
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

FreeWill: Automatically Diagnosing Use-after-free Bugs
via Reference Miscounting Detection on Binaries

Liang He, TCA, Institute of Software, Chinese Academy of Sciences; Hong Hu,
Pennsylvania State University; Purui Su, TCA / SKLCS, Institute of Software,

Chinese Academy of Sciences and School of Cyber Security, University of Chinese
Academy of Sciences; Yan Cai, SKLCS, Institute of Software, Chinese Academy

of Sciences; Zhenkai Liang, National University of Singapore
https://www.usenix.org/conference/usenixsecurity22/presentation/he-liang

FREEWILL: Automatically Diagnosing Use-after-free Bugs via
Reference Miscounting Detection on Binaries

Liang He1∗ Hong Hu2∗ Purui Su1,3,4� Yan Cai3 Zhenkai Liang5

1TCA / 3SKLCS, Institute of Software, Chinese Academy of Sciences
2Pennsylvania State University

4School of Cyber Security, University of Chinese Academy of Sciences
5National University of Singapore

Abstract
Memory-safety issues in operating systems and popular appli-
cations are still top security threats. As one widely exploited
vulnerability, Use After Free (UAF) resulted in hundreds of
new incidents every year. Existing bug diagnosis techniques
report the locations that allocate or deallocate the vulnerable
object, but cannot provide sufficient information for develop-
ers to reason about a bug or synthesize a correct patch.

In this work, we identified incorrect reference counting
as one common root cause of UAF bugs: if the developer
forgets to increase the counter for a newly created reference,
the program may prematurely free the actively used object,
rendering other references dangling pointers. We call this
problem reference miscounting. By proposing an omission-
aware counting model, we developed an automatic method,
FREEWILL, to diagnose UAF bugs. FREEWILL first repro-
duces a UAF bug and collects related execution trace. Then,
it identifies the UAF object and related references. Finally,
FREEWILL compares reference operations with our model to
detect reference miscounting. We evaluated FREEWILL on 76
real-world UAF bugs and it successfully confirmed reference
miscounting as root causes for 48 bugs and dangling usage
for 18 bugs. FREEWILL also identified five null-pointer deref-
erence bugs and failed to analyze five bugs. FREEWILL can
complete its analysis within 15 minutes on average, showing
its practicality for diagnosing UAF bugs.

1 Introduction

Memory-unsafe languages, like C/C++, are widely used to im-
plement complex software systems, such as operating systems
and web browsers, but unfortunately, they have resulted in a
large number of exploitable vulnerabilities [37]. As one of the
most sophisticated bugs, Use After Free (UAF) bugs are still
popular, with 200 to 300 instances founded every year in main
stream applications [19]. Researchers have proposed various
solutions to detect UAF bugs at different stages of program

∗The two lead authors contributed equally to this work.

executions [29,34,38–41,44,46,50,55]. However, diagnosing
a reported UAF bug, i.e., identifying the root cause to fix the
bug, is still challenging and time-consuming.

Based on the operations involved in these bugs, there could
be two reasons leading to UAF bugs. The first reason is that
the program mistakenly uses a dangling pointer to access
a correctly freed object, which we call dangling usage. Re-
searchers have proposed several methods to track dangling
pointers [33,34] and identify locations of dangling usages [41].
The second reason is that an object is incorrectly freed, mak-
ing remaining references dangling and all future uses invalid.
There is not much research for diagnosing incorrect frees, as it
is natural to believe that free operations are invoked by devel-
opers intentionally and such problems can only be identified
and fixed through manual code review.

However, after analyzing a large number of recent UAF
vulnerabilities, we observe that UAF bugs caused by incorrect
frees are common in real-world programs, especially in pro-
grams that rely on reference counting (referred to as refcount-
ing hereinafter) to manage memory objects [26]. For each
object, when a new reference is created, e.g., being assigned
to a member of an object, its reference counter (referred to
as refcounter hereinafter) should be incremented; when an
existing reference is destroyed, e.g., freeing an object con-
taining the reference, its refcounter should be decremented. If
the program fails to increase the refcounter properly [7], the
program may free objects in a premature way, rendering all
references as dangling pointers and resulting in UAF bugs.

UAF bugs caused by incorrect refcounting can be abused
by attackers to build powerful attacks. For example, a refer-
ence miscounting error that exists in Linux for more than 15
years (2006 to 2021) introduces a UAF bug during the boot-
ing process (Commit-8fd0e99 in our evaluation) [10]. Even
worse, these bugs are difficult for human analysts to diag-
nose, which usually leads to incomplete patches and insecure
systems. For example, partial patches for MacOS kernel bug
CVE-2016-1828 and PHP script engine bug BUG-68594 still
allow attackers to compromise patched systems.
Problem. We use the term reference miscounting to represent

USENIX Association 31st USENIX Security Symposium 2497

the programming error where developers fail to increase the
refcounter for a newly created reference. We summarize two
types of reference miscountings that can cause UAF bugs. (1)
Mistaken omission. Considering the high overhead of count-
ing all references [42, 43], coordinated omission of unneces-
sary refcounting is encouraged to optimize performance [17].
However, if there is a wrong omission, the program will miss
the increment of the refcounter and the corresponding object
could be prematurely freed. (2) Inconsistent decrease. If there
is only a decrease to a refcounter without any corresponding
increase, the refcounter will prematurely become zero. For
example, it is common for the callee function to release the
references of its parameters, i.e, decrementing the refcounter.
However, if the caller function forgets to increment the ref-
counter, there is an obvious reference miscounting.

There are two major challenges to the diagnosis of ref-
erence miscounting. The first one is the matching problem:
it is difficult to match an increment with the corresponding
reference creation, as there is no consistent rule mandating
the increment before or after a reference creation. Besides,
refcounter can be updated using any existing reference. It
becomes worse if refcounting is encapsulated by nested non-
inlined functions in binary programs. The second challenge is
the existence of a large number of count-omission optimiza-
tions. For example, if the lifespans of two references R0 and R1
are overlapped, developers prefer to use only one increment
on R0 and one decrement on R1 to keep the object alive. To
diagnose reference miscounting, we need to correctly identify
all reference lifetimes and calculate their relationships, which
cannot be efficiently solved by existing mechanisms.
Approach. In this paper, we propose a trace-based method
to efficiently diagnose UAF bugs caused by reference mis-
counting. First, to calculate the reference relationships, we
propose an omission-aware refcounting model to describe
the expected counting and omission behaviors. We propose
four omission rules to help us to detect reference miscounting.
Second, we develop practical methods to automatically iden-
tify the lifetimes of UAF objects, all related references and
refcounting operations from the execution traces. Then, we
use distance-based methods to match the refcounting opera-
tion with a proper reference. Finally, we propose an automatic
method to detect mismatches between the actual refcounting
operations and the expected behaviors. If we confirm there is
no reference miscounting, we report all dangling pointers as
the diagnosis results. Besides the bug diagnosis, our method
can also help synthesize correct patches. Specifically, when
we find a missing refcounter increment, our tool will suggest
adding the increment back to fix the UAF bug.
Result. We implement a tool called FREEWILL based on dy-
namic instrumentation and offline trace-based analysis. By
extending the hardware emulator QEMU [22], our tool can
diagnose large-scale GUI-based programs without the source
code. We evaluated FREEWILL on diagnosing 76 real-world
UAF bugs, including 32 bugs from Internet Explorer (IE),

1. typedef struct{ int ref;} A; A* gpA;

2. typedef struct{ A* _pA;} B; B* gpB;
3. void clone(B** b1, B* b2){ /*IE: CVE-2010-0249 */

4. memcpy(*b1, b2, N2); /* Mistaken Omission */

5.}

6. void filename_lookup(A* lpA){/*linux:Commit-c3aabf0*/

7. dec_ref(lpA); /* Inconsistent Decrease */

8. }

9.void demo_code(){

10. A* pA=(A*)malloc(N1); /*R0*/

11. pA->ref=1;

12. ...

13. gpA=pA; /*R1*/

14. B* pB=(B*)malloc(N3);
15. pB->_pA = pA; /*R2*/

16. gpB=(B*)malloc(N3);

17. clone(&gpB, pB); /*R3*/

18. pB->_pA = NULL;

19. free(pB);

20. filename_lookup(pA); /*R4*/ /* Free */

21.}

22.void main(){

23. demo_code();

24. dec_ref(gpA); /* UAF-1 */

25. printf(gpB->_pA->ref); /* UAF-2 */

26. free(gpB);

27.}

Figure 1: Motivating Example.

Firefox and Chrome, 21 bugs from Linux and MacOS kernels,
23 bugs from Python and PHP script engines. FREEWILL
successfully confirmed that 48 bugs are caused by reference
miscounting, 18 bugs are caused by dangling usage and 5
bugs are caused by null-pointer dereference. FREEWILL fails
to analyze two bugs due to custom heap managers. Three
bugs cannot be reproduced in our instrumented environment.
Besides, FREEWILL produced 56 patch suggestions matched
with official patches, pinpointed three wrong official patches
and gave one wrong suggestion as it cannot handle race prob-
lems. FREEWILL completes each bug analysis within 15
minutes on average.

In summary, the main contributions of this paper include:

• Reference Miscounting Model. We proposed an
omission-aware refcounting model, which can detect
two types of reference miscounting bugs.

• Practical Methods. We develop several novel practical
techniques for binary UAF diagnosis, including taint-
based reference analysis, heuristic refcounter identifica-
tion, and distance-based refcounting matching.

• Automatic Tool. We implemented FREEWILL and eval-
uated it on 76 real-world UAF bugs. The results validated
the effectiveness and practicality of our approach.

2498 31st USENIX Security Symposium USENIX Association

2 Background

2.1 Motivating Example

Figure 1 contains a motivating example showing how refer-
ence miscounting errors lead to UAF bugs. The code defines
two structures, A and B, and two global pointers, gpA and gpB.
A uses a refcounter ref for its instance life cycle; B only
has a member _pA, a pointer of an A instance. It simulates
two real-world buggy functions from Linux kernel and IE:
filename_lookup and clone. Then, it uses demo_code to call
the two buggy functions and related operations. The main
function invokes demo_code and triggers two UAF bugs.

In demo_code, the code first creates an A instance, say α,
and sets its ref to 1 as its first reference R0 is now created and
hold by pA. Now, the value of ref is 1.
Two Valid Omissions. After allocation and initialization, a
global reference R1 is created and stored into gpA. As the
lifetime of global R1 overlaps with the local R0, the code safely
omits the increase and just uses a single decrease for R1. Next,
it creates a B instance and initializes its member _pA with pA
where a new reference R2 is created. As the lifetime of R2 is
contained into the one of R1, the code omits the refcounting
for this new reference. Now, the value of ref is still 1.
Reference Miscounting-1 (RM1). At Line 16-17, a second
B instance is created and stored into the global variable gpB.
Then by calling clone, the code copies all memory content
pointed by pB into the memory pointed by gpB. Note that a
new reference R3 will be created after the memcpy. As R3 will
be used outside demo_code, there is a mistaken omission and
the value of ref is still 1.
Reference Miscounting-2 (RM2). At Line 20, the code fails
to call inc_ref but directly calls filename_lookup in which
dec_ref is called to decrease the ref. Here, a reference R4 is
created on stack and destroyed when the code returns from
the function. Now, the value of ref is decreased to 0, and,
unfortunately, the instance α will be prematurely freed.
Two Dangling Pointer (DP1&DP2). At Line 18, R2 in _pA
is destroyed by the nullification. Besides, R0 in pA will also
be removed by the destruction of the stack frame. However,
there are two dangling pointers gpA and gpB->_pA storing two
references, R1 and R3.
UAF Bugs. In the function main, there are two UAF bugs
due to the uses of two aforementioned dangling pointers. The
first bug happens at Line 24 where the code dereferences the
dangling pointer gpA to complete a correct dec_ref as the
pointer will never be used anymore. The second bug is caused
by the access of the dangling pointer gpB->_pA at Line 25 as
it wants to display ref of the instance α.

