-friends/,
2012.

[4] The diaspora* project. https://
diasporafoundation.org/, 2021.

[5] Mastodon: Giving social networking back to you.
https://joinmastodon.org/, 2021.

[6] Minds: The leading alternative social network. https:
//wefunder.com/minds, 2021.

[7] YouTube: System requirements. https://support.
google.com/youtube/answer/78358?hl=en, 2021.

[8] J. Acharya, Z. Sun, and H. Zhang. Hadamard response:
Estimating distributions privately, efficiently, and with
little communication. In Proc. AISTATS’19, pages 1120–
1129, 2019.

[9] G. Andrew, O. Thakkar, H. B. McMahan, and S. Ra-
maswamy. Differentially private learning with adaptive
clipping. In Proc. NeurIPS’21, pages 1–12, 2021.

[10] R. Arratia and L. Gordon. Tutorial on large deviations
for the binomial distribution. Bulletin of Mathematical
Biology, 51(1):125–131, 1989.

[11] A. L. Barabási. Network Science. Cambridge University
Press, 2016.

[12] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta.
Practical locally private heavy hitters. In Proc. NIPS’17,
pages 2285—-2293, 2017.

[13] S. K. Bera and A. Chakrabarti. Towards tighter space
bounds for counting triangles and other substructures in
graph streams. In Proc. STACS’17, pages 11:1–11:14,
2017.

[14] S. K. Bera and C. Seshadhri. How the degeneracy
helps for triangle counting in graph streams. In Proc.
PODS’20, pages 457–467, 2020.

[15] S. K. Bera and C. Seshadhri. How to count triangles,
without seeing the whole graph. In Proc. KDD’20, pages
306–316, 2020.

550 31st USENIX Security Symposium USENIX Association

https://github.com/TriangleLDP/TriangleLDP
https://github.com/TriangleLDP/TriangleLDP
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://diasporafoundation.org/
https://diasporafoundation.org/
https://joinmastodon.org/
https://wefunder.com/minds
https://wefunder.com/minds
https://support.google.com/youtube/answer/78358?hl=en
https://support.google.com/youtube/answer/78358?hl=en

[16] V. Bindschaedler and R. Shokri. Synthesizing plausible
privacy-preserving location traces. In Proc. S&P’16,
pages 546–563, 2016.

[17] X. Cao, J. Jia, and N. Z. Gong. Data poisoning attacks
to local differential privacy protocols. In Proc. Usenix
Security’21, pages 947–964, 2021.

[18] R. Chan. The cambridge analytica whistleblower ex-
plains how the firm used facebook data to sway elections.
https://www.businessinsider.com/cambridge-
analytica-whistleblower-christopher-wylie-
facebook-data-2019-10, 2019.

[19] R. Chen, G. Acs, and C. Castelluccia. Differentially
private sequential data publication via variable-length
n-grams. In Proc. CCS’12, pages 638–649, 2012.

[20] A. Cheu, A. Smith, and J. Ullman. Manipulation attacks
in local differential privacy. In Proc. S&P’21, pages
883–900, 2021.

[21] S. Chu and J. Cheng. Triangle listing in massive net-
works and its applications. In Proc. KDD’11, pages
672–680, 2020.

[22] E. Cyffers and A. Bellet. Privacy amplification by de-
centralization. CoRR, 2012.05326, 2021.

[23] W. Y. Day, N. Li, and M. Lyu. Publishing graph de-
gree distribution with node differential privacy. In Proc.
SIGMOD’16, pages 123–138, 2016.

[24] X. Ding, S. Sheng, H. Zhou, X. Zhang, Z. Bao, P. Zhou,
and H. Jin. Differentially private triangle counting in
large graphs. IEEE Transactions on Knowledge and
Data Engineering (Early Access), pages 1–14, 2021.

[25] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Now Publishers, 2014.

[26] T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approx-
imately counting triangles in sublinear time. In Proc.
FOCS’15, pages 614–633, 2015.

[27] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
Randomized aggregatable privacy-preserving ordinal
response. In Proc. CCS’14, pages 1054–1067, 2014.

[28] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate
estimation of the degree distribution of private networks.
In Proc. ICDM’09, pages 169–178, 2009.

[29] J. Imola, T. Murakami, and K. Chaudhuri. Locally dif-
ferentially private analysis of graph statistics. In Proc.
USENIX Security’21, pages 983–1000, 2021.

[30] J. Imola, T. Murakami, and K. Chaudhuri.
Communication-efficient triangle counting under
local differential privacy. CoRR, 2110.06485, 2022.

