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Abstract
Secure two-party protocols that compute intersection-related
statistics have attracted much attention from the industry.
These protocols enable two organizations to jointly compute
a function (e.g., count and sum) over the intersection of their
sets without explicitly revealing this intersection. However,
most of such protocols will reveal the intersection size of the
two sets in the end. In this work, we are interested in how well
an attacker can leverage the revealed intersection sizes to infer
some elements’ membership of one organization’s set. Even
disclosing an element’s membership of one organization’s set
to the other organization may violate privacy regulations (e.g.,
GDPR) since such an element is usually used to identify a
person between two organizations. We are the first to study
this set membership leakage in intersection-size-revealing
protocols. We propose two attacks, namely, baseline attack
and feature-aware attack, to evaluate this leakage in realistic
scenarios. In particular, our feature-aware attack exploits the
realistic set bias that elements with specific features are more
likely to be the members of one organization’s set. The results
show that our two attacks can infer 2.0∼ 72.7 set members on
average in three realistic scenarios. If the set bias is not weak,
the feature-aware attack will outperform the baseline one. For
example, in COVID-19 contact tracing, the feature-aware at-
tack can find 25.9 tokens of infected patients in 135 protocol
invocations, 1.5× more than the baseline attack. We discuss
how such results may cause negative real-world impacts and
propose possible defenses against our attacks.

1 Introduction

Secure two-party computation related to the intersection of
two organizations’ sets has attracted much attention from the
industry. A well-known protocol is Private Set Intersection
Cardinality (PSI-CA) [25, 31, 43, 44, 45, 53], which returns
the intersection size to one organization without disclosing
other information to either organization. This protocol is an
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essential building block of many applications, such as contact
tracing [36, 66, 70], social network [56, 63, 65], and associa-
tion rule mining [72]. Another prevalent protocol is Private
Intersection-Sum with Cardinality (PSI-SUM) [52, 61], which
aggregates the values held by one organization and associated
with the indices in the intersection. PSI-SUM was first pro-
posed in Google’s work [52] to measure the revenue owing
to ad conversion. Recently, Facebook proposed Private-ID
[28], a protocol for its privacy-preserving measurement of
conversion lift [13] in online advertising.

Although these secure computation protocols will never
reveal the intersection of two organizations’ sets to either
organization, they reveal the intersection size of the two sets.
As long as such an intersection-size-revealing protocol is re-
peatedly invoked between the two organizations, a toy attack
can use the revealed intersection sizes to test whether some
elements are in the intersection. In this attack, one organiza-
tion (acting as the attacker) can input a singleton set in each
protocol invocation with the other organization (acting as the
victim) and observe the resulting intersection size. If this size
equals one, then the involved element is in the intersection;
otherwise, it is not. We stress that the attacker can use its target
elements in protocol invocations, and these elements’ member-
ship of the intersection essentially reveals their membership
of the victim’s set. In other words, the toy attack allows the
attacker to infer the target elements’ membership of the vic-
tim’s set. If the victim’s set is static, N protocol invocations
can leak N elements’ set membership.

Our work. We move beyond this toy attack and initiate the
first study on the set membership leakage resulting from
revealed intersection sizes. This leakage is a general issue
for all protocols that compute intersection-related statistics
without disclosing any information about the intersection
except its size. Many real-world systems use such protocols
to hide as much information about the victim’s set as possible
from the attacker. In these systems, disclosing any element in
the victim’s set is not allowed. However, this work shows that
it can be risky for the systems with such a security requirement
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to use intersection-size-revealing protocols.
This work begins with designing two set membership infer-

ence attacks to test whether target elements are in the victim’s
set. First, we show that, even if the attacker learns nothing
but intersection sizes, there is a baseline attack that leads
to a more severe set membership leakage than the toy attack.
Second, we consider a realistic situation where the victim’s
set is biased concerning specific features. Roughly speaking,
this set bias means that the elements with the features are
more likely to be included in the victim’s set. An example
set bias appears in the health authority’s set of COVID-19
patients. This set is supposed to be biased concerning the
fever feature of persons since fever is a common symptom
of COVID-19. We propose a feature-aware attack against
such a biased set. The intuition is that if the attacker knows
the bias-correlated features of target elements, it can use them
to improve its inference efficiency.

This work subsequently evaluates the set membership leak-
age caused by our two attacks and the toy attack in three
scenarios: (i) COVID-19 contact tracing from PSI-CA, (ii)
the measurement of ad conversion revenue from PSI-SUM,
and (iii) the measurement of ad conversion lift from Private-
ID. Our measurement shows that the set bias in scenario (i) is
non-negligible while those in the other two scenarios are weak.
Each scenario allows many invocations of its intersection-size-
revealing protocol, where the victim’s set is dynamic.

In scenario (i), our baseline (resp., feature-aware) attack
can identify 3.7 ∼ 7.2× (resp., 5.2 ∼ 9.0×) more set mem-
bers than the toy attack. In particular, our attacks require
far fewer protocol invocations to find as many set members
as those found in the toy attack. On average, our baseline
(resp., feature-aware) attack can find 12.0/18.1/17.6 (resp.,
13.4/22.4/25.9) set members in roughly 70/135/135 proto-
col invocations when there are initially 14/28/56 set mem-
bers in 512/1024/2048 target elements. In scenarios (ii)
and (iii), the toy attack may fail to find any set member,
but our attacks still work. For example, in scenario (ii), our
baseline (resp., feature-aware) attack can find 2.0/4.0/7.5
(resp., 2.0/4.2/7.5) set members in roughly 15/33/60 proto-
col invocations when there are initially 2/4/7 set members
in 512/1024/2048 target elements. Since the victim’s set
changes with time, our attacks can find some set members
different from the initial ones in this scenario. The above
results show that our attacks can help the attacker guess the
elements in the victim’s set in the three scenarios.

This work finally discusses the real-world implications of
our results and some possible defenses against our attacks.
Notably, the attacker can link its chosen elements to real-
world persons in the considered scenarios. Therefore, the set
membership leakage of these elements reveals whether the
linked persons have interacted with the victim, thereby their
associated elements being recorded in the victim’s set. Such
personal information should be only known to the organiza-
tion in the interaction, and it violates privacy regulations (e.g.,

GDPR and HIPPA) that this information is leaked to another
unauthorized organization. We also discuss the negative con-
sequences resulting from the leakage of this interaction in
the three scenarios. For example, the results indicate that it is
possible to combine our attacks with the linkage attack [14] to
infer the COVID-19 patients recorded by the health authority.
This inference may affect the daily life of these patients.

2 Background

2.1 Intersection-size-revealing Protocols

There are many secure two-party protocols that compute func-
tions of the intersection of two parties’ sets without revealing
any information about the intersection except its size.

PSI-CA [25, 31, 43, 44, 45, 53]. This protocol is a black box
that receives a set X from one party and a set Y from the other
party. It internally computes the intersection size |X ∩Y | and
sends this value to one of the two parties.

PSI-SUM [52, 61]. This protocol is a black box that receives
a set X from one party and a table {(yi,vi)}yi∈Y of index-value
pairs from the other party. It internally aggregates the values
associated with the indices in the intersection X ∩Y and gets
the sum ∑yi∈X∩Y vi. Then, the protocol sends this sum and the
intersection size |X ∩Y | to the party that inputs the table.

Private-ID [28]. This protocol is a black box that receives
a set X from one party and a set Y from the other party. It
internally assigns random tags to all elements in the union X∪
Y so that both parties will get the same tag for each element in
the intersection X ∩Y . Then, the protocol sends these tags and
the intersection size |X ∩Y | to both parties. The tags can be
used in the subsequent secure computation of many statistics
of the intersection X ∩Y .

Circuit-based PSI [55]. This protocol is a black box that
receives a table {(xi,ui)}xi∈X from one party and a table
{(yi,vi)}yi∈Y from the other party. Circuit-based PSI can com-
pute any function of the two parties’ values indexed by the
elements in the intersection X ∩Y . One can think that circuit-
based PSI is the ultimate solution for the computation of
intersection-related statistics. [55] implements a protocol of
circuit-based PSI and reveals the intersection size |X ∩Y | to
both parties to improve protocol efficiency.

Set membership inference problem. For the party that re-
ceives intersection size from intersection-size-revealing proto-
cols, this size measures the similarity between its and the
other party’s sets. Since the party can choose its set sent to
the protocols, it can measure the other party’s set in the way it
wants. An interesting problem is whether the party, with many
target elements, can determine these elements’ membership
of the other party’s set by leveraging this measurement ability.

1488    31st USENIX Security Symposium USENIX Association



2.2 Threat Model
Attacker’s abilities. The attacker has the following abilities.

• The attacker is a party of intersection-size-revealing pro-
tocols. In each protocol invocation, it is allowed to choose
its input and learn the intersection size resulting from this
input and the other party’s set. Here, the other party is the
victim, and its set can be dynamic.