2.2 Limitation of Existing Diagnoses

Several state-of-the-art methods have been proposed to pre-
vent and diagnose UAF bugs. In Table 1, we compare the

Table 1: Diagnoses from Existing Solutions on Figure 1.
DP = Dangling Pointer, RM = Reference Miscounting.

Diagnosis Results DP1 DP2 RM1 RM2
Dangling Access Locations 4 8 8 8
Dangling Pointers 4 4 8 8
Refcounting Inconsistencies 8 8 8 4

Our Goal 4 4 4 4

diagnosis results on our example code from these methods.
Dangling Access Locations. There have been several kinds
of UAF prevention schemes [20, 29, 34, 41, 44, 52] owning
ability to precisely report dangling access locations. Besides,
by encoding detailed information into the object memory
region [41] or pointer address [34], they can provide other
critical locations, such as object allocation and deallocation.
In our example, these methods will stop after identifying the
first UAF bug and report malloc (Line 10), free (Line 7) and
reuse (Line 24). However, with these locations, developers
still have no idea about the existence of reference miscounting.
The reuse location (Line 24) can even mislead them as it is a
correct access to release R1 stored in gpA.
Dangling Pointers. While the work using pointer tracking or
sweeping [20, 23, 34, 44, 50, 55] can provide the details of all
dangling pointers, they rely on developers to investigate the
root reason of dangling pointers. Besides, dangling pointers
may not be the problematic one. For example, gpA is correctly
used to call dec_ref. Finally, the reference miscounting of R4
(RM2) will be missed as it is not a dangling pointer.
Refcounting Inconsistencies. Statically detecting the in-
consistencies between refcounting changes and reference
changes [30, 35, 45], or between refcounter increment and
decrement [32, 48], can detect reference miscounting. How-
ever, considering the limitations of static program analysis,
such as alias analysis (especially on binaries), all of them
suffer from high false positives and false negatives. In our
example, given the source code, they can identify the second
reference miscounting as the explicit inconsistent decrease
at Line 20. However, they cannot effectively detect mistaken
omission at Line 17 (RM1) as the alias pointer (R3) in gpB is
implicitly copied from the alias pointer (R2) in pB.

2.3 Our Goal and Assumptions

Given a UAF bug, our goal is to determine whether it is caused
by reference miscounting; if so, pinpoint the location that
misses the refcounting, and suggest a correct patch. If there
is no reference miscounting, we should also report the dan-
gling pointers based on our traced-based analysis. Our method
should diagnose UAF bugs efficiently to support real-world
large programs with or without the source code. Finding new
program failures or UAF bugs is out of the scope of this work.
Assumptions. Our approach does not require the source code

USENIX Association 31st USENIX Security Symposium 2499

of the vulnerable program, but we assume that we can identify
heap-related APIs, like malloc and free. This is possible for
most benign programs, which clearly state these APIs in their
import descriptors. Further, our solution requires at least one
Proof-of-Concept (PoC) input. These inputs are commonly
provided by bug reporters, or from fuzzing techniques [1, 25,
57].

2.4 Challenges

To detect reference miscounting issues and suggest practical
patches, we have to solve the following challenges:
C1: Precisely Identifying the Lifetimes of UAF Objects.
Modern allocators prefer to reallocate freed heap blocks to
improve the performance. Therefore, before a UAF bug is
triggered, a freed block could have been reallocated many
times, which can confuse analysis. Existing solutions mainly
rely on source code for detection [41] or tracking pointers
of all objects [23]. They cannot efficiently identify the life-
times of UAF objects, especially for large-scale binary-only
programs.
C2: Automatically Identifying Refcounting on Binary Ex-
ecution Trace. Confirming if the bug is introduced by refer-
ence miscounting relies on the fact that the object is managed
by refcounting. Unfortunately, there are many similar kinds of
counters (e.g., Loop Counter, Object Counter) that can cause
many false positives, especially when no source code can be
used to look for their semantic meaning.
C3: Precisely Matching Refcounting Operations with
References. First, developers may perform the refcount-
ing on any existing reference. It is common to find
Ri->addRef();Rj=Ri; and Rj=Ri;Rj->addRef(); in the
same program to count a new created reference Rj. Second,
there is no consistent rule mandating the time to update the
refcounter. Ideally, developers should update the refcounter
immediately after the creation or destruction of a reference.
However, due to the compiler optimization and encapsulation
of refcounting, we may distinguish these two types of actions
from each other with various distances.

3 Reference Miscounting Detection

Reference Representation. To assist our description, we
define a reference as a 4-tuple record (+, Tc, -, Td): + and
- are boolean values, indicating whether the increment and the
decrement of the corresponding refcounter are identified or
not; Tc and Td are the creation time and the destruction time
of the reference, respectively. In the implementation §5.1, we
use the instruction ID in the trace to represent Tc and Td .

Inspired by reference escape analysis [56] which uses the
analysis of reference lifetime to optimize (omit) refcounting,
we propose an omission-aware refcounting model. Our ba-
sic rule is, for any interesting reference, the refcounting or

R2

R2d

R0d

R1c

R0c
+

R2c

R3c R3d

R1d

Ri : ith reference

: ref counting

: safe omission

: ref miscounting

+/-

UAF Object Lifetime

-

x

√

R4c R4d
-

Overlapped Reference Lifetime

√

√√

x

x

√

x

Figure 2: Reference Miscounting Detection on Figure 1.

its omission should guarantee the object’s liveness until all
references are destroyed. We use the following four practical
omission rules (ORs) to check if every omission is valid.
OR1: Overlapping Omission. For two references Ri and Rj,
if Ri.Tc < Rj.Tc < Ri.Td < Rj.Td , we say the two references
are overlapped, and - of Ri and + of Rj can be safely omitted.
Any reference can only have one overlapped reference.
OR2: Transmitting-Overlapping Omission. For any num-
ber of references R1, ..., RN, if for any reference Ri (1<i6N),
Ri-1.Tc < Ri.Tc < Ri-1.Td < Ri.Td , we say these references
are transmitting-overlapped, and in this case, - of R1, (+, -) of
Ri (1<i<N), and + of RN can be safely omitted.
OR3: Containing Omission. For two references Ri and Rj,
if Ri.Tc < Rj.Tc < Rj.Td < Ri.Td , we say Rj is contained in
Ri and (+, -) of Rj can be safely omitted.
OR4: Overlapping-Containing Omission. For three ref-
erences Ri, Rm and Rj, if Ri and Rj are overlapped based on
OR1 or OR2, and Ri.Tc < Rm.Tc < Rj.Tc and Ri.Td < Rm.Td
< Rj.Td , we say Rm is overlapping-contained in Ri and Rj and
its refcounting (+, -) can be safely omitted.

Figure 2 explains how we use our model to automatically
detect two reference miscountings in the motivating exam-
ple (Figure 1). First, we assume the lifetimes of references
R0-R4 have been detected. Then, based on rule OR1, as R0
and R1 are overlapped, we can tell the omission of - of R0
and + of R1 are safe. Similarly, based on rule OR4, R2 is
overlapping-contained in R0 and R1, so the omission of (+, -)
of R2 is allowed. However, as R3 is not contained in any other
reference, its omission of (+, -) is wrong. Besides, R4 is also
not overlapped with other references, its + omission is also
unexpected.

4 FREEWILL Design

Figure 3 shows the design of FREEWILL, which works in
four main components: UAF object lifetime identification,
reference analysis, refcounting detection, and UAF diagnosis.

2500 31st USENIX Security Symposium USENIX Association

Heap API

PoC

Binary

Report

UAF Obj. Lifetime Ident.

Slice-based Identification

Dynamic Instrumentation

Reference Analysis

Reference Tracking

Strong Ref. Ident.

Refcounting Detection

API Annotation

CDFree Rule

UAF Diagnosis

Refcounting Matching

Miscounting Detection

OR1
OR2
OR3
OR4

Trace & Bug

Info.

Figure 3: Overview of FREEWILL. FREEWILL takes as
inputs the vulnerable program and the PoC of the bug, and
produces a report of the reference miscounting location.

First, given a vulnerable program with a PoC, FREEWILL
uses dynamic instrumentation to collect bug-triggered exe-
cution trace and identify the lifetimes of UAF objects (§4.1).
Then, FREEWILL uses a gray-tainting method to track ref-
erence creation, destruction and different ways of reference
calculations (§4.2). By identifying the refcounter with the API
symbols or our heuristic method (§4.3), FREEWILL matches
the refcounting with proper references and compares the ac-
tual refcounting behaviors with our omission-aware model to
detect reference miscounting issues (§4.4).

4.1 UAF Object Lifetime Identification

FREEWILL is designed to be a trace-based method and we
chose to use Dynamic Code Instrumentation [8, 15, 51] to
record the bug-triggered execution trace and related runtime
information, e.g., heap allocations and crash point – the invalid
memory access or invalid call instruction causing the program
crashed. If there is no crash, we try to manually confirm if the
program has produced any crash dump file [2, 6].

If the source code is available, FREEWILL can adopt exist-
ing methods, such as AddressSanitizer [41] (ASan), to identify
UAF object lifetimes. Specifically, we recompile the vulnera-
ble program with ASan, and run the generated binary with the
bug-triggering input. ASan adopts a safe memory allocator
that saves all freed objects in a quarantined list and records
their memory status (freed) in the shadow memory. For ev-
ery free-memory access, ASan will detect it by checking the
shadow memory. Note that the quarantined list can efficiently
stop the reallocation of the freed memory [41], which means
one heap block is usually only supplied to one object. There-
fore, as long as the UAF bug is triggered, ASan can detect the
bug and report the UAF object lifetime.

object a’s lifetime

free(a); b = new B;a = new A;

block-1
(busy)

block-2
(free)

free(b);

object b’s lifetime

Heap
Memory

p->fp();

*q = a;

… …

p = *q;

a, *q, p

b

Figure 4: Heap Block Reallocation. Current allocators prefer
to use one block to satisfy two adjacent same-size requests.

If source code is not available, we develop a backwards
slicing method to efficiently identify the UAF object lifetime.
Specifically, we first assume the program has finally reached a
crash point where a corrupted function pointer fp is accessed.
Then, we slice it backwards to find its parent pointer p point-
ing to a heap block from which fp is loaded. Without any
quarantined list, the heap block could have been reallocated
many times for other requests (e.g., block-2 in Figure 4),
which means the same block has more than one lifetime. To
identify the proper lifetime, we continue the slicing with p
backwards to find the proper object, e.g. object a. Finally,
we identify the object as our target and report its lifetime
if the dereference of p happens after its destruction. In our
experiments, we find the reallocation problem in 18 bugs.