[31] Z. Jorgensen, T. Yu, and G. Cormode. Publishing at-
tributed social graphs with formal privacy guarantees.
In Proc.SIGMOD’16, pages 107–122, 2016.

[32] M. Joseph, J. Mao, and A. Roth. Exponential separations
in local differential privacy. In Proc. SODA’20, pages
515–527, 2020.

[33] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete
distribution estimation under local privacy. In Proc.
ICML’16, pages 2436–2444, 2016.

[34] P. Kairouz, H. B. McMahan, and B. Avent et al. Ad-
vances and open problems in federated learning. Foun-
dations and Trends in Machine Learning, 14(1-2):1–210,
2021.

[35] J. Kallaugher, A. McGregor, E. Price, and S. Vorot-
nikova. The complexity of counting cycles in the adja-
cency list streaming model. In Proc. PODS’19, pages
119–133, 2019.

[36] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavt-
sev. Private analysis of graph structure. Proceedings of
the VLDB Endowment, 4(11):1146–1157, 2011.

[37] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova,
and A. Smith. Analyzing graphs with node differential
privacy. In Proc. TCC’13, pages 457–476, 2013.

[38] A. Kolluri, T. Baluta, and P. Saxena. Private hierarchi-
cal clustering in federated networks. In Proc. CCS’21,
pages 2342–2360, 2021.

[39] N. Li, M. Lyu, and D. Su. Differential Privacy: From
Theory to Practice. Morgan & Claypool Publishers,
2016.

[40] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun.
Approximate counting of cycles in streams. In Proc.
ESA’11, pages 677–688, 2011.

[41] J. McAuley and J. Leskovec. Learning to discover social
circles in ego networks. In Proc. NIPS’12, pages 539–
547, 2012.

[42] A. McGregor and S. Vorotnikova. Triangle and four
cycle counting in the data stream model. In Proc.
PODS’20, pages 445–456, 2020.

[43] C. Morris. The number of data breaches in
2021 has already surpassed last year’s total.
https://fortune.com/2021/10/06/data-breach-
2021-2020-total-hacks/, 2021.

[44] T. Murakami and Y. Kawamoto. Utility-optimized local
differential privacy mechanisms for distribution estima-
tion. In Proc. USENIX Security’19, pages 1877–1894,
2019.

USENIX Association 31st USENIX Security Symposium 551

https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://fortune.com/2021/10/06/data-breach-2021-2020-total-hacks/
https://fortune.com/2021/10/06/data-breach-2021-2020-total-hacks/

[45] M. E. J. Newman. Random graphs with clustering.
Physical Review Letters, 103(5):058701, 2009.

[46] H. H. Nguyen, A. Imine, and M. Rusinowitch. Network
structure release under differential privacy. Transactions
on Data Privacy, 9(3):215–214, 2016.

[47] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In Proc.
STOC’07, pages 75–84, 2007.

[48] T. Paul, A. Famulari, and T. Strufe. A survey on decen-
tralized online social networks. Computer Networks,
75:437–452, 2014.

[49] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren.
Generating synthetic decentralized social graphs with
local differential privacy. In Proc. CCS’17, pages 425–
438, 2017.

[50] S. Raskhodnikova and A. Smith. Efficient lipschitz ex-
tensions for high-dimensional graph statistics and node
private degree distributions. CoRR, 1504.07912, 2015.

[51] S. Raskhodnikova and A. Smith. Differentially Private
Analysis of Graphs, pages 543–547. Springer, 2016.

[52] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An
introduction to exponential random graph (p∗) models
for social networks. Social Networks, 29(2):173–191,
2007.

[53] C. Sabater, A. Bellet, and J. Ramon. An accurate, scal-
able and verifiable protocol for federated differentially
private averaging. CoRR, 2006.07218, 2021.

[54] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic mea-
sures on graphs: The power of wedge sampling. In Proc.
SDM’13, pages 10–18, 2013.

[55] R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In Proc. CCS’15, pages 1310–1321, 2015.

[56] H. Sun, X. Xiao, I. Khalil, Y. Yang, Z. Qui, H. Wang,
and T. Yu. Analyzing subgraph statistics from extended
local views with decentralized differential privacy. In
Proc. CCS’19, pages 703–717, 2019.

[57] S. Suri and S. Vassilvitskii. Counting triangles and
the curse of the last reducer. In Proc. WWW’11, pages
607–614, 2011.

[58] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Falout-
sos. DOULION: Counting triangles in massive graphs
with a coin. In Proc. KDD’09, pages 837–846, 2009.