• The attacker is allowed to invoke the protocols with the
same victim repeatedly.

Attacker’s background knowledge. We consider the follow-
ing attackers with two kinds of background knowledge.

• Baseline attacker. This attacker has no background knowl-
edge about the victim’s set. We use the performance of
this attacker to measure the least set membership leakage
resulting from intersection-size-revealing protocols.

• Feature-aware attacker. This attacker knows that some fea-
tures are correlated with the bias in the victim’s set. In
other words, the attacker knows that the victim’s set tends
to include elements with specific features. This is the back-
ground knowledge about the set bias in the victim’s set.

Attacker’s goal. The attacker has many target elements and
is interested in these elements’ membership of the victim’s
set. If this set changes with time, the attacker will consider the
target elements’ historical set membership, which indicates
whether the target elements appeared in any snapshot of the
victim’s set from the beginning to the end of the attack.

3 Set Membership Inference Attacks

3.1 Baseline Attack
The baseline attacker adopts a binary-search-like strategy. It
first constructs such a binary tree that (i) each node stores a
non-empty set, (ii) the root stores the set of target elements,
and (iii) the set stored in a non-leaf node will be partitioned
into two non-empty and disjoint subsets, which will be respec-
tively stored in the two child nodes of the non-leaf node.

For node v of the binary tree T , let Tv ⊆ X denote the set
stored in node v and leftChild(v) (resp., rightChild(v)) denote
the left (resp., right) child node of v. Our baseline attack
follows the blueprint in Algorithm 1 and uses Algorithm 2 as
a subroutine to build a binary tree.

To infer the target elements’ set membership, the attacker
runs depth-first search (DFS) for the queued subtrees (the
queue initially contains the constructed binary tree). In each
DFS, the attacker (i) traverses a subtree popped from the
queue, (ii) invokes the protocol with the victim to receive the
intersection size regarding the set stored in each visited node,
and (iii) terminates at a node where the size of the stored set
equals the received intersection size. The unvisited subtrees

Algorithm 1: Blueprint of set membership inference
Input: A set X of target elements, background knowledge

BK, an algorithm buildTree.
Output: A set membership predicate σ such that, for each

xi ∈ X , σ(xi) = 1 if xi is in the victim’s set;
otherwise σ(xi) = 0.

1 Initialize Z←∅.
2 Input X to the protocol and get an intersection size m.
3 T ← buildTree(X ,BK). // Build a binary tree based on the

attacker’s background knowledge
4 forest←{(m/|X |,(m,T.root))}. // A priority queue of

(priority, subtree-info) tuples
5 while forest is not empty do
6 (mnode,node)← forest.pop().
7 while 0 < mnode < |Tnode| do
8 L← leftChild(node), R← rightChild(node).
9 if TR contains more elements than TL then

10 Input TL to the protocol and get an intersection
size mL.

11 mR← mnode−mL.
12 else
13 Input TR to the protocol and get an intersection

size mR.
14 mL← mnode−mR.

15 if mR/|TR|> mL/|TL| then
16 forest.push((mL/|TL|,(mL,L))).
17 node← R, mnode← mR. // Goto right child
18 else
19 forest.push((mR/|TR|,(mR,R))).
20 node← L, mnode← mL. // Goto left child

21 if mnode > 0 then Z← Z∪Tnode.

22 Let σ be such a predicate that σ(xi) = 1 iff xi ∈ X ∩Z.
23 return σ.

Algorithm 2: buildTree for the baseline attacker
Input: A set X . Ignore the parameter BK.
Output: A binary tree T .

1 Initialize T to contain a single node root that stores X .
2 Build a balanced binary tree T by recursively dividing a

stored set into two non-empty and disjoint subsets.
3 return T .

during this search are pushed into the queue for future DFS
(lines 16 and 19). In the end, the attacker empties the queue
and finds all subsets containing the target elements that the
victim also holds. Meanwhile, the attacker can see that the
other target elements are non-members.

The remaining question is how the baseline attacker par-
titions the set stored in a non-leaf node. Recall that, for the
baseline attacker, each target element has the same probability
of being a set member. It would be better for this attacker to
randomly and evenly partition the set and build a balanced
binary tree in the end. This practice ensures the minimum ex-
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pected length of a DFS path, or rather, the minimum expected
number of protocol invocations.

Efficiency analysis. Our baseline attack is more efficient than
the toy attack due to the binary-search-like strategy. Suppose
that the victim’s set Y is static and the attacker has constructed
a binary tree T . Our first observation is that the following
equality holds for any non-leaf node v of the tree T :

|Tv∩Y |= |TleftChild(v)∩Y |+ |TrightChild(v)∩Y |. (1)

With this equality, the attacker can locally determine the inter-
section size of one child node (e.g., |TrightChild(v)∩Y |) if it has
learned that of the parent node (e.g., |Tv∩Y |) and that of the
other child node (e.g., |TleftChild(v)∩Y |). Thus, the attacker can
save the vain invocations for the intersection sizes that can be
determined locally. In our implementation, the attacker uses
this property to maintain the queue of subtrees where, except
for the initial case, the intersection size of each pushed sub-
tree’s root has been locally determined (lines 16 and 19). Thus,
the attacker can save at least half of the protocol invocations
for every non-root layer of the binary tree.

Recall that in a balanced binary tree with N := |X | leaf
nodes, there are 2N−2⌈log2 N⌉ leaf nodes with depth ⌈log2 N⌉.
There is an upper bound of the total number of invocations to
determine all intersection sizes on the binary tree:

1+
1
2
·
⌈log2 N⌉−1

∑
d=1

2d +
1
2

(
2N−2⌈log2 N⌉

)
= N, (2)

which equals the total number of invocations required by the
toy attack. This bound guarantees that the efficiency of our
baseline attack is no worse than that of the toy attack.

Our second observation is that this upper bound is loose,
given that each DFS may early terminate at a non-leaf node
with a depth less than ⌈log2 N⌉. This early termination comes
from the fact that some singleton sets each of a target element
are merged into a larger subset of the victim’s set. When a
DFS encounters this subset, the attacker will learn the set
membership of a batch of target elements and terminate this
DFS. In this case, the number of invocations is reduced due to
the shortened length of the DFS path. Moreover, the number of
the remaining target elements is also reduced and fewer DFS
passes are required for further inference. Thus, our baseline
attack should be more efficient than the toy attack.

Efficiency optimization: greedy DFS. Since the merge of set
members improves attack efficiency, the attacker should first
search the subtree with the greatest merge probability. This
probability is positively related to the ratio of the intersection
size of the subtree’s root to the number of target elements
in this subtree. This ratio is known to the attacker, and the
attacker can use this ratio as the priority score to sort the
subtrees pushed into the (priority) queue. In this way, the
attacker will first run DFS on the popped subtree with the
greatest merge probability (line 6). In each DFS, the attacker

IS = 4, priority = 0.5

pushed into the priority queue

priority = 0.25

priority = 0.5

merge

IS = 3,
priority = 0.75IS = 2,

priority = 1
early termination

Figure 1: An example of early termination. The DFS path
with intersection size (IS) and priority is highlighted in red,
and each shadowed leaf node corresponds to a set member.

Algorithm 3: buildTree for the feature-aware attacker
Input: A set X , background knowledge BK.
Output: A binary tree T .

1 Parse BK as a table DX such that DX [xi] denotes the features
associated with a target element xi ∈ X .

2 Initialize T to contain a single node root.
3 Troot← X , queue←{root}.
4 while queue is not empty do
5 node← queue.pop().
6 Use features {xi ∈ Tnode : DX [xi]} to run k-means to

divide Tnode into two subsets SL and SR.
7 Append two child nodes L and R to node.
8 TL← SL, TR← SR.
9 if |SL|> 1 then queue.push(L).

10 if |SR|> 1 then queue.push(R).

11 return T .

recursively visits the child node whose subtree has the greatest
priority score (line 15). An example is presented in Figure 1.

3.2 Feature-aware Attack
Our feature-aware attack also follows the blueprint in Algo-
rithm 1 but turns to Algorithm 3 to build a different binary
tree. The only difference between the feature-aware attack
and the baseline attack is how the subsets of target elements
are distributed over the constructed binary tree.

Recall that the ideal event in a set membership inference
attack is that the attacker inputs a set of target elements to an
intersection-size-revealing protocol and finds that they all are
members of the victim’s set. This event significantly improves
the attack efficiency in that (i) the length of the DFS path is
reduced, and (ii) the number of the remaining target elements
whose set membership is to be inferred is also reduced.