Different from ASan, FREEWILL will not terminate the
program execution until it meets the crash. If the pointer of
the first UAF object can be normal dereferenced, the execution
trace may contain other UAF bugs. For example, in Figure 4,
if the object pointed by q has also been freed before p=*q
is executed, the final crash is actually caused by the second
UAF bug, i.e., p->fp(). We call this kind of bugs Multi-level
UAF (MUAF), which usually happens when dangling pointers
can be still normally dereferenced. To analyze these bugs,
FREEWILL will repeat above steps with parent pointer (q) of
current UAF object pointer (p) until no UAF bug is found. It
will prioritize the diagnosis of the first UAF object. In our
experiments, we find 5 bugs that have MUAF problems.

4.2 Reference Analysis
Within an object lifetime, we can use taint analysis to identify
locations holding the object address. We first identify such
locations as potential references which can be used to create
other new references. After we have tracked all locations, we
select proper references mainly created by programs and filter
out the temporary ones created by compilers.

4.2.1 Potential Reference Tracking

We use the gray-taint tracking method (details in §5.2) to
detect potential references in the following three categories.
Reference Creation. We identify a creation of a new ref-
erence when an object address is saved to a register or any

USENIX Association 31st USENIX Security Symposium 2501

memory location, no matter whether this location is on heap,
stack or global region. For example, instructions mov [mem],
eax and push eax create two new references if the register eax
contains an object reference.
Reference Destruction. There are two cases that lead to
destruction of a reference: the memory holding the reference
is overwritten by a different value, or the memory holding
the reference is not being used any more. The second case
includes two scenarios: a heap memory is not used due to
memory deallocation, or a stack memory is not used due to
function return. We inspect memory write operations, function
calls to free and return-related instructions to detect them.
Reference Computation. Arithmetic and logical instructions
(e.g., add, sub, lea, and, or, mul, div and xor) can also cre-
ate or destroy references. Here we use C-R to represent a
computed reference. We use gray-taint to track the whole
propagation of each C-R reference, which not only helps us
find critical references that lead to UAF bugs, but also dis-
closes valuable reasons and classify these bugs. For example,
if R2 has lifetime R0->C-R1->R2 and its creation has been mis-
counted, one possible reason is that R1 is incorrectly treated
as non-reference data during the computation.

4.2.2 Strong Reference Identification

A key issue of the method above is that there are too many
temporary references created by compilers. For example, in
Figure 1, the source code gpA=pA will be compiled into two
low-level instructions. One is used to load the reference from
pA to a register and the second is used to create a new reference
in gpA. To facilitate our diagnosis, we mark the following
references with strong tags based on where they are stored.
Heap Reference. These references are usually created by
developers and most of the refcounting operations are used
to count them. To identify heap references, we first record all
heap allocations with their ranges. Then, any reference stored
into one of these locations will be marked with a strong tag.
Stack Reference. We only track references stored on stacks
if they are: (1) local variables. We recognize local variable
space by checking instructions that manipulate stack frame
pointers, and mark all references stored in these spaces as
strong. (2) function arguments. We treat a reference pushed
into the stack as a function argument if a call instruction is
followed shortly. Note that we will filter out any location that
is used in a push-pop pair for a temporary storage.

4.3 Refcounting Detection

When the program source code is available, we request soft-
ware developers to annotate the refcounter increase/decrease
locations. Fortunately, most systems adopting refcounting
provide dedicated functions for these operations, e.g., ref_get,
inc_ref for increase and ref_put, dec_ref for decrease. Even if

0x0 0x8 0x10 0x12 0xa 0x8 0x0

+8

+8

+2

-8

-2

-8 Flag Bits

31…3

Ref_Cnt Bits

012

C-D free

Figure 5: Detection of CTreeNode Refcounter by a Control
Dependent Free.

these functions are inlined, we can use the debug information
to reliably identify the refcounting instructions.

In case we only have program binaries, we can use heuris-
tics to identify refcounting operations. A recent work [48]
proposes to identify refcounters from Linux kernel through
the following heuristics, which we call HR-FixStep: refcoun-
ters are usually increased or decreased by a fixed step (e.g., 1).
However, during our testing we find this simple method can
be inaccurate. A common reason is that developers use the
lowest bits of the refcounter as special flags, and any update to
these flags will make this rule fail. Figure 5 demonstrates the
value changes of a CTreeNode refcounter in the IE browser.
Here, IE only uses the highest 29 bits of a 32-bit integer as the
refcounter and treats the lowest 3 bits as flags. When the pro-
gram sets or clears these flags, we will find that the refcounter
is updated via different steps, which makes HR-FixStep fail.

To address this limitation, we propose a new heuristic
method that relies on the control dependency between the
refcounter and the free function to identify refcounters.

HR-CDFree: If refcounter becomes zero, there should be a
free operation that is control-dependent on the refcounter.
Specifically, we collect and build a value sequence for each
object field (e.g., 4 bytes for 32-bit systems and 8 bytes for
64-bit systems) in the trace. When any field becomes zero,
we use a coarse-check method in following execution trace to
confirm if there is a control-dependent free: We first check if a
zero-condition-jmp (e.g., JZ and JNZ) follows shortly and then
detect if a free method is called before the current function
returns. In Figure 5, our new method can precisely identify
the refcounter field because of the control-dependent free.

We applied both heuristic rules on 543 objects that have
different sizes and structures. Based on the ground truth
(65 reference-counted and 478 uncounted objects), our new
method achieves 98% accuracy and 90% precision, while the
previous method only gets 86% accuracy and 43% precision.
We will present more detailed evaluation and analysis in §6.3.

4.4 UAF Diagnosis

To diagnose UAF bugs, we first match actual refcounting
operations with proper references. For each reference, we
compare the refcounting operations with our omission-aware
model, and report any violation as a reference miscounting.

2502 31st USENIX Security Symposium USENIX Association

4.4.1 Refcounting Matching

Based on our statistics, there are mainly two programming
styles to implement refcounting. To achieve higher perfor-
mance, programs written in C (e.g., system kernels or script
engines) prefer to insert an inlined refcounting operation
around the reference creation or destruction. However, to
achieve better encapsulation and reusability in modular and
object-oriented programs (e.g., web browsers), developers
like to use additional classes or non-inlined functions (wrap-
per) to implement refcounting. Therefore, we develop two
distance-based methods to match refcounting with references.
Matching Based on Execution Distance (ED). For programs
using inlined refcounting operations, we develop a simple and
efficient distance-based method to match the refcounting with
the proper reference. Specifically, in every execution trace,
we assign a sequence number N to each instruction based on
its executing order, denoted as Instruction ID (§5.1). Then,
as shown on the top of Figure 6, we use ED = ||Ncount-Nre f || to
measure the distance between a refcounting instruction and
a reference creation or destruction instruction. Finally, we
mark the refcounting and the reference as a matched pair if
they have a minimum distance. For example, in Figure 1,
it is straightforward to match pA->ref=1 with the closest
pA=malloc(). Similarly, the decrease dec_ref(gpA) can also
be matched with the implicit destruction of the stack frame
based on our reference analysis.
Matching Based on Wrapper Distance (WD). For programs
using non-inlined functions to implement refcounting, we first
identify function boundaries by detecting the entry point EP
(i.e., call instruction) and return point RP (i.e., ret instruction)
in the execution trace. Then, we calculate the wrapper dis-
tance WD between the RP of current wrapper with the EP of
next wrapper, i.e., WD = ||NRP_Current-NEP_Next ||. In Figure 6, to
match the + with proper reference, R1 or R2, although there
is ED1 > ED2, considering the existence of wrappers, we will
calculate the WD and match it with R1 as there is WD1 < WD2.

If we have the source code, we can use the debug infor-
mation to annotate the boundaries. For binary-only traces,
we can directly use call-ret pairing methods to identify the
wrappers. Specifically, we assume there will be any number
of call and ret instructions between two wrappers. We first
pair successively appeared call and ret instructions. Then, we
mark the last unpaired ret and the first unpaired call as the
boundaries and calculate the EDwrapper = || Nret-Ncall || as the
temporary wrapper distance. Finally, we check if there is any
call-ret pair P between the two boundaries, if so, we calculate
the execution distance EDP from the call to ret of P and then
subtract it from EDwrapper as the final wrapper distance WD.

4.4.2 Reference Miscounting Detection

With our omission-aware model, we design Algorithm 1 to
analyze references based on their refcounting behaviors. The
algorithm takes the set of identified references ref_set as

R1_C R2_C

ED1 ED2>

+ -

wrapper A
wrapper B

wrapper C

WD1 WD2

>

-

Figure 6: Distance-based Refcounting Matching. R_C = Ref.
Creation, ED=Execution Distance, WD=Wrapper Distance.

input, and reports the details of reference miscounting issues.
We sort references in ref_set in the ascending order of Tc

and analyze them one by one. Each reference r belongs to
one of the following four categories:

1) If r has both + and -, we add it to rc_set (Line 5);
2) If r only has +, we add it to inc_set (Line 7);
3) If r only has -, we will first check inc_set to find

an overlapped reference r’ following rule OR1 such
that r’ is created before r (i.e., r’.Tc < r.Tc). If
r’ exists (Lines 11-13), r’.- and r.+ are allowed
to be False. We will create a virtual reference
vr: (.+=True, .Tc=r’.Tc, .-=True, .Td=r.Td) and
add it into ov_set. We will remove r’ from inc_set
as it can only be matched with once based on OR1.
If we cannot find such an r’, we will resort to rule OR2
to find an r’ such that r’ is the head of the transmitting
chain (R1 in OR2) while r is the tail (RN in OR2). Based
on OR2, it is legitimate to omit r’.-, r.+ and (+,-) of
intermediate references (i.e., Ri for 1<i<N). We will
create the virtual reference, remove r’ from inc_set
and remove Ri from ref_set (Lines 18-21).
If we cannot find any r’ using OR1 nor OR2, our algo-
rithm will report an inconsistent decrement bug ID_BUG
and suggest an extra + for patching (Lines 23-24).

4) If r has neither + nor -, we will check rc_set to find a
reference r’ that contains r. Based on rule OR3, if r’
exists, we can safely omit the (+,-) of r (Line 28). If r’
does not exist, we will check ov_set to find such a r’. If
r’ exists in this case, we can safely omit the (+,-) of r
based on rule OR4 (Line 31). If we cannot find any r’
based on rule OR3 nor OR4, we will report a mistaken
omission bug MO_BUG, and suggest to add (+,-) back as
the patch (Lines 33-34).

Finally, as shown in Figure 2, we will analyze the reuse
locations of dangling pointers to detect a special kind of in-
consistent decrease bugs (see §6.5.1): a reference r having
two decrements but only one increment. If no reference mis-
counting is found, we will report all dangling pointers as our
diagnosis result.

USENIX Association 31st USENIX Security Symposium 2503

Algorithm 1: UAF Diagnose
Input: ref_set: reference set with matching result
Output: report: diagnose and patch report

1 rc_set = /0 ; // inc&dec set
2 inc_set = /0 ; // inc set
3 ov_set = /0 ; // overlap set
4 foreach r ∈ ref_set: r.+ and r.- do
5 add r into rc_set

6 foreach r ∈ ref_set: r.+ and !r.- do
7 add r into inc_set

8 foreach r ∈ ref_set: !r.+ and r.- do
9 if ∃r’ ∈ inc_set: r’.Tc < r.Tc < r’.Td < r.Td

10 then // OR1
11 vr = (True, r’.Tc, True, r.Td)

12 add vr into ov_set
13 remove r’ from inc_set

14 else if ∃R1 ... RN ∈ ref_set, ∀1<i6N:
15 Ri-1.Tc < Ri.Tc < Ri-1.Td < Ri.Td and !Ri.+ and !Ri.-
16 and RN is r and R1 is r’ and r’ ∈ inc_set
17 then // OR2
18 vr = (True, r’.Tc, True, r.Td)

19 add vr into ov_set
20 remove r’ from inc_set
21 remove Ri (1<i<N) from ref_set

22 else
23 report ID_BUG ; // report
24 add + for r ; // patch sugg.