[59] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller.
Triangle sparsifiers. Journal of Graph Algorithms and
Applications, 15(6):703–726, 2011.

[60] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differ-
entially private protocols for frequency estimation. In
Proc. USENIX Security’17, pages 729–745, 2017.

[61] S. L. Warner. Randomized response: A survey tech-
nique for eliminating evasive answer bias. Journal of
the American Statistical Association, 60(309):63–69,
1965.

[62] B. Wu, K. Yi, and Z. Li. Counting triangles in large
graphs by random sampling. IEEE Transactions on
Knowledge and Data Engineering, 28(8):2013–2026,
2016.

[63] X. Xiao, G. Bender, M. Hay, and J. Gehrke. iReduct:
Differential privacy with reduced relative errors. In Proc.
SIGMOD’11, pages 229–240, 2011.

[64] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao. To-
wards locally differentially private generic graph metric
estimation. In Proc. ICDE’20, pages 1922–1925, 2020.

[65] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao. LF-
GDPR: A framework for estimating graph metrics with
local differential privacy. IEEE Transactions on Knowl-
edge and Data Engineering (Early Access), pages 1–16,
2021.

[66] H. Zhang, S. Latif, R. Bassily, and A. Rountev.
Differentially-private control-flow node coverage for
software usage analysis. In Proc. USENIX Security’20,
pages 1021–1038, 2020.

[67] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava,
and X. Xiao. Private release of graph statistics using
ladder functions. In Proc. SIGMOD’15, pages 731–745,
2015.

A Basic Notations

Table 2 shows the basic notations used in this paper.

B Comparison with One-Round Algorithms

Below we show that one-round triangle counting algorithms
suffer from a prohibitively large estimation error.

First, we note that all of the existing one-round triangle
algorithms in [29,64,65] are inefficient and cannot be directly
applied to a large-scale graph such as Gplus and IMDB in
Section 6. Specifically, in their algorithms, each user vi applies
Warner’s RR to each bit of her neighbor list ai and sends
the noisy neighbor list to the server. Then the server counts
the number of noisy triangles, each of which has three noisy
edges, and estimates f4(G) based on the noisy triangle count.
The noisy graph G′ in the server is dense, and there are O(n3)
noisy triangles in G′. Thus, the time complexity of the existing

552 31st USENIX Security Symposium USENIX Association

Table 2: Basic notations.
Symbol Description
G = (V,E) Graph with n users V and edges E.
vi i-th user in V (i.e., V = {v1, . . . ,vn}).
dmax Maximum degree of G.
G Set of possible graphs with n users.
f4(G) Triangle count in G.
A = (ai, j) Adjacency matrix.
ai Neighbor list of vi (i.e., i-th row of A).
R i Local randomizer of vi.
Mi Message sent from the server to user vi.
µ Parameter in the ARR.
µ∗ = µ,µ2,µ3 in ARRFull4, ARROneNS4,

and ARRTwoNS4, respectively.
d̃i Noisy degree of user vi.
κi Clipping threshold of user vi.
ε0 Privacy budget for edge clipping.
ε1 Privacy budget for the ARR.
ε2 Privacy budget for the Laplacian noise.
ε Total privacy budget.

one-round algorithms [29, 64, 65] is O(n3). It is also reported
in [29] that when n = 106, the one-round algorithms would
require about 35 years even using a supercomputer, due to the
enormous number of noisy triangles.

Therefore, we evaluated the existing one-round algorithms
by taking the following two steps. First, we evaluate all the
existing algorithms in [29, 64, 65] using small graph datasets
(n = 10000) and show that the algorithm in [29] achieves
the lowest estimation error. Second, we improve the time
complexity of the algorithm in [29] using the ARR (i.e., edge
sampling after Warner’s RR) and compare it with our two-
rounds algorithms using large graph datasets in Section 6.

Small Datasets. We first evaluated the existing algorithms
in [29, 64, 65] using small datasets. For both Gplus and IMDB
in Section 6, we first randomly selected n = 10000 users
from all users and extracted a graph with n users. Then we
evaluated the relative error of the following three algorithms:
(i) RR (biased) [29, 64], (ii) RR (bias-reduced) [65], and (iii)
RR (unbiased) [29]. All of them provide ε-edge LDP.