The intuition behind our feature-aware attack is that the
attacker can trigger this ideal event more often than the base-
line attacker. Recall that the set bias inclines the victim’s set
to include the elements associated with specific features. The
feature-aware attacker can use its knowledge about this set
bias and the related features to adjust the subset distribution
over the constructed tree. More concretely, the attacker uses
the known features to partition a set of target elements into
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two disjoint subsets such that (i) the elements in the same sub-
set have similar features, and (ii) any two elements belonging
to two different subsets are different in the features. Using
this partitioning strategy, the attacker is more likely to find
set members in batches.

In our implementation, we simply use k-means [57, 58] to
hierarchically partition a set stored in a parent node into two
subsets respectively stored in the two child nodes. The hierar-
chical invocations of k-means naturally assign the elements
with different features to the leaf nodes far away on the binary
tree. Meanwhile, the target elements with similar features are
clustered in the leaf nodes close to each other. The resulting
binary tree is expected to enable more early terminations than
its counterpart in the baseline attack.

There is, however, a limitation of our feature-aware attack:
the constructed binary tree may not be balanced. This limita-
tion is because k-means does not necessarily partition a set
into two subsets of the same size.

3.3 Applying the Attacks to A Dynamic Set
Following the blueprint (Algorithm 1), our two attacks require
several protocol invocations to infer the target elements’ set
membership. Due to Equation 1, the inference result must
be correct if the victim’s set is static in these invocations.
However, this set can be dynamic in realistic scenarios. We
need to consider how such a change will affect the correctness
of our attacks.

An important observation is that this effect occurs only if
the changed elements in the victim’s set happen to be those
targeted by the attacker. Otherwise, the set change does not
affect Equation 1, and the two attacks’ correctness still holds.
Hence, we consider two primary cases regarding the changing
intersection of the two parties’ sets:

• Increasing intersection. The victim’s set grows during the
attack, and the added elements have been targeted.

• Decreasing intersection. The victim’s set shrinks during
the attack, and the removed elements have been targeted.

Let t(v)≥ 0 denote the number of invocations before the
attacker determines the intersection size of the set stored in the
node v and Y t denote the snapshot of the victim’s set Y after
t ≥ 0 invocations. For the increasing case and any non-leaf
node v with two child nodes L and R, we can see that

|TL∩Y t(v)| ≤ |TL∩Y t(L)|, |TR∩Y t(v)| ≤ |TR∩Y t(R)|,

|Tv∩Y t(v)|= |TL∩Y t(v)|+ |TR∩Y t(v)|

≤ |TL∩Y t(L)|+ |TR∩Y t(R)|, (3)

where the equality holds if Y t(v) = Y t(L) = Y t(R).
Inequality 3 shows that, for an increasing intersection, Al-

gorithm 1 may underestimate one child node’s current inter-
section size due to the simple subtraction in lines 11 and 14.

Given that the attacker’s goal is historical set membership
(Section 2.2), this underestimation will lead to false negatives
and no false positive. False negatives come from the fact that
if Algorithm 1 visits the subtree containing an element newly
added to the victim’s set, another set member in the other
subtree will be falsely recognized as a non-member. However,
since all intersection sizes are underestimated, there is no
capacity for a node whose intersection size meets the termina-
tion condition (i.e., mnode = |Tnode|) to contain a non-member
element. Thus, there is no false positive in this case.

For a decreasing intersection, we can follow a similar anal-
ysis to the previous case and find that

|Tv∩Y t(v)| ≥ |TL∩Y t(L)|+ |TR∩Y t(R)|, (4)

where the equality holds if Y t(v) = Y t(L) = Y t(R). Inequality
4 shows that the attacker may overestimate one child node’s
current intersection size. The overestimation here will cause
false positives and no false negative. False positives are due
to the false early termination on a node whose intersection
size is overestimated and does not actually equal its capacity.
The overestimation also promises that no set member will be
missed, and thus there is no false negative.

A mixed case. In this case, the victim’s set may change in
the way that, after each invocation, some target elements are
added to the set while some others already in the set are
removed. This mixed case can be regarded as a composition
of the two primary cases. It is expected that the attacker will
obtain both false positives and false negatives in this case.

4 Evaluation Setup

Here, we aim to evaluate the realistic set membership leakage
caused by our attacks. Section 4.1 describes three realistic sce-
narios that claim to use intersection-size-revealing protocols.
Section 4.2 presents the sources of the real-world datasets
related to these scenarios. Section 4.3 shows the characteris-
tics of the victim’s dynamic sets in these datasets. Section 4.4
describes the attacker’s inputs to be used to evaluate our two
attacks. Section 4.5 introduces our evaluation metrics.

4.1 Realistic Scenarios
Table 1 presents some intersection-size-revealing protocols,
followed by their application scenarios and high-level systems.
Due to the application of such protocols, these real systems
allow the revelation of intersection size. How the protocols
are used in the scenarios is recalled below.

COVID-19 contact tracing from PSI-CA. How PSI-CA is
used in COVID-19 contact tracing varies with system design.
Token-based contact tracing systems (e.g., Epione [69, 70]
and Catalic [35, 36]) allow two persons to automatically ex-
change via Bluetooth their real-time tokens when they are
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Table 1: Intersection-size-revealing protocols and their applications to realistic scenarios.

Protocol Scenario High-level System Developer

PSI-CA and its variant COVID-19 contact tracing
Epione [69, 70] Researchers
Catalic [35, 36] Researchers
COVID-19 Alert [66, 67] Openmined

PSI-SUM Measurement of ad conversion revenue Private Join and Compute [46, 47, 52] Google
Private-ID Measurement of ad conversion lift Private Lift [40, 41, 42, 62] Facebook

in close proximity. Each person maintains a set of tokens
received from others. To identify any exposure to COVID-19
but preserve the privacy of infected patients, a person can
use the token set to invoke a PSI-CA with the health author-
ity, who has a set of infected patients’ tokens. The person
receives the intersection size of the two sets and learns that it
has contacted so many infected patients.

In location-based contact tracing systems (e.g., COVID-
Alert [66, 67]), the health authority maintains a set of the
locations that COVID-19 patients have visited. A person can
test its exposure by using the set of its visited locations to
run PSI-CA1 with the health authority. The intersection size
given to the person shows the number of locations where it
may have contacted any infected patients.

Measurement of ad conversion revenue from PSI-SUM.
In this scenario, an advertiser (e.g., a retailer) wants to calcu-
late the revenue contributed by the persons who have clicked
its ad displayed by a publisher. Google’s Private Join and
Compute [46, 47, 52] facilitates this calculation by using PSI-
SUM, where the advertiser inputs a table of (personal_id,
spending) pairs and the publisher inputs a set of ad click-
ers’ personal_ids. The advertiser will receive the aggre-
gate conversion revenue from PSI-SUM and the number of
personal_ids shared by the two parties.

Here, personal_id serves as the index to identify the per-
sons who have clicked the ad and purchased the product. A
personal_id in advertising campaigns can be a hashed email
address, a hashed phone number [29, 50], or an International
Mobile Equipment Identity (IMEI) number [26]. It is usually
linked to a user profile and can identify a real-world person.

Measurement of ad conversion lift from Private-ID. Face-
book’s Private Lift [40, 41, 62] realizes A/B testing [1] to
tell an advertiser how many incremental conversions were
generated because persons have seen its ad displayed by a pub-
lisher. Here, the publisher selected some persons who were
interested in the ad. During the A/B testing, the publisher
randomly assigned each person to either a treatment group or
a control group. The persons in the treatment group would
see the ad, while those in the control group were qualified to
see the ad but would not see it from the publisher [13, 23].

The first step to measure the conversion lift concerning

1According to the technical explanation [67], COVID-Alert uses Homo-
morphic Encryption to compute the intersection size of two sets of GPS
coordinates. Thus, this system is based on PSI-CA.

the two groups is that the advertiser and the publisher invoke
Private-ID [28] to align their sets of personal_ids. Specifi-
cally, the advertiser inputs a set of customers’ personal_ids,
and the publisher inputs a set of the personal_ids of all
persons in the two groups. Then, Private-ID assigns a fresh
unique tag to each personal_id in the union of the two par-
ties’ sets. At the end of this step, the two parties will receive
from Private-ID the tags of all personal_ids in the union
and the number of the personal_ids shared by the two par-
ties. Facebook’s Private Lift further uses these tags in the
secure downstream computation of conversion lift.

A note on the attacker’s abilities in these scenarios. We
note that the attacker’s abilities assumed in Section 2.2 are
satisfied in the above scenarios. First, the attacker can be (i)
the person who tests its exposure in COVID-19 contact trac-
ing, (ii) the advertiser in the measurement of ad conversion
revenue, or (iii) the advertiser in the measurement of ad con-
version lift. Thus, the attacker in each scenario is supposed to
receive intersection size from the underlying protocol. Sec-
ond, these scenarios do need to invoke the intersection-size-
revealing protocols regularly. In COVID-19 contact tracing,
the person should periodically test its exposure to COVID-19.
In the two advertising scenarios, the advertiser is allowed
to request the statistics on an hourly or daily basis2 (e.g.,
[24, 51, 71]) to make informed marketing decisions.