25 foreach r ∈ ref_set: !r.+ and !r.- do
26 if ∃r’ ∈ rc_set: r’.Tc < r.Tc < r.Td < r’.Td

27 then // OR3
28 continue to next r

29 else if ∃r’ ∈ ov_set: r’.Tc < r.Tc < r.Td < r’.Td

30 then // OR4
31 continue to next r

32 else
33 report MO_BUG ; // report
34 add +, - for r ; // patch sugg.

5 Implementation

Our implementation contains about 10K lines of code, includ-
ing about 7K lines of C/C++ code to implement instrumenta-
tion (QEMU extension and Pin-tool), taint analysis and data
slice, and about 3K lines of Python code for UAF diagnosis,
including UAF object identification, refcounting detection,
refcounting matching and reference miscounting detection.

5.1 Instrumentation
FREEWILL can use any existing instrumentation tools,
Pin [15] or DynamoRIO [8] to collect bug-triggered execution
traces. In fact, for command-line programs, such as Python
script engine, we implement a Pintool to collect the traces.
However, based on our practical experiments on various large-
scale GUI-based programs (e.g., web browsers), it is the 50-
100 times overhead [21] that makes many crashes fail to be
reproduced by Pin. To solve this problem, we implement an

instrumentation tool based on a well-performed virtual ma-
chine QEMU [22]. We fetch the CPU status in the cpu-exec.c
file and insert our instrument code during the TCG translation,
i.e., in the translate.c file. Different from Pin providing thread-
related APIs, we use kernel structures, e.g., EThread [9], to
extract thread id from emulated CPU for Windows programs.
In summary, we collect following information:
Instruction Record. We will record Instruction ID, Instruc-
tion Address, Operation Code, Operand Value and Thread
ID. Specifically, Instruction ID is used to calculate the ex-
ecution and wrapper distance for our refcounting matching.
Instruction Address is used to mark the location of reference
miscounting. Operation Code and Operand Value are used
to detect all references and build value sequences. Thread ID
is used to identify multi-thread UAF bugs when malloc, free
and reuse are detected in different threads.
Heap Related Record. The heap record contains the Instruc-
tion ID, Heap Operation Type, Object Address, Object Size.
Specifically, Operation Type can be one of allocation, deal-
location and reallocation. Object Address and Object Size
record the object memory space range. The heap information
is used to help detect the UAF bug and identify if there is a
refcounter in object fields.

5.2 Gray-Taint Analysis
We first mark with TAINT flags the pointers returned from
UAF object-related allocations and track them as follows:
Normal Taint Rules. We first analyze movement instructions
(e.g., mov/movsd, push) which can produce new references if
the source operand is tainted. To detect destructions of stack
references, we will analyze instructions such as ret N, pop,
leave and call which can destroy them. For heap references,
we will check if any tainted cell is freed or overwritten.
Gray Taint Rules. Whenever a tainted reference involves
computation, we will first make sure it is not completely de-
stroyed, e.g., xor eax, eax. If there is a small change, e.g., a bit
operation in or [ref], 0x1, we will mark it with a GRAY flag and
propagate it in the following analysis. When we meet it again,
we will check if the final value is equal to object address, if
yes, we will treat it as a new reference and mark it with TAINT.
Under-Taint and Over-Taint. They are two common prob-
lems when we implement our taint engine. We use the refer-
ence value, say ref, as check conditions to migrate the prob-
lems. First, if any instruction containing a ref is not tainted,
we will add rule(s) to fix this under-taint. Second, when a new
reference is detected, we will check if its value is ref, if not,
we will add rule(s) to fix this over-taint.

6 Evaluation

We mainly evaluate FREEWILL on following aspects:
• UAF Object Lifetime Identification: Can FREEWILL

identify UAF objects with proper lifetimes?

2504 31st USENIX Security Symposium USENIX Association

• Reference & Refcounting Identification: How accurate
are our reference detection & refcounting identification?
• Diagnosis & Patch Suggestion: What is the effective-

ness of FREEWILL in root cause diagnosis and patch
suggestion for UAF bugs?
• Lessons from Bugs: What can we learn from these bugs

and wrong (or incomplete) patches (or suggestions)?

6.1 Experiment Setup
Benchmark. Using public search engines, official bug track
websites [3–5,14,16] and kernel commit logs [11], we collect
76 UAF bugs presented in the first three columns in Table 3.
Note that the proportion of different bugs in our dataset could
be inconsistent from the ones in the real world as a bug is
collected into our dataset only if we can reproduce it. How-
ever, to keep the fairness of our selection, we try to cover as
many types of bugs as we can and also collect various thorny
cases, e.g., custom-defined heap managers and race problems.
Our dataset covers five types: mistaken omission (MO), in-
consistent decrease (ID), dangling usage (DU), null-pointer
dereference (NPD), multi-thread (M) and ten subtypes (see
§6.5) of root causes leading to UAF bugs, which makes our
dataset representative and convincing.
Environment. We configure FREEWILL to run on a Ubuntu
18.04.1 platform with 8-core 4.00GHz CPU, 64GB RAM.
We install 32-bit Windows 7 and Windows 7 SP1 as QEMU
guests to execute the various versions of web browsers, and
install a 32-bit Ubuntu-16.04 virtual machine to execute other
programs. We use our QEMU extension and Pin-tool to in-
strument and fetch traces.
Kernel Drivers. Due to the inconvenience of kernel instru-
mentation, we extract all related driver files containing the 21
kernel UAF bugs (15 bugs in 13 versions of Linux and 6 bugs
in 5 versions of MacOS) to build user-space dynamic libraries
that can be executed and monitored by our tools. For example,
we use 74% code of 12 original class files in MacOS libkern
module for CVE-2016-1828 and CVE-2016-4656. We mainly
keep Serialize/UnSerialize functions and disable unrelated
code, e.g., interactions with other kernel drivers. Besides, we
use libc.so’s malloc and free to replace the original kmalloc
and kfree in driver files. For other kernel driver bugs, we adopt
similar methods to reproduce them and Table 2 gives the de-
tails. On average, for each bug, we need about 30 minutes to
manually extract all related files and remove unrelated code
from source code.

6.2 UAF Object Lifetime Identification
Traces and Crashes. The Trace and Crash columns in Ta-
ble 3 show that FREEWILL has successfully reproduced 73
bugs using our instrumentation tools. The average size of the
traces for each bug is 24GB containing more than 130 mil-
lions of instructions. FREEWILL fails to analyze three bugs

Table 2: Source Code Extracted for 21 Kernel Bugs.
Kernel # Vers. *.h *.c/.c++ LoC Time/Avg.(h)
Linux 13 195 80 50,186 7.5 / 0.5

MacOS 5 60 45 66,650 3 / 0.5

and the main reason is the side effects of low-performance
instrumentation. For 67 out of 73 bugs, we can directly find
the crash points in the last instructions of the traces. How-
ever, there are six bugs of Firefox and Chrome whose crash
points need to be manually identified with minidump [12]
files produced by their Breakpad [2] or Crashpad [6].
UAF and Reallocations. In the UAF column, we can see
FREEWILL has successfully identified 66 UAF bugs, includ-
ing 5 multi-level UAF bugs and 5 multi-thread UAF bugs
(malloc, free and reuse have different thread id). For five
of them, we need the assistance of ASan to catch the crash
points, otherwise they will be delayed to happen in compli-
cated heap manager functions (free or malloc). FREEWILL
has also identified five null-pointer dereference bugs who
have been reported as UAF bugs because nullified references
are reused without any null-check. For CVE-2015-2425 and
CVE-2017-11810, FREEWILL fails to identify the bugs as we
have no custom-defined heap API symbols. Finally, with back-
wards slicing, FREEWILL identifies 18 UAF bugs whose
memory blocks have been reallocated for other objects.

6.3 Reference & Refcounting Identification

Reference Identification. From the Ref. Ident. column, we
can see FREEWILL successfully identifies all references of
the UAF objects within their lifetimes. On average, each of
three web browsers, for the UAF object, creates more than
2,000 potential references, including the ones stored in heap,
stack and register. For other programs, each of them also
creates more than 100 potential references which is still a
challenge for manually debugging. The Strong column shows
that FREEWILL has filtered out more than 90% of potential
references, which can facilitate the diagnoses.
Refcounting Identification. From the + column, we can see
that FREEWILL successfully identifies 52 UAF objects using
refcounting to manage their lifetimes. We have manually con-
firmed that there are 14 UAF bugs whose vulnerable objects
have no refcounter in their structure or class definitions. From
the Offset column, we can see different kinds of objects use
various positions to store refcounters.

To compare the effectiveness of two heuristic rules (men-
tioned in §4.3), we manually identify 543 objects (having
different sizes and structures) from all traces as our dataset.
Based on the ground truth, 65 reference-counted objects and
478 non-reference-counted ones, as shown in Table 4, we
use HR-FixStep to identify only 37 counted objects, and use
HR-CDFree to totally identify 61 objects.

USENIX Association 31st USENIX Security Symposium 2505

Table 3: Diagnosis Results. DMP=DUMP File, RA=Reallocation Times, MU=Multi-level UAF, DF=Double Free, (A)=ASan,
(M)=Multi-thread UAF, C-/M-/RD-/P-=Calculation, Mov, Rep Movsd or Push instructions, RM=Reference Miscounting,
RC=Reference Counting, NPD=Null-Pointer Dereference, 8= Wrong or Incomplete Patch (Suggestion).

Prog. BugId Ver.
UAF Obj. Ident. Ref. Analysis Diagnoses

Trace Crash UAF RA Ref. Ident. Ref. Count RM Root Patch Official
(GB) Poten. Strong + Offset Cause Suggestion Patch

IE

CVE-2010-0248 8.0.7600.16385 1.6 4 4 2 188 31 1 +0x10 4 M-(Rc,) Add +/- Add Rd
CVE-2010-0249 8.0.7600.16385 2.7 4 4 1 8460 661 56 +0x40 4 RD-(Rc,) Add +/- 4
CVE-2010-3971 8.0.7600.16385 3.9 4 4 1 52 10 0 – No Dangling (No RC) Stop Reuse 4
CVE-2011-1260 8.0.7600.16385 2.5 4 MU 0 1266 163 1 +0x40 4 C-RD-(Rc,) Add +/- 4
CVE-2012-1875 8.0.7600.16385 3.8 4 4 0 3273 210 12 +0x4 4 M-(Rc,) Add +/- Add Rd
CVE-2012-4787 9.0.8112.16421 1.4 4 4 0 313 13 8 +0x4 4 M-(Rc,) Add +/- 4
CVE-2012-4792 8.0.7600.16385 3.3 4 4 0 1026 22 7 +0x4 4 M-(Rc,) Add +/- 4
CVE-2012-4969 8.0.7600.16385 3.3 4 4 1 200 32 3 +0x4 4 P-(Rc,) Add +/- 4
CVE-2013-0025 8.0.7600.16385 2.7 4 MU 0 2973 265 3 +0x40 4 M-(Rc,) Add +/- Add Rd
CVE-2013-1306 9.0.8112.16421 18.0 4 4 0 1977 74 7 +0x4 No Reuse Counted R Stop Reuse 4
CVE-2013-1347 8.0.7600.16385 1.7 4 4 1 928 18 7 +0x4 No Reuse Counted R Stop Reuse 4
CVE-2013-3163 8.0.7600.16385 1.9 4 4 0 2271 322 19 +0x4 4 M-(Rc,) Add +/- Add Rd
CVE-2013-3893 8.0.7600.16385 2.4 4 MU 1 5110 763 23 +0x40 4 M-(Rc,) Add +/- 4
CVE-2013-3897 8.0.7600.16385 2.5 4 4 1 431 77 1 +0x4 4 P-(Rc,) Add +/- 4
CVE-2014-0282 8.0.7600.16385 1.8 4 4 0 4104 508 29 +0x4 4 M-(Rc,) Add +/- 4
CVE-2014-1776 8.0.7600.16385 6.2 4 MU 1 3660 463 26 +0x4 4 P-(Rc,) Add +/- 4
CVE-2014-1815 8.0.7600.16385 2.5 4 4 0 5021 962 65 +0x4 4 P-(Rc,) Add +/- 4
CVE-2015-2425 11.0.9600.16428 6.8 4 – – – – – – – – – –
CVE-2017-11810 11.0.9600.16428 3.1 4 – – – – – – – – – –
CVE-2018-8174 11.0.9600.16428 3.7 4 4 0 217 36 9 +0x4 No Reuse Counted R Stop Reuse 4