RR (biased) simply uses the number of noisy triangles in
the noisy graph G′ obtained by Warner’s RR as an estimate of
f4(G). Clearly, it suffers from a very large bias, as G′ is dense.
RR (bias-reduced) reduces this bias by using a noisy degree
sent by each user. However, it introduces some approximation
to estimate f4(G), and consequently, it is not clear whether
the estimate is unbiased. We used the mean of the noisy de-
grees as a representative degree to obtain the optimal privacy
budget allocation (see [65] for details). RR (unbiased) calcu-
lates an unbiased estimate of f4(G) via empirical estimation.
It is proved that the estimate is unbiased [29].

In all of the three algorithms, each user vi obfuscates bits

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-2

10-1

1

(a) Gplus ()

10

102

103

104

105

RR (biased) RR (bias-reduced) RR (unbiased)

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

1

10

102

103

104

105

106

107
(b) IMDB ()

Figure 13: Relative error of one-round algorithms for small
datasets (n = 10000).

for smaller user IDs in her neighbor list ai. We averaged the
relative error over 10 runs.

Figure 13 shows the results. RR (bias-reduced) significantly
outperforms RR (biased) and is significantly outperformed by
RR (unbiased). We believe this is caused by the fact that RR
(bias-reduced) introduces some approximation and does not
calculate an unbiased estimate of f4(G).
Large Datasets. Based on Figure 13, we improve the time
complexity of RR (unbiased) using the ARR and compare it
with our two-rounds algorithms in large datasets.

Specifically, RR (unbiased) counts triangles, 2-edges (three
nodes with two edges), 1-edges (three nodes with one edge),
and no-edges (three nodes with no edges) in G′ obtained by
Warner’s RR. Let m3,m2,m1,m0 ∈ Z≥0 be the numbers of
triangles, 2-edges, 1-edges, and no-edges, respectively, after
applying Warner’s RR. RR (unbiased) calculates an unbiased
estimate of f4(G) from these four values. Thus, we improve
RR (unbiased) by using the ARR, which samples each edge
with probability p2 after Warner’s RR, and then calculating
unbiased estimates of m3, m2, m1, and m0.

Let m̂3, m̂2, m̂1, m̂0 ∈ R be the unbiased estimates of m3,
m2, m1, and m0, respectively. Let m∗3,m

∗
2,m

∗
1,m

∗
0 ∈Z≥0 be the

number of triangles, 2-edges, 1-edges, no-edges, respectively,
after applying the ARR. Since the ARR samples each edge
with probability p2, we obtain:

m∗3 = p3
2m̂3

m∗2 = 3p2
2(1− p2)m̂3 + p2

2m̂2

m∗1 = 3p2(1− p2)
2m̂3 +2p2(1− p2)m̂2 + p2m̂1.

By these equations, we obtain:

m̂3 =
m∗3
p3

2
(15)

m̂2 =
m∗2
p2

2
−3(1− p2)m̂3 (16)

m̂1 =
m∗1
p2
−3(1− p2)

2m̂3−2(1− p2)m̂2 (17)

m̂0 =
n(n−1)(n−2)

6 − m̂3− m̂2− m̂1. (18)

Therefore, after applying the ARR to the lower triangular
part of A, the server counts m∗3, m∗2, m∗1, and m∗0 in G′, and

USENIX Association 31st USENIX Security Symposium 553

R
el

at
iv

e
E

rr
or

10-2

10-1

1

10

102

103

104

105

10-6 10-3

R
el

at
iv

e
E

rr
or

1
10
102
103
104
105
106
107

10-2
10-1

10-6 10-3

Figure 14: Relative error of the one-round algorithm ARR
(unbiased) and our three two-rounds algorithms with double
clipping for large datasets (n = 107614 in Gplus, n = 896308
in IMDB).

then calculates the unbiased estimates m̂3, m̂2, m̂1, and m̂0
by (15), (16), (17), and (18), respectively. Finally, the server
estimates f4(G) from m̂3, m̂2, m̂1, and m̂0 in the same way as
RR (unbiased). We denote this algorithm by ARR (unbiased).
The time complexity of ARR (unbiased) is O(µ3n3), where µ
is the ARR parameter.

We compared ARR (unbiased) with our three algorithms
with double clipping using Gplus (n = 107614) and IMDB
(n = 896308). For the sampling probability p2, we set p2 =
10−3 or 10−6. We averaged the relative error over 10 runs.

Figure 14 shows the results, where we set µ∗ = 10−6 or
10−3. In ARR (unbiased), we used µ∗ as the ARR parameter
µ. Thus, we can see how much the relative error is reduced
by introducing an additional round with ARRFull4. Figure 14
shows that the relative error of ARR (unbiased) is prohibitively
large; i.e., relative error� 1. This is because three edges are
noisy in any noisy triangle. The relative error is significantly
reduced by introducing an additional round because only one
edge is noisy in each noisy triangle at the second round.