A note on the attacker’s target elements and background
knowledge in these scenarios. We note that (i) the attacker
can collect valid elements used in the scenarios so that its
target elements chosen from them are also valid, and (ii) the
attacker can learn some features of the target elements.

In COVID-19 contact tracing, we focus on the two token-
based systems. Such systems are based on the automatic ex-
change of tokens and can be used with other COVID-19 con-
trol measures (e.g., temperature screening [17, 18, 19, 20]
and symptom screening [21, 22]). The attacker can set up its
mobile phones in specific places to collect personal tokens
and record the person(s) showing up at the moment when each
token was received. This technique is known in the linkage
attack [14] against the tokens of COVID-19 patients. Given
this token-person record, if the attacker also has access to the
data collected in those control measures, it can learn some

2For the readers familiar with secure computation, there is a reusability
issue of the tags generated by Facebook’s Private-ID protocol. We discuss
this issue in Appendix A.
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symptom features (e.g., fever and cough) of each recorded
person and associate these features with the personal token.

In the two advertising scenarios, the advertiser can obtain
personal_ids from (i) its first-party data of customers and
(ii) third-party marketplaces [10, 11]. These personal_ids
are immediately linked to real-world persons and are associ-
ated with many personal features (e.g., demographics).

4.2 Data Sources
To quantify the leakage threat faced by the victim in the three
scenarios, we use3 the following three public datasets, each
of which is related to one scenario.

• COVID-19 dataset of tested individuals in Israel4. This
dataset was collected by Israel Ministry of Health [7] and
the authors [73] translated it into English. After data clean-
ing, there are 255,668 distinct individuals who were tested
for COVID-19 from March 22, 2020, to April 30, 2020.
Each individual record has a test date and is associated
with eight features. This dataset is used for the leakage
quantification in COVID-19 contact tracing.

• Taobao’s dataset of ad display/click records5. This
dataset was collected on Taobao, a Chinese online shopping
platform owned by Alibaba Group. This platform allows
small businesses and individual entrepreneurs to open on-
line retail stores and sell their products. After data cleaning,
there are 25,029,435 ad display/click records concerning
827,009 ads and 1,061,768 individuals. The records were
collected from May 6, 2017, 00:00:00 AM to May 14, 2017,
00:00:00 AM. Each individual is associated with eight fea-
tures. This dataset is used for the leakage quantification in
the measurement of ad conversion revenue.

• Tencent’s dataset of ad display records6. This dataset
was collected by Tencent for the 2019 Tencent Advertising
Algorithm Competition. It contains 102,386,695 ad display
records concerning 509,280 ads and 1,341,958 individuals.
The records were collected from February 17, 2019, to
March 20, 2019. Each individual is associated with ten
features. This dataset is used for the leakage quantification
in the measurement of ad conversion lift.

A note on the two ad datasets. Due to a large number of
ads, we only present the evaluation results of the ad with the
most records. The ad_ids are 710164 and 320379 for the
two datasets, respectively.

Ethics. Datasets used in this work are publicly available after
the proper data anonymization that their owners performed.

3Our source code can be found at: https://github.com/ErwinSCat
/set_membership_inference.

4https://github.com/nshomron/covidpred
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=5

6&lang=en-us
6https://algo.qq.com/archive.html?&lang=en
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(c) Measurement of ad conversion lift.

Figure 2: The size change of the victim’s dynamic set.

Table 2: Parameters in the simulation of the attacker’s input.

Scenario Attack Time (β0) |X | β

COVID-19
contact tracing

April 4, 2020
(0.0273)

512 {β0,5β0,10β0}
1024 β0
2048 β0

Measurement of
ad conversion revenue

May 9, 2017,
00:00:00 AM
(0.0032)

512 {β0,5β0,10β0}
1024 β0
2048 β0

Measurement of
ad conversion lift

February 19, 2019
(0.0070)

512 {β0,5β0,10β0}
1024 β0
2048 β0

Thus, we cannot deduce any Personal Identifiable Information
(PII) of real-world individuals from these datasets. In our
evaluation, we only exploited the time-dependent distribution
of the population of each dataset and measured the statistical
leakage concerning artificial IDs.

4.3 Characteristics of the Victim’s Set
We can extract the victim’s realistic sets in the scenarios from
the given datasets. A set of the victim is supposed to include (i)
the tokens of infected patients in COVID-19 contact tracing,
(ii) the personal_ids of the persons who have clicked the
ad in the measurement of ad conversion revenue, or (iii) the
personal_ids of the persons who were qualified to see the
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Table 3: Set bias with respect to each feature, measured in mutual information.

Scenario feature name (MI value)

COVID-19 contact tracing fever (0.0168), cough (0.0099), gender (0.0004)

Measurement of ad conversion revenue
age (0.0010), gender (0.0007), shopping_level (0.0002),
work (0.0002), consumption_ability (0.0001), city_level (0.0001)

Measurement of ad conversion lift
marriage_status (0.0013), education (0.0012), consumption_ability (0.0012),
age (0.0009), work (0.0005), gender (0.0001)

ad (i.e., to participate the A/B testing) in the measurement
of ad conversion lift. We artificially assign unique IDs to the
persons in the datasets. These IDs are regarded as the tokens
or the personal_ids in the scenarios.

We represent the victim’s dynamic set as a time series of
snapshot sets. The victim uses each snapshot set in a time-
specific protocol invocation, and a snapshot set contains the
elements that the victim held in a past time window. That is,
outdated elements will be excluded from the current snapshot
set. Note that this time window is introduced by the concerned
scenarios. In COVID-19 contact tracing, the health authority
is suggested to keep the tokens of the infected patients in
the last 14 days [70], which equals the maximum incubation
period of COVID-19. In the two online advertising scenarios,
such a time window is known as the "conversion window" or
"attribution window", capturing the number of days between
when a person clicked or viewed an ad and subsequently took
action. Its size is chosen by the advertiser (i.e., the attacker)
and can range from 1 to 90 days [49]. The publisher is asked
to keep the personal_ids of the persons who clicked or
viewed the ad during this period. Since the time span of each
advertising dataset is less than 90 days, we simply set the
window size of the dataset to be its time span.

We extract a time series of snapshot sets for each dataset
by sliding a time window over the time span of the dataset. A
snapshot set is formed from all elements in its time window.
In Figure 2, we show the size change of the victim’s set.

4.4 Simulation of the Attacker’s Input
To evaluate the set membership leakage, we need to simulate
the attacker’s input (i.e., a set of target elements, and the
features used by the feature-aware attacker) in Algorithm 1.

The simulation of the set X of target elements works as
follows. Note that the attacker’s choice of target elements
eventually affects the proportion β ∈ [0,1], defined as the
number of the target elements in the snapshot set at the be-
ginning of the attack divided by the total number of the target
elements. Since we cannot exhaust the attacker’s choices of
target elements, we turn to simulate its sets with different set
sizes and values of β. Given the time to launch the attack and
the snapshot set at this moment, we simulate a set X for the
set size |X | and the proportion β as follows.

• According to the attack time and the snapshot set, divide the

population U of the dataset into two disjoint sets. The posi-
tive set A is just the snapshot set itself, while the negative
set B :=U\A is the complement of A.

• Uniformly sample ⌈β · |X |⌉ persons from the positive set
and |X |−⌈β · |X |⌉ persons from the negative set. The set X
is formed from the artificial IDs of the sampled persons.

We define β0 := |A|/|U | and summarize in Table 2 the pa-
rameters used in the simulation of the set X . We explain our
choices of β in Appendix B.1.

Then, we consider the features used by the feature-aware
attacker. Since an artificial ID is assigned to a real-world
person, we associate the corresponding personal features with
the ID. We only use the features that the attacker can easily
identify in real life. In the COVID-19 dataset, the attacker can
learn (fever, cough, gender). In the two advertising scenar-
ios, the attacker only learns some demographic features, i.e.,
(age, gender, consumption_ability, shopping_level,
work, city_level) in Taobao’s dataset and (age, gender,
education, consumption_ability, marriage_status,
work) in Tencent’s dataset. The preprocessing of the features
is given in Appendix B.2.

A note on the number of protocol invocations. This number
equals the number of invocations per time unit multiplied by
the number of the time units after the beginning of the attack.
In COVID-19 contact tracing, the time unit is a day, and we set
the number of invocations per day to five, which is practical
for the attacker. In the measurement of ad conversion revenue,
the time unit is an hour, and the number of invocations per
hour is one due to hourly reporting [51]. In the measurement
of ad conversion lift, the time unit is a day, and the number of
invocations per day is one due to daily reporting [24, 71].