Linux

Commit-81b9de4 (2018) 4.16.0-rc1 0.1 4 DF(A) 0 43 10 1 +0xc 4 M-(+Rc, -, -) Stop - 8(Add +)
Commit-c3aabf0 (2019) 5.2.0-rc1 0.1 4 DF(A) 0 32 9 1 +0x8 4 M-(Rc, -) Add + 4
Commit-0cef13d (2020) 5.9.0-rc7 0.1 4 DF(A) 0 60 15 1 +0xc 4 M-(+Rc, -, -) Stop - 4
Commit-8cc0dcf (2020) 5.10.0-rc3 2.5 4 4 0 258 60 2 +0xc 4 M-(Rc, -) Add + 4 (Delay Free)
Commit-ba34c3d (2020) 5.10.0-rc7 2.7 4 4 0 258 55 2 +0x8 4 M-(Rc,) Add +/- 4
Commit-dbfa04e (2020) 5.11.0-rc1 2.1 4 NPD – – – – – No NPD Null-Check 4
Commit-beb691e (2021) 5.11.0 2.5 4 4 0 171 48 2 +0x0 4 M-(+Rc, -, -) Stop - 4
Commit-357a07c (2021) 5.12.0-rc7 2.5 4 4(M) 0 40 7 1 +0x8 4 M-(Rc,) Add +/- 4
Commit-8d43259 (2021) 5.12.0 2.5 4 4 0 239 58 3 +0x4 No Reuse Counted R Stop Reuse 4
Commit-ae4393d (2021) 5.12.0 2.3 4 4 0 21 7 0 – No Dangling (No RC) Stop Reuse 4
Commit-c81d3d2 (2021) 5.13.0-rc1 2.3 4 4 0 119 28 1 +0x0 4 M-(Rc,) Add +/- 4
Commit-a4f0377 (2021) 5.13.0-rc3 2.1 4 4(M) 0 214 55 1 +0x64 4 M-(Rc,) Add +/- 4
Commit-8fd0e99 (2021) 5.13.0-rc4 2.5 4 4 0 73 25 1 +0x0 4 M-(Rc, -) Add + 4
Commit-af35fc3 (2021) 5.14.0-rc3 2.6 4 4 0 203 52 1 +0xfc 4 C-(Rc,) Add +/- 4 (Delay Free)
Commit-ff11764 (2021) 5.14.0-rc3 2.3 4 4(M) 0 82 22 1 +0x10 4 M-(Rc,) 8(Add +/-) Add Lock

MacOS

CVE-2016-1828 10.11.4 0.5 4 4 0 112 38 2 +0x4 4 M-(Rc,) Add +/- 8(Delay Free)
CVE-2016-4656 10.11.6 0.5 4 4 0 120 40 1 +0x4 4 M-(Rc,) Add +/- 4(Delay Free)
CVE-2017-2545 10.13.2 4.0 4 4 0 91 22 1 +0x8 4 M-(Rc, -) Add + Remove Rc
CVE-2018-4083 10.13.2 4.3 4 DF(A)(M) 0 77 27 1 +0x4 4 M-(+Rc, -, -) Stop - Add Lock
CVE-2019-6225 10.14.2 2.3 4 4 0 340 67 3 +0x8 4 M-(Rc, -) Add + 4
CVE-2020-9892 10.15.5 2.3 4 4 0 117 18 0 – No Dangling (No RC) Stop Reuse 4

Python

Issue-24091 (2015) 3.4.3 40.0 4 4 1 123 46 6 +0x8 4 M-(Rc,) Add +/- 4
Issue-24092 (2015) 3.4.3 40.0 4 NPD – – – – – No NPD Null-Check 4
Issue-24093 (2015) 3.4.3 40.0 4 4 1 357 81 10 +0x8 4 M-(Rc, -) Add + 4
Issue-24094 (2015) 3.4.3 30.0 4 4 1 183 61 8 +0x8 4 M-(Rc,) Add +/- Remove Rc
Issue-24099 (2015) 3.4.3 24.0 4 4 1 159 67 6 +0x8 4 M-(+Rc, -, -) Stop - 4
Issue-24100 (2015) 3.4.3 24.0 4 NPD – – – – – No NPD Null-Check 4
Issue-38588-01 (2019) 3.8.0 15.0 4 4 0 81 21 3 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-38588-02 (2019) 3.8.0 15.0 4 4 0 53 14 2 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-38588-03 (2019) 3.8.0 15.0 4 4 0 56 15 2 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-38610-01 (2019) 3.8.0 15.0 4 4 0 65 17 2 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-38610-02 (2019) 3.8.0 15.0 4 4 0 68 18 3 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-38610-03 (2019) 3.8.0 15.0 4 4 0 68 18 3 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-39421 (2020) 3.8.0 15.0 4 4 0 77 19 3 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-39453 (2020) 3.8.0 15.0 4 4 0 61 18 2 +0x10 4 C-P-(Rc,) Add +/- 4
Issue-39510 (2020) 3.8.0 40.0 4 NPD – – – – – No NPD Null-Check 4

PHP

BUG-68594 (2014) 5.4.36 42.0 4 4(A) 0 84 5 1 +0x8 4 M-(Rc,) Add +/- 8(Delay Free)
BUG-68710 (2015) 5.4.36 42.0 4 4(A) 0 84 5 1 +0x8 4 M-(Rc,) Add +/- 4(Delay Free)
BUG-73392 (2016) 7.0.14 2.4 4 4 1 55 13 2 +0x0 4 M-(Rc,) Add +/- Remove Rc
OSS-17903 (2019) 7.4.0 – No – – – – – – – – – –
OSS-24436 (2020) 8.0.0 2.7 4 4 0 103 20 1 +0x0 4 M-(Rc,) Add +/- 4
BUG-79922 (2020) 7.3.22 2.4 4 4 0 93 26 4 +0x0 4 M-(+Rc, -, -) Stop - 4
BUG-66783 (2021) 7.4.0 2.8 4 4 0 127 29 0 – No Dangling (No RC) Stop Reuse 4
BUG-80927 (2021) 7.4.0 2.5 4 4 1 31 6 0 – No Dangling (No RC) Stop Reuse 4

Firefox

CVE-2011-0065 3.0 14.0 4 4 1 14 6 0 – No Dangling (No RC) Stop Reuse 4
CVE-2013-0753 13.0.1 3.0 4 4 0 539 80 0 – No Dangling (No RC) Stop Reuse 4
CVE-2016-9899 50.0 – No – – – – – – – – – –
CVE-2017-5404 52.0a2 272 4 (DMP) NPD – – – – – No NPD Null-Check 4
CVE-2018-18492 63.0 40 4 (DMP) 4 0 82 24 0 – No Dangling (No RC) Stop Reuse Use RC

Chrome

Issue-1033759 (2019) 80.0.3987.0 22.0 4 (DMP) 4 0 7134 423 0 – No Dangling (No RC) Stop Reuse 4
Issue-1041406 (2020) 79.0.3945.0 61.0 4 4(M) 3 130 16 0 – No Dangling (No RC) Stop Reuse Remove R
Issue-1062091 (2020) 81.0.4044.0 294.0 4 4 0 22247 517 0 – No Dangling (No RC) Stop Reuse 4
Issue-1111737 (2020) 86.0.4214.0 – No – – – – – – – – – –
Issue-1137630 (2020) 86.0.4214.0 27.0 4 (DMP) MU 0 113 2 0 – No Dangling (No RC) Stop Reuse Delay Free
Issue-1142675 (2020) 87.0.4280.0 97.0 4 (DMP) 4 2 423 16 0 – No Dangling (No RC) Stop Reuse 4
Issue-1155426 (2020) 81.0.4044.0 358.0 4 (DMP) 4 3 7177 485 0 – No Dangling (No RC) Stop Reuse 4

2506 31st USENIX Security Symposium USENIX Association

Table 4: Accuracy of Refcounting Identification.
Rules TP TN FP FN Acc. Prec. Recall
HR-FixStep 37 428 50 28 86% 43% 57%
HR-CDFree 4 61 471 7 4 98% 90% 94%

Ground Truth Extraction. When source code is available,
we can extract the ground truth directly from the programs.
When we only have binaries, e.g., IE, we extract the ground
truth as follows: First, we use the reverse engineering tool,
IDA Pro, with the official symbol (PDB [13]) files to fetch the
object name based on the object allocation instruction address
in our traces and collect all its related function names (like
CTreeNode::XXX) in the Function Name window of IDA Pro.
Second, we can extract the ground truth based on the exis-
tence of refcounting function names like CDoc::AddRef or
CTreeNode::AddRef. Finally, we will find out in these AddRef -
like functions the critical instructions, such as inc [this+0x4],
which can be used to infer the refcounter offsets (e.g., +0x4).
While the reversing time mainly depends on the size of the
target binary module (e.g., mshtml.dll), in our evaluations,
it tooks about 5-10 minutes to fetch all function names and
extract the ground truth for each object.
HR-FixStep FP/FN Analysis. The main reason of false pos-
itives is that it cannot distinguish other kinds of counters,
such as Loop Counter. The reason of false negatives is that it
cannot efficiently handle the diversity of the steps, e.g., the
refcounting of CTreeNode (explained in Figure 5). Besides,
many programs will set a marked flag value (e.g., 0x8000 or
0xffff) to the refcounter before they free the objects.
HR-CDFree FP/FN Analysis: The reason of false positives
is that it can not handle status flags, e.g., isActive, isBusy,
which will be first enabled and then disabled to call the free.
Four false negatives are introduced by decrement functions
who have no control-dependence on zero, e.g., MacOS ker-
nels use 0xffff as the free condition (this has been fixed).
Nevertheless, 6% false negative and 98% accuracy rate for
more than 500 various objects have proved the efficiency of
HR-CDFree. In fact, HR-CDFree helps us to automatically
and precisely identify lots of useful refcounters in IE objects,
e.g., the CTreeNode, CTreePos, CBase, CLayout, CSecuri-
tyThunkSub, CFlatMarkupPointer, etc,. As a result, we advise
to use the HR-CDFree rule first in practical usage.