In summary, one-round algorithms are far from acceptable
in terms of the estimation error for large graphs, and two-
round algorithms such as ours are necessary.

C Clustering Coefficient

Here we evaluate the estimation error of the clustering coeffi-
cient using our algorithms.

We first estimated a triangle count by using our ARRO-
neNS4 with double clipping (ε0 =

ε

10 and ε1 = ε2 =
9ε

20) be-
cause it provides the best performance in Figures 7, 8, and
10. Then we estimated a 2-star count by using the one-round
2-star algorithm in [29] with the edge clipping in Section 5.

Specifically, we calculated a noisy degree d̃i of each user
vi by using the edge clipping with the privacy budget ε0.
Then we calculated the number ri ∈ Z≥0 of 2-stars of which
user vi is a center, and added Lap(∆

ε1
) to ri, where ∆ =

(d̃i
2

)
.

Let r̂i = ri +Lap(∆

ε1
) be the noisy 2-star of vi. Finally, we

calculated the sum ∑
n
i=1 r̂i as an estimate of the 2-star count.

#triangles #2-stars clustering coefficient

R
el

at
iv

e
E

rr
or

10-2
10-1

1

10-4
10-3

10-6
10-5

10

0 0.5 1 1.5 2

(a) Gplus () (b) IMDB ()

0 0.5 1 1.5 2

R
el

at
iv

e
E

rr
or

10-2

10-1

1

10-4

10-3

10-6

10-5

(c) Gplus () (d) IMDB ()

R
el

at
iv

e
E

rr
or

10-2

10-1

1

10-4

10-3

10-5

10

10-6 10-5 10-4 10-3 10-2 10-1 1

R
el

at
iv

e
E

rr
or

10-2

10-1
1

10-4
10-3

10-5

10

10-6 10-5 10-4 10-3 10-2 10-1 1
10-6

16M 160M 1.6G 16G 160G 1.6T 16T190K 1.9M 19M 190M 1.9G 19G 190G
(400G)(6G)

Figure 15: Relative errors of #triangles, #2-stars, and the
clustering coefficient in ARROneNS4 with double clipping.
CostDL is calculated by (10) (when µ∗ ≥ 0.1, CostDL can be
6 Gbits and 400 Gbits in Gplus and IMDB, respectively).

This 2-star algorithm provides (ε0+ε1)-edge privacy (see [29]
for details). For the privacy budgets ε0 and ε1, we set ε0 =

ε

10
and ε1 =

9ε

10 .
Based on the triangle and 2-star counts, we estimated the

clustering coefficient as 3× f̂4(G)

f̂2?(G)
, where f̂4(G) (resp. f̂2?(G))

is the estimate of the triangle (resp. 2-star) count.
Figure 15 shows the relative errors of the triangle count,

2-star count, and clustering coefficient. Note that the relative
error of the 2-star count is not changed by changing µ∗ because
the 2-star algorithm does not use the ARR. Figure 15 shows
that the relative error of the 2-star count is much smaller than
that of the triangle count. This is because each user can count
her 2-stars locally (whereas she cannot count her triangles), as
described in Section 1. Consequently, the relative error of the
clustering coefficient is almost the same as that of the triangle
count, as the denominator f̂2?(G) in the clustering coefficient
is very accurate.

Note that the clustering coefficient requires the privacy
budgets for calculating both f̂4(G) and f̂2?(G) (in Figure 15,
2ε in total). However, we can accurately calculate f̂2?(G) with
a very small privacy budget, as shown in Figure 15. Thus, we
can accurately estimate the clustering coefficient with almost
the same privacy budget as the triangle count by assigning a
very small privacy budget (e.g., ε = 0.1 or 0.2) for f̂2?(G).

In summary, we can accurately estimate the clustering coef-
ficient as well as the triangle count under edge LDP by using
our ARROneNS4 with double clipping.

554 31st USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	Preliminaries
	Notations
	Local Differential Privacy on Graphs
	Utility and Communication-Efficiency

	Communication-Efficient Triangle Counting Algorithms
	Overview
	Algorithms
	Theoretical Analysis

	Double Clipping
	Overview
	Algorithms
	Theoretical Analysis

	Experiments
	Experimental Set-up
	Experimental Results

	Conclusions
	Basic Notations
	Comparison with One-Round Algorithms
	Clustering Coefficient