4.5 Metrics

We repeat the evaluation in each parameter setting 20 times
and use the toy attack (in our Introduction) for comparison.
We consider the following metrics for each attack.

• # total: the total number of the target elements whose set
membership is determined.

• # members: the number of the target elements diagnosed
as the members of the victim’s set.
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Table 4: # total breakdown at the end of the attack in COVID-
19 contact tracing. T: toy attack, B: baseline attack, K: feature-
aware attack instantiated with k-means.

# TP # FP # TN # FN % initial TP

|X |= 512, β = β0 = 0.0273, ⌈β · |X |⌉= 14

T 2.6 (1.1) 0.0 (0.0) 128.4 (2.4) 4.0 (1.8) n/a
B 12.0 (2.1) 2.6 (1.6) 486.2 (2.8) 11.1 (3.0) 0.63 (0.16)
K 13.4 (1.3) 1.7 (1.0) 488.1 (2.7) 8.8 (2.3) 0.69 (0.11)

|X |= 1024, β = β0 = 0.0273, ⌈β · |X |⌉= 28

T 2.5 (1.3) 0.0 (0.0) 128.6 (2.2) 3.9 (1.7) 0.52 (0.41)
B 18.1 (2.9) 9.1 (2.8) 923.1 (58.8) 32.5 (3.6) 0.43 (0.08)
K 22.4 (2.3) 6.7 (2.2) 964.4 (5.5) 29.9 (4.6) 0.57 (0.07)

|X |= 2048, β = β0 = 0.0273, ⌈β · |X |⌉= 56

T 3.0 (1.4) 0.0 (0.0) 127.5 (2.4) 4.5 (2.0) n/a
B 17.6 (2.2) 17.8 (4.8) 769.9 (116.3) 33.6 (8.8) 0.43 (0.08)
K 25.9 (3.8) 15.3 (4.2) 791.8 (266.9) 32.7 (10.1) 0.67 (0.07)

|X |= 512, β = 5β0 = 0.1367, ⌈β · |X |⌉= 70

T 6.7 (2.1) 0.0 (0.0) 113.7 (3.8) 14.7 (3.4) 0.77 (0.13)
B 24.9 (3.3) 34.6 (3.9) 396.0 (5.1) 56.0 (3.6) 0.75 (0.09)
K 40.2 (4.1) 24.3 (3.4) 402.9 (17.7) 40.5 (5.0) 0.84 (0.06)

|X |= 512, β = 10β0 = 0.2734, ⌈β · |X |⌉= 140

T 12.9 (2.7) 0.0 (0.0) 95.0 (3.9) 27.1 (4.1) 0.88 (0.10)
B 49.0 (4.4) 64.5 (4.8) 295.9 (7.6) 101.0 (5.7) 0.87 (0.05)
K 72.7 (4.9) 53.4 (9.5) 306.5 (12.5) 77.0 (5.3) 0.93 (0.03)

• # TP, # FP, # TN, and # FN: the number of (i) true posi-
tives, (ii) false positives, (iii) true negatives, and (iv) false
negatives. These metrics are measured according to Section
3.3 where a positive denotes a set member and a negative
denotes a non-member. Note that # total = # TP+ # FP+
# TN+# FN and # members = # TP+# FP.

• % initial TP: the number of the true positives, which come
from the victim’s snapshot set at the beginning of the attack,
divided by the total number of true positives.

The first two metrics show the speed of set membership leak-
age, and we plot these metrics as functions of the number of
protocol invocations. The other metrics can only be measured
at the end of the attack due to the victim’s dynamic set and
are written in "mean (standard deviation)".

5 Evaluation Results

5.1 Set Bias Measurement
We measure the set bias in each scenario using Mutual Infor-
mation (MI) [16] between the used features and whether an
element appeared in the victim’s snapshot set at the beginning
of the attack. There is an MI value between each feature and
the set membership. The higher the MI value, the stronger
the set bias concerning this feature. In Table 3, we sort the
MI values in the three scenarios in descending order. These
values are measured at the beginning of the attack.

Table 5: # total breakdown at the end of the attack in the mea-
surement of ad conversion revenue. T: toy attack, B: baseline
attack, K: feature-aware attack instantiated with k-means.

# TP # FP # TN # FN % initial TP

|X |= 512, β = β0 = 0.0032, ⌈β · |X |⌉= 2

T 0.3 (0.5) 0.0 (0.0) 120.6 (0.5) 0.1 (0.2) n/a
B 2.0 (0.0) 0.0 (0.0) 509.6 (0.6) 0.3 (0.6) 1.00 (0.00)
K 2.0 (0.2) 0.0 (0.0) 509.6 (0.6) 0.3 (0.6) 0.88 (0.20)

|X |= 1024, β = β0 = 0.0032, ⌈β · |X |⌉= 4

T 0.8 (0.7) 0.0 (0.0) 120.0 (0.7) 0.2 (0.4) n/a
B 4.0 (0.0) 0.0 (0.0) 1019.5 (0.7) 0.5 (0.7) 0.97 (0.07)
K 4.2 (0.4) 0.0 (0.0) 1019.3 (0.9) 0.6 (0.7) 0.95 (0.10)

|X |= 2048, β = β0 = 0.0032, ⌈β · |X |⌉= 7

T 0.3 (0.6) 0.0 (0.0) 120.5 (0.7) 0.1 (0.5) n/a
B 7.5 (0.9) 0.0 (0.0) 2037.3 (1.7) 3.1 (1.4) 0.82 (0.14)
K 7.5 (0.7) 0.0 (0.0) 2037.0 (1.7) 3.5 (1.5) 0.80 (0.12)

|X |= 512, β = 5β0 = 0.0162, ⌈β · |X |⌉= 9

T 2.2 (1.0) 0.0 (0.0) 118.7 (1.0) 0.1 (0.3) n/a
B 9.1 (0.4) 0.0 (0.0) 502.4 (0.9) 0.6 (0.9) 0.97 (0.06)
K 9.0 (0.0) 0.0 (0.0) 502.4 (0.9) 0.7 (0.9) 0.97 (0.06)

|X |= 512, β = 10β0 = 0.0323, ⌈β · |X |⌉= 17

T 4.0 (1.5) 0.0 (0.0) 117.0 (1.5) 0.0 (0.0) 0.96 (0.08)
B 17.2 (0.4) 0.0 (0.0) 493.8 (0.9) 1.1 (0.9) 0.96 (0.04)
K 17.2 (0.4) 0.0 (0.0) 493.9 (0.8) 0.9 (0.7) 0.96 (0.04)

5.2 Set Membership Leakage in the Scenarios

5.2.1 Scenario 1: COVID-19 contact tracing

The characteristics of this scenario are that (i) the attacker
invokes PSI-CA many times (i.e., 5 per day × 27 days), and
(ii) the features used by the attacker are correlated with the set
bias. We expect that facing these characteristics, our feature-
aware attack can cause the most severe set membership leak-
age, followed by our baseline attack and finally the toy attack.

Figure 3 shows that our two attacks can determine the set
membership of more target elements than the toy attack. In
particular, they can find more historical set members in the
victim’s dynamic set as expected. Table 4 also shows the
accuracy metrics of the three attacks. As noted in Section
3.3, there are false positives and false negatives in our two
attacks due to the set change in Figure 2a. Although the set
members inferred from our attacks are not perfectly correct
like the toy attack7, our attacks outperform the toy one in
terms of the number of true positives. This number determines
whether the attacker can identify many true set members in
the limited number of PSI-CA invocations. Considering this
metric and the leakage speed in Figure 3, we conclude that
our two attacks lead to a more severe set membership leakage.

7The toy attack has no false positive since, in this attack, the set member-
ship of one element does not affect that of another one.
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Figure 3: Set membership leakage in COVID-19 contact tracing, measured in # total and # members. We plot the two metrics
after the last (i.e., 5-th) PSI-CA invocation per day.
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Figure 4: Set membership leakage in the measurement of ad conversion revenue, measured in # total and # members.

Table 4 shows that our feature-aware attack has fewer false
positives and false negatives than our baseline attack. Recall
that the two attacks follow the same blueprint and only differ
in the usage of features. Thus, the difference in attack perfor-
mance must owe to the bias-correlated features. In fact, we
can see from Figure 3 that these features help to increase leak-
age speed. This result coincides with our expectation that the
attacker with bias-correlated features can infer set member-
ship in batches and reduce the number of PSI-CA invocations.
This reduction prevents a significant change in the victim’s
set, and the set change is the cause of false positives and false
negatives. Thus, the feature-aware attack is more accurate
than the baseline attack. The insignificant set change also en-
sures that the feature-aware attack can find more set members
in the victim’s initial snapshot set, as indicated by % initial
TP. To sum up, the feature-aware attacker does cause a more
severe leakage than the baseline one.