6.4 Diagnoses and Patch Suggestions
UAF Diagnoses. From the Diagnoses main column, we can
see that there are totally 48 UAF bugs caused by reference mis-
counting and 18 bugs are caused by dangling usage. Within
the dangling usage bugs, there are 4 bugs caused by the reuse
of counted references and there are no refcounting in the other
14 bugs. In the Root Cause column, we use (Rc,) to mean a
UAF bug is caused by mistaken omission. Specifically, from
the analysis result, we can see that there are totally 36 out of

.text: 74D79D49 call ?GetmarkupPtr@CElement

.text: 74D79D4E push [ebp+arg_0]

.text: 74D79D51 push eax

.text: 74D79D52 call ?onCssChange@CMarkup

.text: 74D79D57 pop ebp

P-(Rc,)

MSHTML-8.0.7600.16385 (Bug Version)

MSHTML-8.0.7601.18446 (Patch Version)

if (*(this + 7) & 0x200){

v4 = CElement::GetMarkupPtr(this);

(*(*v4 + 0xE0)) (v4); // AddRef()

v2 = CMarkup::OnCssChange(v4, a2);

(*(*v4 + 0xE4)) (v4); // Release()

}

Add +/-
(FreeWill)

Offical Patch

Figure 7: P-(Rc,) Mistaken Omission, Patch Suggestion,
and the Official Patch (CVE-2014-1776).

48 UAF bugs caused by mistaken omission. We use (Rc, -)
to mean the inconsistency problems as there is only - but no
corresponding +, which is the main reason for 6 UAF bugs.
We use (+Rc, -, -) to mean another kind of inconsistency de-
creases for 6 bugs in which the problematic references have
been decreased twice. It is noted that FREEWILL uses the pre-
fix, C, M, RD and P for all reference miscounting caused bugs
to mean, Calculation, Mov, Rep Movsd and Push, different
ways of reference creation, which is very useful to classify
the bugs and suggest effective patches. Finally, FREEWILL
has identified five null-pointer dereference (NPD) bugs (their
parent object are still alive) reported as a special kind of UAF
bugs because the nullified references are still accessed with-
out any Null-Check. We give more details of our diagnoses
and the performance in Appendix §A.1.

Patch Suggestions. Based on above diagnosis reports,
FREEWILL can automatically conclude bug types and pro-
duce effective patch suggestions for UAF bugs. For example,
for the typical P-(Rc,) bug shown in Figure 7, FREEWILL
will suggest to add +/- around the reference creation, which is
exactly matched with the official patch. In fact, from the last
two columns of Table 3, we can conclude that FREEWILL can
help developers to effectively fix different kinds of UAF bugs.
Specifically, there are totally 56 out of 71 patch suggestions
which are matched with the official patches and marked with
4 in the table. Besides, for the reference miscounting caused
UAF bugs, FREEWILL can give more concrete patch sugges-
tions and there are totally 37 out of 48 patch suggestions that
are exactly the same with the official patches. Third, while not
considering multi-thread bugs in our omission-aware model,
from the result, FREEWILL can even give two correct patch
suggestions and we will give the details in the next section.
Finally, while it is conservative, FREEWILL can give more
reliable patch suggestions as we have identified three wrong
or incomplete official patches but only one from our tool.

USENIX Association 31st USENIX Security Symposium 2507

6.5 Lessons From Bugs

6.5.1 Mistaken Omission and Inconsistent Decrease

There are totally 36 mistaken omissions caused UAF bugs and
we can conclude two main reasons (subtypes) for these bugs.
One reason may be that when many programmers participate
in the development of a large, complicated program, the one
writing a copy functionality does not know how the pointed
object manages its lifetime. For example, in CVE-2011-1260,
the developers, to implement clone-like library functions, only
simply copy the memory content by calling memcpy and fail
to increase its member’s refcounter properly as they have
not cared about the object content. Another reason can be
explained by CVE-2014-1776 in Figure 7. Specifically, when
developers pass an In/Out object pointer into a large and
complicated function, they fail to increase the refcounter but
the callee function still decreases the refcounter. Finally, when
the caller continues to access the passed out (dangling) pointer,
there will be a UAF bug. In fact, this is a common kind of
mistaken omission that happens in kernels and script engines.

FREEWILL has detected 12 UAF bugs caused by inconsis-
tent decrease and they can also be classified into two subtypes.
We use (Rc, -) to represent the first type, e.g., the RM2 in Fig-
ure 1. Considering the obvious reference miscounting, for
these bugs, FREEWILL suggests to use add + to fix them. As
a result, FREEWILL produces five out of six suggestions ex-
actly matched with the official patches and the programmers
remove the problematic code to prevent reference creation
for the sixth bug (CVE-2017-2545). The second subtype, rep-
resented by (+Rc, -, -), is more complicated as we cannot
precisely tell which decrease is wrong, e.g., the bugs hap-
pened in Linux, MacOS, Python, and PHP. While it is less
rigorous for our suggestions to prevent the second decrease,
there are still five out of six official patches that are matched.

6.5.2 Dangling Usage and Null-Pointer Dereference

FREEWILL confirms 18 UAF bugs caused by two subtypes
of dangling usage. First, for the UAF objects whose data
structures are simple Array and Buffer (e.g., CVE-2020-9892,
CVE-2010-3971), FREEWILL does not identify any refcount-
ing during their whole life cycles. Second, if references who
have been counted are accessed after the object is freed (e.g.,
CVE-2018-8174), they are also diagnosed as dangling pointers.
For both of the dangling bugs, FREEWILL suggests to stop
reuse related pointers. It is noted that FREEWILL finds no
reference miscounting but only dangling usage in Firefox and
Chrome. Based on our manual analysis, both of them have
adopted SmartPointer [18] to prevent reference miscounting
and the UAF bugs are mainly caused by other raw pointers
who have not been protected.

Null-pointer dereference (e.g., CVE-2017-5404) can also be
treated as a special subtype of dangling usage as a nullified
pointer is a special kind of dangling pointer. In fact, all five

null-pointer dereference bugs detected by FREEWILL are
reported as UAF bugs in the real world. Finally, for these bugs,
we suggest adding the corresponding Null-Checks, which are
all matched with official patches.

6.5.3 Wrong or Incomplete Patches

When there is a problematic reference in the patched program,
created and accessed to trigger a UAF bug as in the original
code, FREEWILL could confirm the patches to be wrong or
incomplete. In this way, FREEWILL identifies three wrong or
incomplete patches and one wrong patch suggestion.
Linux (Commit-81b9de4) Wrong Patch. This bug is caused
by two continuous decrements (as shown in Table 3) and the
official patch tries to increase the refcounter before the first
decrement. However, the developers wrongly use a reference
of another object and this is an obvious wrong patch as the
two continuous decrements still exist without any increment.
MacOS (CVE-2016-1828) and PHP (BUG-68594) Incomplete
Patches. These two bugs are very similar as both of them in-
volve the Unserialize functions. They are triggered as follow:
First, the UAF object, created and held by reference R0, is
stored with a key into a table or array without refcounting (re-
fcounter is still 1). Second, a new object, owning the same key
with the existing object in the table or array, will be used to
replace the old object who will be then released (freed as the
refcounter becomes 0). Finally, R0 becomes dangling and its
access triggers the UAF bug. While this is a classic reference
miscounting, both of the official patches chose to prevent the
replace by adding special check conditions. However, their
conditions are incomplete and they can be passed in other
new execution paths.
FREEWILL Wrong Patch Suggestion (Commit-ff11764)
and Multi-thread UAF. The bug is caused by a race problem
(one subtype), where an unlocked decrease can concurrently
happen in another thread. As FreeWill does not consider races,
it cannot produce suggestions to prevent these bugs. How-
ever, FreeWill produces two useful Linux patch suggestions
(Commit-357a07c and Commit-a4f0377) almost matched with
official patches. In the two bugs (another subtype), threads
rely on a synchronized Producer-Consumer queue to pass
objects. In the wrong case, the Producer thread firstly puts the
object into the queue and then increases the refcounter; and
the Consumer firstly fetches the object and then decreases
the refcounter. As a result, the increase by Producer and the
decrease by Consumer can be executed concurrently, causing
a UAF bug. The suggestion to increase refcounter before the
object is added into the queue (i.e., a new reference creation)
can fix the bugs as increase and decrease can be executed
in order. Finally, there is a special simple multi-thread UAF
bug (third subtype) in which a dangling pointer is accessed
in another thread after the object is freed. In fact, FREEWILL
detects this kind of bugs in Chrome and suggests to stop reuse
the dangling pointer.

2508 31st USENIX Security Symposium USENIX Association

7 Limitation and Future Work

New Bug Detection. FREEWILL is mainly used to diagnose
a UAF bug based on a bug-triggering input. However, by
concluding the patterns and lessons of reference miscounting,
we will focus on finding new bugs in future work.
Race Problem Diagnosis. Based on our evaluations,
FREEWILL cannot handle the race problems and it is the
main limitation of the current version. While there have been
concurrent UAF bug detection methods [24, 31], diagnosing
these bugs can be an important future work.
Custom Heap Recognition. FREEWILL failed to analyze two
bugs, CVE-2015-2425 and CVE-2017-11810, as we have no
idea of their allocation and destruction functions. Therefore,
to strengthen FREEWILL, we can adopt reversing methods to
recognize custom-defined heap managers.

8 Related Work

8.1 General Root Cause Analysis
Trace Comparison. Miller et al. [36] utilize the binary pro-
gram analysis toolkits BitBlaze [47] to compare benign and
malicious traces for root causes analysis. While they can
find out some valuable diversities of two traces, it still needs
lots of handwork and security expert experience. A recent
work, Aurora [49], is proposed to automatically identify the
diversity of benign and malicious traces to capture the in-
structions causing behavioral differences which is used as the
root cause. However, for UAF bugs, crashing or non-crashing
the programs depends on if it chose a buggy path in which
the dangling pointer is accessed, and this is not efficient to
explain the creation of dangling pointer, i.e., the root cause of
UAF.
Data Dependency Analysis. POMP [54], CREDAL [53],
RETTracer [28] and REPT [27] are proposed to automati-
cally identify the connection between the crash point and the
memory corruptions, e.g., the buffer overflow bugs. While
by utilizing the core dump and backward taint analysis, these
methods are very efficient to find out the reasons why there is
a data dependency mismatch – treated as the root cause, all
of them assume there should be a data dependency between
the data creation and final usage. For reference miscounting
caused UAF bugs, there is no such data dependency.

8.2 UAF Prevention and Diagnosis
Prevention. Considering the serious impacts of UAF bugs,
plenty of solutions have been proposed to prevent the bugs
and related attacks. Undangle [23], DangNull [33], FreeSen-
try [55], DangSan [50] and pSweeper [34] try to prevent
dangling pointers by invalidating them soon after the object
is freed. CETS [40] and Oscar [29] are two representative
solutions to detect dangling access by making freed object

memory inaccessible. CRCount [44] and MarkUs [20] delay
free operation until they can confirm the object is not pointed
by any pointers. FFmalloc [52] is designed to be a secure
allocator based on the one-time allocation to defeat UAF ex-
ploitation. During the prevention, most of these methods can
identify all dangling pointers (e.g., Undangle and DangNull).
However, they still rely on lots of manual analysis to find out
the reason for dangling creation and access, i.e., the root cause
of UAF bugs
Diagnosis. ASan [41] and pSweeper [34] not only detect the
UAF bugs, but also provide as diagnosis results the call stack
information for different stages, including the malloc, free
and reuse. While these results are helpful for simple bugs
(e.g., one used in pSweeper), they may fail or even mislead
developers in diagnosing reference miscounting caused UAF
bugs (explained in §2.2).