However, the feature-aware attacker’s advantage in infer-
ring set members comes at the cost of reducing the number of
non-members obtained in the early stage of the attack. This
phenomenon is apparent when |X | ∈ {512,1024,2048} and
β = 0.0273. The reason is that the binary tree is unbalanced
in our feature-aware attack and the DFS passes early in the
attack fill the priority queue with more subtrees of small size.
These subtrees may contain fewer non-members but increase
the number of PSI-CA invocations to empty the queue.

5.2.2 Scenario 2: Measurement of ad conversion revenue

In this scenario, (i) the attacker invokes PSI-SUM many times
(i.e., 24 per day × 5 days), and (ii) the features used by the
attacker are not strongly correlated with the set bias.

According to Figure 4, our two attacks still outperform the
toy attack in terms of leakage speed and the number of the
target elements whose set membership is determined in the
given PSI-SUM invocations. Here, the toy attack even fails to
identify any set member if only a few target elements appeared
in the victim’s snapshot set at the beginning of the attack
(e.g., |X | ∈ {512,1024,2048} and β = 0.0032). In contrast,
our two attacks can still spot set members in this case. We
see from Table 5 that the number of obtained set members
roughly equals the number of the target elements in the initial
snapshot set. Since the victim’s set grows over time (Figure
2b), there is no false positive in the obtained set members
as expected. The above analysis shows that using our two
attacks, the attacker can cause a more severe set membership
leakage in this scenario.

In contrast to COVID-19 contact tracing, our two attacks
cause similar set membership leakage in this scenario. More
concretely, they have comparable leakage speed (Figure 4)
and almost the same accuracy (Table 5). These results are
due to the weak correlation between the used features and
the set bias. The demographic features provide little help in
this scenario since most ads are primarily based on personal
interest instead of demographic features. When only a few tar-
get elements are set members (e.g., |X | ∈ {512,1024,2048}
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Figure 5: Set membership leakage in the measurement of ad conversion lift, measured in # total and # members.

Table 6: # total breakdown at the end of the attack in the
measurement of ad conversion lift. T: toy attack, B: baseline
attack, K: feature-aware attack instantiated with k-means.

# TP # FP # TN # FN % initial TP

|X |= 512, β = β0 = 0.0070, ⌈β · |X |⌉= 4

T 0.3 (0.5) 0.0 (0.0) 29.2 (1.0) 0.5 (0.8) n/a
B 4.6 (0.7) 0.0 (0.0) 422.8 (81.7) 11.8 (4.1) 0.40 (0.20)
K 4.2 (1.1) 0.0 (0.0) 409.4 (101.7) 11.7 (4.4) 0.50 (0.25)

|X |= 1024, β = β0 = 0.0070, ⌈β · |X |⌉= 8

T 0.9 (0.7) 0.0 (0.0) 28.9 (0.7) 0.1 (0.4) n/a
B 4.5 (0.8) 0.0 (0.0) 423.6 (162.0) 14.0 (7.6) 0.38 (0.17)
K 4.8 (1.1) 0.0 (0.0) 377.5 (236.0) 13.1 (9.0) 0.41 (0.19)

|X |= 2048, β = β0 = 0.0070, ⌈β · |X |⌉= 15

T 1.1 (0.7) 0.0 (0.0) 28.7 (0.8) 0.2 (0.4) n/a
B 4.5 (0.7) 0.0 (0.0) 337.9 (153.9) 11.3 (8.2) 0.40 (0.23)
K 4.2 (1.2) 0.0 (0.0) 283.6 (186.7) 11.4 (7.5) 0.38 (0.24)

|X |= 512, β = 5β0 = 0.0351, ⌈β · |X |⌉= 18

T 1.5 (1.4) 0.0 (0.0) 28.2 (1.4) 0.3 (0.6) n/a
B 5.7 (0.6) 0.0 (0.0) 99.5 (36.9) 3.8 (3.5) 0.71 (0.26)
K 5.9 (0.9) 0.0 (0.0) 113.8 (73.1) 5.6 (5.8) 0.76 (0.17)

|X |= 512, β = 10β0 = 0.0702, ⌈β · |X |⌉= 36

T 2.7 (1.5) 0.0 (0.0) 26.8 (1.5) 0.5 (0.7) n/a
B 7.8 (1.8) 0.0 (0.0) 48.6 (16.7) 2.2 (2.5) 0.85 (0.12)
K 8.0 (1.7) 0.0 (0.0) 38.8 (16.1) 1.4 (1.2) 0.89 (0.09)

and β = 0.0032), Algorithm 3 cannot use the features to early
separate set members from others and place them at the tree
nodes of low depth. The higher the node depth, the lower
the leakage speed. The above discussion explains why the
feature-aware attack does not work better than the baseline
attack in the early stage.

However, the small number of set members also means
that the attacker can find so many members in the limited
number of PSI-SUM invocations. We find that the number
of the set members found by Algorithm 1 must be not less
than the initial number, i.e., ⌈β · |X |⌉. The reason is that (i)
there is no false positive for an increasing set of the victim,
(ii) the underestimation from Inequality 3 will not reduce the
current number of set members, and (iii) the number of found

set members equals the current number of set members by
the time Algorithm 1 terminates after sufficient invocations.
Certainly, some found set members may appear in a snapshot
set after the beginning of the attack rather than the initial one.
The above analysis is consistent with the results in Table 5.

5.2.3 Scenario 3: Measurement of ad conversion lift

This scenario has the following characteristics: (i) the attacker
can only invoke Private-ID a few times (i.e., 1 per day × 30
days), and (ii) the features used by the attacker is not strongly
correlated with the set bias. These characteristics are the most
unfavorable ones for set membership inference attacks.

Due to the limited number of Private-ID invocations, the
following phenomena are more apparent in Figure 5. First,
the number of non-members found in the feature-aware attack
can be less than that in the baseline attack. This phenomenon
is also observed in COVID-19 contact tracing. It happens in
this scenario since the attack is still in its early stage until
the last Private-ID invocation. In this stage, the number of
found non-members is less stable. Second, even if the attacker
chooses more target elements, the number of found set mem-
bers cannot be increased like the other scenarios. This is due
to the saturation of leakage speed for the same β. Third, our
attacks start to determine set membership later than the toy at-
tack. The reason is that our attacks require several invocations
to finish one DFS. However, this latency is short.

Even with the latency, our two attacks cause a more severe
set membership leakage than the toy attack in general (see
Figure 5 and Table 6). Here, we again find that the toy attack
fails to identify any set member like our attacks when the
proportion β is small. In this case, it is unlikely for the toy
attacker to choose at least one set member in the limited
Private-ID invocations. In contrast, this number is greater
than the tree height in our attacks. Therefore, the attacker can
finish at least one DFS pass and find a set member(s).

Similar to the other advertising scenario, the weak correla-
tion between the features and the set bias makes our attacks
have comparable performance in identifying set members.
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6 Discussion

6.1 Real-world Implications of Our Results

COVID-19 contact tracing. In essence, our set membership
inference attacks narrow the range of the tokens of infected
patients. For example, the probability that the attacker can
guess one set member in its set of target tokens is ⌈β · |X |⌉/|X |,
which is small. In contrast, our attacks significantly improve
this probability since the attacker can simply pick one of the
target elements diagnosed as set members (including true
positives and false positives). We can see this improvement
from Table 4. Moreover, the higher numbers of true positives
indicate that our attacks allow the attacker to guess more
tokens in the health authority’s set.

The attacker can misuse this advantage in guessing the
tokens of infected patients to identify these patients. Note
that the attack [14] that links tokens to their associated per-
sons is known in the token-based COVID-19 contact tracing
systems that do NOT hide intersecting tokens (e.g., Apple
and Google’s system [12]). This linkage attack collects per-
sonal tokens through mobile phones placed in some locations
and records (e.g., via cameras) the person(s) showing up at
the moment when each token was received. The attacker can
deduce some infected patients from this record and the re-
vealed tokens in the health authority’s set. Although Epione
and Catalic try to address the linkage attack by using PSI-CA
to reveal only the number of intersecting tokens, our attacks
show that the attacker’s advantage in guessing the tokens of
infected patients is still non-negligible. The linkage attack can
still work in the two augmented systems by using our attacks
as subroutines to get some tokens in the health authority’s set.
The attacker’s ability to identify any infected patient is dan-
gerous. It was reported that the patients had suffered severe
harassment [2, 3, 4, 5].