8.3 Refcounting Bug Detection
Refcounting and Reference Change Inconsistency. Ref-
eree [30], Pungi [45] and LinKRID [35] are proposed to detect
refcounting bugs by statically identifying mismatch between
refcounting and reference changes. As the wide existence of
refcounting omissions, all of them suffer from high false pos-
itives. Compared with Referee, Pungi introduces the borrow
and steal concepts (i.e., refcounting omission), but it does
not give any efficient solution. Recent work, LinKRID, tries
to identify internal references which should not be counted
during the refcounting invariant checking. Different from our
omission-ware model and complete trace-based pointer track-
ing, LinKRID only statically identifies two specific patterns
and adopts function summary, which can lead to high false
positives and false negatives (explained in §2.2).
Increase and Decrease Inconsistency. RID [32] and
CID [48] are proposed to detect refcounting bugs by stati-
cally checking if the consistency of refcounter increase and
decrease is broken. Based on their experiments, both of them
can detect lots of bugs caused by refcounting errors. How-
ever, they can only analyze inconsistent decreases with source
code, but are not able to handle mistaken omission bugs in
binary-only programs as there is no mismatch problem. Be-
sides, they have not analyzed the reference relationships and
the refcounting matching problems.

9 Conclusion

We proposed FREEWILL to automatically diagnose UAF bugs
caused by reference miscounting. With an omission-aware
refcounting model, FREEWILL incorporates several practical
techniques to find the root cause. We prototyped FREEWILL
and evaluated it with 76 UAF bugs from real-world programs.
The experimental results show that FREEWILL is effective
and practical on automatically diagnosing UAF bugs caused
by reference miscounting.

USENIX Association 31st USENIX Security Symposium 2509

Acknowledgment

We thank the anonymous reviewers, and our shepherd, Anto-
nio Bianchi, for their helpful feedback. We also thank Chao
Zhang for helpful discussion on the heuristic rules. We also
thank Yanhang Wang and Xiangkun Jia for discussion on
paper’s motivation and the omission model. This research
was supported, in part, by National Natural Science Founda-
tion of China (Grand No. U1936211, U1836117, U1836113,
61902384 and 62102406), the Youth Innovation Promotion
Association of the Chinese Academy of Sciences (Grand
No. 2019111 and 2017151), the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grant No.
XDC02020300), the Key Research Program of Frontier Sci-
ences, CAS (Grant No. ZDBS-LY-7006) and Ministry of Edu-
cation, Singapore (Grant No. MOE2018-T2-1-142). All opin-
ions expressed in this paper are solely those of the authors.

References
[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

[2] Breakpad. https://chromium.googlesource.com/breakpad/
breakpad/+/master/docs/getting_started_with_breakpad.
md.

[3] Bugzilla. https://bugzilla.mozilla.org.

[4] Chromium Bugs. https://bugs.chromium.org/p/chromium/
issues/list.

[5] Common Vulnerabilities and Exposures. https://cve.mitre.org/.

[6] CrashPad. https://chromium.googlesource.com/crashpad/
crashpad/+/refs/heads/main/README.md.

[7] CWE-911: Improper Update of Reference Count. https://cwe.
mitre.org/data/definitions/911.html.

[8] DynamoRIO - Dynamic Instrumentation Tool Platform. http://www.
dynamorio.org/.

[9] ETHREAD Structure. https://www.nirsoft.net/kernel_
struct/vista/ETHREAD.html.

[10] Kernel Boot Problem. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/?id=
0711f0d7050b9e07c44bc159bbc64ac0a1022c7f.

[11] Linux Kernel Commit Log. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/log/.

[12] Minidump Files. https://docs.microsoft.com/en-us/
windows/win32/debug/minidump-files.

[13] PDB File. https://devblogs.microsoft.com/cppblog/
whats-inside-a-pdb-file/.

[14] PHP Bug Tracking System. https://bugs.php.net.

[15] Pin - A Dynamic Binary Instrumentation Tool.
https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

[16] Python Bug Tracker. https://bugs.python.org/.

[17] Rules For Managing Reference Counts. https://
docs.microsoft.com/zh-cn/windows/desktop/com/
rules-for-managing-reference-counts.

[18] Smart Pointer. https://en.wikipedia.org/wiki/Smart_
pointer.

[19] Zero Day Initiative. https://www.zerodayinitiative.com/.

[20] Sam Ainsworth and Timothy Jones. MarkUs: Drop-in Use-after-free
Prevention for Low-level Languages. In Proceedings of the 41st IEEE
Symposium on Security and Privacy, 2020.

[21] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen. Superset Dis-
assembly: Statically Rewriting x86 Binaries Without Heuristics. In
Proceedings of the 2018 Annual Network and Distributed System Secu-
rity Symposium, 2018.

[22] Fabrice Bellard. QEMU, A Fast And Portable Dynamic Translator. In
Proceedings of the USENIX Annual Technical Conference, 2005.

[23] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early Detection Of Dangling Pointers In Use-After-Free
and Double-Free Vulnerabilities. In Proceedings of the International
Symposium on Software Testing and Analysis, 2012.

[24] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and
Bin Liang. Detecting Concurrency Memory Corruption Vulnerabilities.
In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019.

[25] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E:
A Platform For In-vivo Multi-path Analysis Of Software Systems. In
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2011.

[26] George E. Collins. A Method For Overlapping And Erasure Of Lists.
Communications of the ACM, 3(12):655–657, December 1960.

[27] Weidong Cui, Xinyang Ge, Baris Kasikei, Ben Niu, Upamanyu Sharma,
Ruoyu Wang, and Insu Yun. REPT: Revrse Debugging Of Failures In
Deployed Software. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation, 2018.

[28] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and
Vasileios P.Kemerlis. Retracer: Triaging crashes by reverse execution
from partial memory dumps. In Proceedings of the 38th International
Conference on Software Engineering, 2016.

[29] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A
Practical Page-Permissions-Based Scheme For Thwarting Dangling
Pointers. In Proceedings of the 26th USENIX Security Symposium,
2017.

[30] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. Ver-
ifying Reference Counting Implementations. In International Confer-
ence on Tools and Algorithms for the Construction and Analysis of
Systems, 2009.

[31] Jeff Huang. UFO: Predictive Concurrency Use-After-Free Detection.
In Proceedings of the 2018 ACM/IEEE 40th International Conference
on Software Engineering, 2018.

[32] Mao Junjie, Chen Yu, Xiao Qixue, and Shi Yuanchun. Rid: Finding
reference count bugs with inconsistent path pair checking. In Proceed-
ings of the 21st International Conference on Architecture Support for
Programming Lagnuages and Operating Systems, 2016.

[33] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Tae-
soo Kim, Long Lu, and Wenke Lee. Preventing Use-after-free With
Dangling Pointers Nullification. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium, 2015.

[34] Daiping Liu, Mingwei Zhang, and Haining Wang. A Robust And Effi-
cient Defense Against Use-after-Free Exploits via Concurrent Pointer
Sweeping. In Proceedings of the 25th ACM Conference on Computer
and Communications Security, 2018.

[35] Jian Liu, Lin Yi, Weiteng Chen, Chenyu Song, Zhiyun Qian, and Qi-
uping Yi. LinKRID: Vetting Imbalance Reference Counting in Linux
kernel with Symbolic Execution. In Proceedings of the 31th USENIX
Security Symposium, 2022.

[36] Charlie Miller, Juan Caballero, Noah M. Johnson, Min Gyung Kang,
Stephen McCamant, Pongsin Poosankam, and Dawn Song. Crash
analysis with bitblaze. In Blackhat, 2010.

2510 31st USENIX Security Symposium USENIX Association

http://lcamtuf.coredump.cx/afl/
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_breakpad.md
https://bugzilla.mozilla.org
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/list
https://cve.mitre.org/
https://chromium.googlesource.com/crashpad/crashpad/+/refs/heads/main/README.md
https://chromium.googlesource.com/crashpad/crashpad/+/refs/heads/main/README.md
https://cwe.mitre.org/data/definitions/911.html
https://cwe.mitre.org/data/definitions/911.html
http://www.dynamorio.org/
http://www.dynamorio.org/
https://www.nirsoft.net/kernel_struct/vista/ETHREAD.html
https://www.nirsoft.net/kernel_struct/vista/ETHREAD.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0711f0d7050b9e07c44bc159bbc64ac0a1022c7f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0711f0d7050b9e07c44bc159bbc64ac0a1022c7f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0711f0d7050b9e07c44bc159bbc64ac0a1022c7f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/
https://docs.microsoft.com/en-us/windows/win32/debug/minidump-files
https://docs.microsoft.com/en-us/windows/win32/debug/minidump-files
https://devblogs.microsoft.com/cppblog/whats-inside-a-pdb-file/
https://devblogs.microsoft.com/cppblog/whats-inside-a-pdb-file/
https://bugs.php.net
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://bugs.python.org/
https://docs.microsoft.com/zh-cn/windows/desktop/com/rules-for-managing-reference-counts
https://docs.microsoft.com/zh-cn/windows/desktop/com/rules-for-managing-reference-counts
https://docs.microsoft.com/zh-cn/windows/desktop/com/rules-for-managing-reference-counts
https://en.wikipedia.org/wiki/Smart_pointer
https://en.wikipedia.org/wiki/Smart_pointer
https://www.zerodayinitiative.com/

[37] Matt Miller. Trends, Challenges, And Strategic Shifts
In The Software Vulnerability Mitigation Landscape.
https://msrnd-cdn-stor.azureedge.net/bluehat/
bluehatil/2019/assets/doc/Trends%2C%20Challenges%
2C%20and%20Strategic%20Shifts%20in%20the%20Software%
20Vulnerability%20Mitigation%20Landscape.pdf, 2019.
BlueHat IL.

[38] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dog: Hardware For Safe And Secure Manual Memory Management
And Full Memory Safety. In Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture, 2012.

[39] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dogLite: Hardware-Accelerated Compiler-Based Pointer Checking. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2014.

[40] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler Enforced Temporal Safety For C. In
Proceedings of the 2010 International Symposium on Memory Man-
agement, 2010.

[41] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
Proceedings of the 2012 USENIX Annual Technical Conference, 2012.

[42] Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. Down
For The Count? Getting Reference Counting Back In The Ring. In
ACM SIGPLAN Notices, volume 47, pages 73–84. ACM, 2012.

[43] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S
McKinley. Taking off the gloves with reference counting immix. In
ACM SIGPLAN Notices, volume 48, pages 93–110. ACM, 2013.

[44] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunhe-
ung Paek. CRCount: Pointer Invalidation With Reference Counting To
Mitigate Use-after-free in Legacy C/C++. In Proceedings of the 2019
Annual Network and Distributed System Security Symposium, 2019.

[45] Li Siliang and Tan Gang. Finding reference-counting errors in python/c
programs with affine analysis. In Proceedings of European Conference
on Object-Oriented Programming, 2014.

[46] Matthew S. Simpson and Rajeev K. Barua. MemSafe: Ensuring The
Spatial And Temporal Memory Safety Of C At Runtime. Softw. Pract.
Exper., 43(1), 2013.

[47] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. BitBlaze: A New Approach To Com-
puter Security Via Binary Analysis. In Proceedings of the 4th Interna-
tional Conference on Information Systems Security, 2008.