Measurement of ad conversion revenue. In this scenario,
our attacks can significantly narrow the range of ad clickers’
personal_ids from the following aspects. First, realistic ad
click-through rates (CTRs) [6] ensure that (i) a large propor-
tion of target personal_ids are unlikely to be in the victim’s
set at the beginning of the attack, and (ii) the change of this
set is unlikely to make some target elements that were not
originally set members appear in the victim’s set subsequently.
Second, the realistic number of protocol invocations allows
the attacker to find as many set members from its target el-
ements as there were at the beginning of the attack. For ex-
ample, there were 7 target elements in the victim’s set at the
beginning, and the attacker found 7.5 set members on average
by the end of the attack. Third, the found set members are
perfectly correct since the attacker can make the victim’s set
grow by setting a large time window. The above arguments
show that our attacks can infer member personal_ids with
very high precision and recall.

The attacker (i.e., the advertiser) can use the inferred mem-

ber personal_ids to deduce the interest of the persons asso-
ciated with these personal_ids. The reasons for this interest
disclosure are that (i) clicking the ad is a sign showing the
ad clicker’s interest in the advertised product [54], (ii) our at-
tacks infer some ad clickers’ personal_ids in this scenario,
and (iii) the advertiser can translate these personal_ids into
their associated persons. Although some ad clickers may end
up purchasing the product and thus implicitly agree to reveal
their interest to the advertiser, there are also those who have
clicked the ad but did not make a purchase. In this scenario,
most ad clickers fall into the latter category. From a privacy
perspective, the advertiser should never collect the interest of
these ad clickers since they have not given explicit consent
to the collection of their interest. This unauthorized interest
collection is known to be a cause of uncomfortable person-
alized recommendations [9]. When the advertised product is
privacy-sensitive (e.g., HIV home test kits), it is also a privacy
threat that the advertiser learns the interest of the persons who
did not even make a purchase.

Measurement of ad conversion lift. In this scenario, the
effect of our attacks on narrowing the range of ad viewers’
personal_ids is not as significant as its counterpart in the
previous scenario. The reason is that realistic ad view-through
rates (VTRs) [8] can cause a higher β and such a change
in the victim’s set that some non-member personal_ids at
the beginning of the attack will be included in the victim’s
set subsequently. However, the found set members are still
perfectly correct. In other words, our attacks can still infer
member personal_ids with very high precision.

In this scenario, the set membership leakage also allows
the attacker (i.e., advertiser) to infer the interest of the persons
associated with target personal_ids. Ideally, the advertiser
should not know which persons are associated with the target
personal_ids in the publisher’s set. The reason is that the
advertiser knows that the publisher categorized these persons
as interested in the ad and invited them to the A/B testing.
Thus, revealing whether a personal_id is in the publisher’s
set immediately leaks the associated person’s interest. How-
ever, our attacks show that the leakage of the personal_ids
in the publisher’s set does exist. Consequently, the advertiser
can covertly use the publisher to find the persons interested in
the ad and acquire some of them. This idea of inferring per-
sonal interest with the publisher’s help is similar to [54]. Here,
merely viewing the ad without purchasing does not mean that
the person allows the advertiser to know its personal inter-
est. Such persons should account for the vast majority of all
persons who have or would have seen the ad in the testing.

6.2 Possible Defenses

Here, we discuss the possible defenses from a technical per-
spective and the limitations.

Limiting the number of protocol invocations. A simple
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defense is to limit the number of protocol invocations, i.e., the
number of intersection sizes revealed to the attacker.

However, it is unclear how to properly choose the threshold
of this number. The choice of the threshold should depend on
(i) the target elements, (ii) the attacker’s background knowl-
edge, (iii) the allowed set membership leakage in the scenario,
(iv) the frequency of collaboration tasks in the scenario, and
(v) the number of protocol invocations per task. Although (iii),
(iv), and (v) can be estimated, the victim is unaware of (i) and
(ii). Thus, the victim can only use a heuristic threshold.

This defense cannot fully prevent set membership leak-
age unless the threshold is very small. Our evaluation in the
measurement of ad conversion lift confirms this conclusion.
The conclusion is also applied to the other two scenarios. In
most scenarios, allowing only a few protocol invocations will
harass the functionality of high-level systems.

Auditing intersection size. If the attacker launches a set
membership inference attack according to Algorithm 1, there
will be a size pattern in the sequence of revealed intersection
sizes. Therefore, the victim can detect our attacks by auditing
these intersection sizes to find out the pattern.

However, this defense faces some challenges. First, it is
non-trivial for intersection-size-revealing protocols to return
a precise intersection size to both entities while preserving the
provable security against a malicious attacker (e.g., see [61,
68]). Without the sequence of intersection sizes, the victim
cannot check the size pattern. Second, the attacker can make
malicious invocations intermittently and, in each invocation,
pad some elements whose set membership is known to skew
the intersection size. It is unclear whether this defense will
work if the attacker adopts the strategy.

Auditing the size of the attacker’s input table. In most
intersection-size-revealing protocols, the victim is allowed to
see the size of the attacker’s input table. In other words, the
victim learns how many elements are input by the attacker.
Since there is also a size pattern of the subsets used in Algo-
rithm 1, it seems possible for the victim to detect the attacks
by auditing the table size in each invocation.

Unfortunately, the attacker can easily bypass this de-
fense. Suppose that Algorithm 1 asks the attacker to input
{T1, ...,Tn} to the protocol in n invocations sequentially. To
hide the size pattern of these subsets, the attacker constructs
another n subsets {D1, ...,Dn} such that (i) these new subsets
are of the same size, (ii) each Di is derived from Ti by padding
Ti with |Di|− |Ti| dummy elements. These dummy elements
will appear in the victim’s set Y with negligible probability.
Thus, by inputting Di instead of Ti to the protocol, the attacker
can still learn |Ti∩Y |= |Di∩Y | while hiding the actual size
of Ti. Due to the security of intersection-size-revealing proto-
cols, the victim cannot tell whether there are dummy elements
in the attacker’s input table. Therefore, auditing the size of
the attacker’s table does not help.

Applying differential privacy. Differential Privacy (DP) [37,

39, 59] is a rigorous definition of privacy. It ensures that
whether a record is a part of a mechanism’s input does not
significantly affect the output distribution of the mechanism.
This significance is bounded by DP parameters (ε,δ). The
high-level intuition behind the DP-based defense is to add
noise to revealed intersection sizes. Such noisy intersection
sizes are expected to reduce the accuracy of our attacks.

This DP-based defense works as follows. Recall that, given
the attacker’s set X of target elements and the victim’s set Y ,
inferring the target elements’ set membership is equivalent to
reconstructing the intersection I := X ∩Y . This intersection
can be represented as a binary vector bin(I)∈ {0,1}|X |, where
bin(·) is a bijective mapping such that the i-th coordinate
of bin(I) is one if and only if xi ∈ Y . In Algorithm 1, the
intersection size between a counterfeit set Q⊆ X and the set
Y equals the inner product of bin(Q) and bin(I) since

|Q∩Y |= |(Q∩X)∩Y |= |Q∩ (X ∩Y )|
= |Q∩ I|= ⟨bin(Q),bin(I)⟩.

(5)

From the DP perspective, the attacker measures the binary
string bin(I) using the query bin(Q) in each protocol invoca-
tion. [27, 39, 48, 64] showed that, if the number of invocations
is limited (e.g., sublinear in |X |), adding small noise to the
inner products in Equation 5 can achieve differential privacy.

However, this defense has the following limitations. First,
the choice of DP parameters depends on the size |X |, which is
unknown until the first protocol invocation. In other words, the
two entities have difficulty in agreeing on how much additive
noise is needed to reach the desired degree of differential
privacy. Second, how to efficiently incorporate differential
privacy into the intersection-size-revealing protocols is still
an open problem. To date, no such protocol is known that can
be used to replace those vulnerable to our attacks. Third, even
if there is a differentially private alternative of the protocols,
this alternative can only distort the set membership of each
person rather than perfectly hiding it from the attacker. After
several protocol invocations, it is still probable for the attacker
to correctly infer the set membership of some persons. Future
work is required to explore the relationship between concrete
DP parameters and this probability.

6.3 Limitations

First, in our feature preprocessing (see Appendix B.2), the
symptoms of the persons who are not infected with COVID-19
at the beginning of attack are set to fever= 0 and cough= 0.
This preprocessing may distort the feature distribution of
recorded persons since even uninfected persons can have fever
or cough. However, such persons are expected to represent
a small fraction of all uninfected persons, unless there is a
concurrent epidemic of another disease that can cause these
symptoms. Thus, we believe that this distortion is mild and
will not significantly affect our results.
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Second, Tencent’s dataset was not collected from ad con-
version lift campaigns. However, we note that the distribution
of ad viewers in this dataset is similar to the distribution of
tested persons in the measurement of ad conversion lift. The
reason is that the tested persons are also qualified to see the
ad, like the ad viewers in Tencent’s dataset. Private-ID takes
as input all these persons regardless of whether they have
actually seen the ad (i.e., in the treatment group). In essence,
the two distributions are of the persons who are identified by
the publisher as being interested in the ad. Therefore, it makes
sense for us to use the distribution of ad viewers in Tencent’s
dataset as the distribution of tested persons. The analysis re-
sults of Tencent’s dataset are supposed to be consistent with
those in the measurement of ad conversion lift.