[48] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and Min Yang. Detecting
kernel refcount bugs with two-dimensional consistency checking. In
Proceedings of the 30th USENIX Security Symposium., 2021.

[49] Blazytko Tim, Schlogel Moritz, Aschermann Cornelius, Abbasi Ali,
Frank Joel, Worner Simon, and Holz Thorsten. Aurora: Statistical crash
analysis for automated root cause explanation. In Proceedings of the
29th USENIX Security Symposium, 2020.

[50] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan:
Scalable Use-after-free Detection. In Proceedings of the 12th European
Conference on Computer Systems, 2017.

[51] Ryan Whelan, Tim Leek, and David Kaeli. Architecture-Independent
Dynamic Information Flow Tracking. In 22nd International Conference
on Compiler Construction, 2013.

[52] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, JungWon Lim,
Sanidhya Kashyap, and Taesoo Kim. Preventing Use-After-Free At-
tacks with Fast Forward Allocation. In Proceedings of the 30th USENIX
Security Symposium, 2021.

[53] Jun Xu, , Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng
Liu. CREDAL: Towards Locating A Memory Corruption Vulnerability
With Your Core Dump. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[54] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing
Mao. Pomp: Postmortem program analysis with hardware-enhanced
post-crash artifacts. In Proceedings of the 26th USENIX Security
Symposium, 2017.

[55] Yves Younan. FreeSentry: Protecting Against Use-After-Free Vulnera-
bilities Due to Dangling Pointers. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium, 2015.

[56] Park Young Gil and Goldberg Benjamin. Reference escaple analysis:
Optimizing reference counting based on the lifetime of references. In
ACM/IFIP Conference on Partial Evaluation and Program Manipula-
tion. ACM, 1991.

[57] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In Proceedings of the 27th USENIX Security Symposium,
2018.

A Appendix

A.1 More Details And Performance
We present more details and performance in Table 5. The left
half of the table presents the details of Reference Type, Ref-
counting Matching, Dangling Pointers, and Bug Type. As the
diagnosis result, we have marked the problematic references
with red color. From the Performance result, we can see that,
on average, FREEWILL can even make a correct root analysis
in no more than 15 minutes.

USENIX Association 31st USENIX Security Symposium 2511

https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf

Table 5: Details of Diagnoses and Performance. DP=Dangling Pointer, RCM=Refcounting Matching, MO=Mistaken Omission,
ID=Inconsistent Decrease, DU=Dangling Usage, CR=Crash Reproduction, UI=UAF Identification. N means the UAF bug is
caused by one of these references.

Prog. BugId Ref. Type RCM DP Bug Performance
Stack Heap (+, -) (+,) (, -) (,) CR UI Diag. Total

IE

CVE-2010-0248 29 2 1 0 0 30 1 MO 1m41s 51s 18s 2m50s
CVE-2010-0249 503 158 44 12 12 593 7 MO 2m43s 1m1s 13m57s 17m41s
CVE-2010-3971 9 1 – – – – 3 DU 58s 1m46s 0.6s 2m45s
CVE-2011-1260 106 57 0 1 1 161 10 MO 4m17s 1m37s 1m5s 6m59s
CVE-2012-1785 200 10 12 0 0 198 8 MO 3m30s 4m20s 5m28s 13m18s
CVE-2012-4787 9 4 8 0 0 5 1 MO 1m27s 1m13s 1m27s 4m7s
CVE-2012-4792 15 7 6 1 1 14 5 MO 2m46s 1m21s 3m39s 7m46s
CVE-2012-4969 27 5 3 0 0 29 8 MO 2m46s 30s 4m16s 7m32s
CVE-2013-0025 131 134 1 2 2 260 2 MO 2m28s 1m8s 3m31s 7m7s
CVE-2013-1306 67 7 7 0 0 67 6 DU 8m12s 10m25s 10m21s 28m58s
CVE-2013-1347 12 6 7 0 0 11 5 DU 1m59s 1m23s 1m56s 5m18s
CVE-2013-3163 302 20 19 0 0 303 7 MO 3m11s 8m10s 3m16s 14m37s
CVE-2013-3893 630 133 23 0 0 740 12 MO 2m13s 2m28s 6m7s 10m48s
CVE-2013-3897 73 4 1 0 0 76 8 MO 3m10s 1m30s 1m12s 5m54s
CVE-2014-0282 484 24 28 1 1 478 8 MO 1m57s 48s 6m10s 8m55s
CVE-2014-1776 409 54 19 7 7 430 9 MO 3m50s 5m23s 17m57s 27m10s
CVE-2014-1815 908 54 62 3 3 594 10 MO 2m42s 1m37s 15m52s 20m11s
CVE-2015-2425 – – – – – – – – 3m57s – – –
CVE-2017-11810 – – – – – – – – 2m12s – – –
CVE-2018-8174 29 7 6 3 3 25 3 DU 1m47s 2m32s 6m32s 10m51s

Linux

Commit-81b9de4 10 0 1 0 1 9 2 ID 8s 0.4s (A) 0.6s 9s
Commit-c3aabf0 8 1 0 1 1 0 7 ID 8s 0.1s (A) 0.5s 9s
Commit-0cef13d 15 0 1 0 1 14 2 ID 8s 0.1s (A) 0.6s 9s
Commit-8cc0dcf 59 1 1 1 1 57 13 ID 1m13s 13s 2s 1m28s
Commit-ba34c3d 53 2 2 0 0 51 10 MO 2m49s 11s 3s 3m3s
Commit-dbfa04e – – – – – – – NPD 2m16s – – –
Commit-beb691e 46 2 1 1 1 46 11 ID 2m47s 8s 2s 2m57s
Commit-357a07c 6 1 0 1 1 5 3 MO 2m19s 8s 3s 2m30s
Commit-8d43259 55 3 3 0 0 55 9 DU 2m38s 7s 3s 2m48s
Commit-ae4393d 6 1 – – – – 5 DU 2m9s 8s 3s 2m20s
Commit-c81d3d2 27 1 0 1 1 26 8 MO 2m7s 3s 3s 2m13s
Commit-a4f0377 52 3 0 1 1 53 16 MO 2m15s 7s 2s 2m24s
Commit-8fd0e99 23 2 0 1 1 23 5 ID 2m18s 7s 2s 2m27s
Commit-af35fc3 51 1 0 1 1 50 20 MO 3m1s 8s 2s 3m10s
Commit-ff11764 20 2 0 1 1 20 13 MO 2m38 8s 3s 2m49s

MacOS

CVE-2016-1828 36 2 2 0 0 36 14 MO 26s 0.3s 0.9s 28s
CVE-2016-4656 39 1 1 0 0 39 13 MO 25s 0.3s 0.9s 27s
CVE-2017-2545 21 1 0 1 1 20 7 ID 4m15s 8s 3s 4m26s
CVE-2018-4083 26 1 1 0 1 26 10 ID 4m19s 11s 9s 4m39s
CVE-2019-6225 66 1 1 2 2 62 5 ID 2m8s 12s 3s 2m23s
CVE-2020-9892 17 1 – – – – 6 DU 2m7s 11s 2s 2m20s

Python

Issue-24091 40 6 5 1 1 39 11 MO 18m38s 13s 3s 18m54s
Issue-24092 – – – – – – – NPD 18m37s – – –
Issue-24093 60 21 8 2 2 69 13 ID 18m38s 13s 2s 18m51s
Issue-24094 47 14 7 1 1 52 11 MO 13m23s 13s 3s 13m39s
Issue-24099 50 17 5 1 1 61 13 ID 12m38s 13s 3s 12m54s
Issue-24100 – – – – – – – NPD 13m15s – – –
Issue-38588-01 15 6 1 2 2 16 12 MO 3m52s 0.8s 0.5s 3m53s
Issue-38588-02 11 3 1 1 1 11 8 MO 3m12s 0.7s 0.7s 3m14s
Issue-38588-03 11 4 1 1 1 12 9 MO 3m10s 0.9s 0.4s 3m12s
Issue-38610-01 12 5 1 1 1 14 9 MO 3m12s 0.9s 0.7s 3m14s
Issue-38610-02 12 6 2 1 1 14 9 MO 3m12s 0.8s 0.6s 3m13s
Issue-38610-03 12 6 2 1 1 14 9 MO 3m12s 0.9s 0.7s 3m14s
Issue-39421 13 6 2 1 1 16 10 MO 3m16s 0.8s 0.7s 3m18s
Issue-39453 12 6 1 1 1 15 9 MO 3m14s 0.7s 0.5s 3m15s
Issue-39510 – – – – – – – NPD 18m38s – – –

PHP

BUG-68594 3 2 0 1 1 3 2 MO 21m38s 1s (A) 3s 21m42s
BUG-68710 3 2 0 1 1 3 2 MO 21m35s 1s (A) 2s 21m38s
BUG-73392 12 1 1 1 1 10 3 MO 2m14s 3s 2s 2m19
OSS-17903 – – – – – – – – – – – –
OSS-24436 18 2 0 1 1 18 7 MO 2m42s 5s 2s 2m49s
BUG-79922 20 6 3 1 1 22 6 ID 2m48s 4s 2s 2m54s
BUG-66783 21 8 – – – – 5 DU 2m11s 3s 3s 2m17s
BUG-80927 4 2 – – – – 2 DU 2m38s 5s 3s 2m46s

Firefox

CVE-2011-0065 4 2 – – – – 5 DU 6m25s 2m11s 43s 9m19s
CVE-2013-0753 76 4 – – – – 6 DU 2m32s 23s 11s 3m6s
CVE-2016-9899 – – – – – – – – – – – –
CVE-2017-5404 – – – – – – – NPD 105m20s – – –
CVE-2018-18492 16 8 – – – – 24 DU 22m39s 1m10s 21s 24m10s

Chrome

Issue-1033759 392 31 – – – – 8 DU 4m15s 1m39s 21s 6m15s
Issue-1041406 11 5 – – – – 2 DU 13m11s 5m12s 32s 18m55s
Issue-1062091 413 104 – – – – 79 DU 118m10s 19m23s 18s 137m51s
Issue-1111737 – – – – – – – – – – – –
Issue-1137630 0 2 – – – – 1 DU 5m32s 1m54s 23s 7m49s
Issue-1142675 14 2 – – – – 2 DU 21m54s 3m19s 19s 25m32s
Issue-1155426 432 53 – – – – 43 DU 128m13s 23m15s 12s 151m39s

Total: 36 MO, 12 ID, 18 DU, 5 NPD Average: 11m58s

2512 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	Motivating Example
	Limitation of Existing Diagnoses
	Our Goal and Assumptions
	Challenges

	Reference Miscounting Detection
	FreeWill Design
	UAF Object Lifetime Identification
	Reference Analysis
	Potential Reference Tracking
	Strong Reference Identification

	Refcounting Detection
	UAF Diagnosis
	Refcounting Matching
	Reference Miscounting Detection

	Implementation
	Instrumentation
	Gray-Taint Analysis

	Evaluation
	Experiment Setup
	UAF Object Lifetime Identification
	Reference & Refcounting Identification
	Diagnoses and Patch Suggestions
	Lessons From Bugs
	Mistaken Omission and Inconsistent Decrease
	Dangling Usage and Null-Pointer Dereference
	Wrong or Incomplete Patches

	Limitation and Future Work
	Related Work
	General Root Cause Analysis
	UAF Prevention and Diagnosis
	Refcounting Bug Detection

	Conclusion
	Appendix
	More Details And Performance