Third, this work considers, for each scenario, the data dis-
tribution under certain conditions (e.g., time span and data
source). Our results show how severe set membership leak-
age is under these data distributions. We stress that the set
membership leakage caused by our attacks changes with the
underlying data distribution in a scenario. When using our
attacks to quantify the set membership leakage in a given
scenario, one should take into account the current data distri-
bution, instead of simply applying our analysis results.

6.4 Revisiting Set Membership Leakage in
Intersection-size-revealing Protocols

We note that, in realistic scenarios, the set membership leak-
age from intersection-size-revealing protocols may be more
severe than that studied in this work. The reason is that the
leakage in this work is only resulted from intersection size
returned by these protocols. However, some of intersection-
size-revealing protocols reveal more information than this
size. Such additional information may help the attacker to
infer set membership more efficiently.

An example is PSI-SUM, which additionally aggregates the
values associated with the intersecting indices and reveals this
aggregate value. In PSI-SUM, the attacker can counterfeit
a table {(yi,vi)}yi∈Y,|Y |=n where the sequence (v1, ...,vn) is
superincreasing (i.e., vi+1 > ∑1≤ j≤i v j for 1≤ i < n). Given
the victim’s set Y , PSI-SUM reveals the intersection size
|{ki}i∩Y | and the following subset sum to the attacker

∑
1≤i≤n, ki∈Y

vi ≡ ∑
1≤i≤n

bi · vi (mod p), (6)

where p is a public large modulus and bi = 1 if and only
if ki ∈ Y . Inferring each ki’s set membership regarding the
victim’s set Y is equivalent to determining bi in Equation 6,
or rather, solving the subset sum problem. It is known in the
literature [60] that, when the sequence is superincreasing, the
attacker can easily solve this subset sum problem by locally
running a greedy algorithm. That is, the attacker can even infer
the set membership of all target elements with only ONE PSI-
SUM invocation, if n is small. If n is super-logarithmic in p so

that the aggregate value wrap out p, the attacker can instead
divide n elements into several bins and solve the problem for
each bin. In this way, the attacker can determine all elements’
set membership using at most n/ log p invocations.

Some other intersection-size-revealing protocols, such as
Private-ID or (not deployed) circuit-based Private Set Intersec-
tion [55], are combined with downstream secure computation
that additionally returns the statistics needed by high-level sys-
tems. It is left for future work to see whether the attacker can
use these statistics in conjunction with revealed intersection
size to cause more severe set membership leakage.

7 Related Work

Recall that, as shown in Equation 5, our attacks essentially
aim to reconstruct the binary representation bin(I) ∈ {0,1}|X |
of the intersection I at the beginning of attack. The works
most relevant to this work are those investigating how many
inner product responses are needed to reconstruct a binary
database D = (d1, ...,dn) ∈ {0,1}n. The first reconstruction
attack by Dinur and Nissim [32] showed that, if the noise
added to each response is o(

√
n), the database D can be ap-

proximately recovered from the noisy version of O(n log2 n)
responses ⟨Qi,D⟩, where the query Qi ∈ {0,1}n. Dwork et al.
[38] showed that the attacker can reconstruct almost the whole
database if there are O(n) noisy responses and at least 0.761
fraction of them are with o(

√
n) bounded noise. As noted in

[38], the reconstruction problem also has a connection with
compressed sensing [30, 33, 34], which aims to find possible
solutions to undetermined linear systems.

This work differs from the related ones in the following
aspects. First, our attacks use noise-free responses (aka inter-
section sizes) given by intersection-size-revealing protocols,
while the related works consider noisy ones from a differen-
tially private mechanism. Second, the intersection (aka the
vector of set membership bits) is recovered "bit-by-bit" in our
attacks. However, the attacker in the related works needs to
run a reconstruction algorithm after receiving all responses.
Third, and most importantly, this work use features correlated
with set bias to produce queries while the related works fo-
cus on random queries. We show that set bias, which is not
considered in the existing works, can improve reconstruction
efficiency. Fourth, the related works are of theoretical inter-
est and pay little attention to the database reconstruction in
realistic scenarios, especially when the database is dynamic.

8 Conclusion

This paper initiates the first study on the set membership
leakage in intersection-size-revealing protocols. This leakage
results from the intersection sizes revealed by these protocols.
We propose the baseline and feature-aware attacks to show
that the attacker can infer some target elements’ membership
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of the victim’s set. In particular, our feature-aware attack can
exploit set bias to aggravate the leakage.

In addition to the theoretical analysis, we evaluate our at-
tacks in three realistic scenarios: (i) COVID-19 contact trac-
ing, (ii) the measurement of ad conversion revenue, and (iii)
the measurement of ad conversion lift. The results show that
our two attacks can cause more severe leakage than a heuristic
attack in these scenarios. Notably, the feature-aware attack
outperforms the baseline attack in COVID-19 contact tracing
since there is a non-negligible bias in the victim’s set. We also
discuss the real-world implications of our results and some
possible defenses against our attacks.

Note that some intersection-size-revealing protocols (e.g.,
PSI-CA, PSI-SUM, and Private-ID) have attracted much atten-
tion from the industry and can be used in many collaborative
computation scenarios. This work is helpful in analyzing the
privacy issues raised by the protocols in their scenarios.
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A A Note on Facebook’s Private-ID

In the measurement of ad conversion lift, there is a subtle
issue in Facebook’s Private-ID protocol when the union of
the two parties’ sets is dynamic. The issue is that the assigned
tags for the t-th union cannot be reused for the (t+1)-th union.
Otherwise, it will trivially leak set membership.

Consider a counterexample where the (t +1)-th union has
only one more element x than the t-th union. If the tags of
the elements in the t-th union remain the same, and the two
parties only assign a fresh tag to x, the party holding x can
check whether x’s tag equals any old tag for the t-th union. If
so, x must be a member of the other party’s set. In contrast, if
they re-invoke Private-ID to assign fresh tags to all elements
in the (t +1)-th union, no set membership will be leaked.

This counterexample indicates that, if the union of the two
parties’ sets is dynamic (e.g., in the measurement of ad con-
version lift), Private-ID should be re-invoked for the current
two sets, and thus the attacker can learn an intersection size
from each Private-ID invocation.

B More Details about Experimental Setup

B.1 On the Choices of β

We choose the values of β for the following reasons. β = β0
corresponds to that, at the beginning of attack, the attacker
uniformly samples |X | target elements from the population
without replacement. The number Z of set members follows
the hypergeometric distribution

Pr[Z = k] =
(
|A|
k

)
·
(
|U |− |A|
|X |− k

)/(
|U |
|X |

)
, k = 0,1, ..., |X |,

and the expectation E(β) = E(Z)/|X |= |A|/|U |= β0.
However, in reality the attacker will choose its set of target

elements on purpose. Recall that the more elements in this set
are the members of the victim’s set, the more likely it is that
the attack will cause a severe leakage. Therefore, the attacker
is motivated to make its set contain as many members on
the victim’s set as possible. In COVID-19 contact tracing, it
can do this by deliberately collecting personal tokens from
epidemic areas, where its mobile phone is more likely to re-
ceive the tokens of COVID-19 patients. In the two advertising
scenarios, the advertiser can target its ad [15] to the areas
with higher click-through rates (CTRs) [6] or view-through
rates (VTRs) [8] and choose target personal_ids from these
areas. Since it is known that such rates vary from area to area
[15], the proportion β resulted from this strategy may have a
higher value than β0, which is based on the whole population.

Therefore, we recommend that the victim should consider
a conservative (or rather, larger) value of the proportion when
empirically evaluating the leakage of its set. This is to estimate
the worst-case set membership leakage. In our evaluation, we
also consider two such values, i.e., 5β0 and 10β0.

B.2 Feature Preprocessing
The main purpose of our feature preprocessing is to prevent
k-means, which was called at the beginning of attack, from
using the personal features that have not yet appeared at this
moment. In COVID-19 contact tracing, it is almost impossible
for the feature-aware attacker to know, on April 4, 2020, the
symptoms of patients who were diagnosed with COVID-19
in the future. Here, we assume that the interval between when
a person had COVID-19 symptoms and when it got test result
is negligible. Under this assumption, those diagnosed with
COVID-19 in the future are amended to have no symptom
(i.e., fever = 0 and cough = 0) at the beginning of attack.
For the two online advertising scenarios, we assume that the
considered features are fixed during attack. Thus, we do not
amend the features in the two datasets.

In addition to the above preprocessing, we encode personal
features using standard techniques.
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