
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

FReD: Identifying File Re-Delegation
in Android System Services

Sigmund Albert Gorski III, Seaver Thorn, and William Enck,
North Carolina State University; Haining Chen, Google

https://www.usenix.org/conference/usenixsecurity22/presentation/gorski

FRED: Identifying File Re-Delegation in Android System Services

Sigmund Albert Gorski III, Seaver Thorn, William Enck
North Carolina State University

{sagorski,swthorn,whenck}@ncsu.edu

Haining Chen
Google

hainingc@google.com

Abstract
The security of the Android platform benefits greatly from
a privileged middleware that provides indirect access to pro-
tected resources. This architecture is further enhanced by priv-
ilege separating functionality into many different services and
carefully tuning file access control policy to mitigate the im-
pact of software vulnerabilities. However, these services can
become confused deputies if they improperly re-delegate file
access to third-party applications through remote procedure
call (RPC) interfaces. In this paper, we propose a static pro-
gram analysis tool called FRED, which identifies a mapping
between Java-based system service RPC interfaces and the
file paths opened within the Java and C/C++ portions of the
service. It then combines the Linux-layer file access control
policy with the Android-layer permission policy to identify
potential file re-delegation. We use FRED to analyze three
devices running Android 10 and identify 12 confused deputies
that are accessible from third-party applications. These vul-
nerabilities include five CVEs with moderate severity, demon-
strating the utility of semi-automated approaches to discover
subtle flaws in access control enforcement.

1 Introduction

Android is a dominant computing platform with more active
devices than Microsoft Windows [42]. It is well known for its
application-centric security model [4] where each application
is granted high-level permissions based on functional needs.
Prior work has deeply studied this permission model [14, 15,
48], how applications request permissions [8,35,41], and how
users approve them [17, 18].

Less discussed are the protected resources behind those
permissions. Android has a robust security architecture that
has evolved significantly over the past decade [33]. A key
attribute of Android’s security is a middleware framework
that is highly privilege-separated to mitigate the effects of
software vulnerabilities. Much of Android’s core function-
ality is broken into separate service components and system

daemons. This framework provides an abstraction layer that
allows third-party applications to safely and indirectly access
protected resources. For example, while Android devices have
a number of sockets in /dev for accessing GPS information,
the Unix file permissions only allow the Location Manager
Service to access the sockets directly. The Location Manager
Service provides a remote procedure call (RPC) interface for
lesser privileged applications to access location information.
It is at this interface where permissions are checked.

Research has begun to analyze the correctness of permis-
sion checks within the Android framework. Stowaway [19],
PScout [6], and Arcade [3] derive a mapping between APIs
for third-party applications and permissions. Kratos [38],
ACEDroid [2], and ACMiner [22] approximate correctness
using consistency. They use static program analysis of system
services to identify the different access control checks that
occur for each RPC entry point and then determine if specific
entry points are missing checks. ARF [23] builds on these
works by considering improper re-delegation between RPC
entry points. ARF found that Android’s RPC entry points
frequently call one another, and when the ambient authority
of the execution changes (e.g., crossing between processes),
confused deputy vulnerabilities can result. Our work extends
these prior works by considering sensitive files that can be
accessed indirectly through system services.

In this paper, we propose a tool called FRED, which per-
forms a static program analysis of the Java-based system
services in the Android framework to identify a mapping be-
tween RPC entry points (i.e., deputies) and concrete file paths
that may be accessed when the RPC is invoked. Our static
program analysis includes both the Java and C/C++ code for
these system services. We then combine the Linux-layer Unix
file permissions with the Android-layer permission check pol-
icy to identify when file access is re-delegated to third-party
applications. By manually studying these file re-delegations,
we are able to identify confused deputy vulnerabilities.

We applied FRED to three devices running Android 10: an
AOSP Pixel 3a, a Google Pixel 3a, and a Samsung Galaxy
S20. We found 12 confused deputies that allow third-party

USENIX Association 31st USENIX Security Symposium 1525

applications to modify or read information from files or direc-
tories with a system UID or GID. These 12 deputies include
three CVEs assigned moderate severity by Google and two
CVEs assigned moderate severity by Samsung. The other
seven deputies represent minor security issues.

We make the following contributions in this paper:

• We design FRED, which uses static program analysis
to identify security-sensitive file paths accessed by the
RPC entry points of Android’s Java-based system ser-
vices. FRED identified 23 RPC entry points of the total
6287 RPC entry points in AOSP 10.0.0 potentially re-
relegating access to 51 files. The source code for FRED
is available at https://github.com/wspr-ncsu/fred.

• We use FRED to study file re-delegation vulnerabili-
ties in the Android framework. We identify 12 confused
deputy vulnerabilities which can be accessed by third-
party applications. Google and Samsung have assigned
five CVEs with moderate severity based on these vulner-
abilities.

We note that the vast majority of the RPC interfaces in
Android’s framework exist within the Java-portions of the
code base. For these RPC interfaces, FRED extends its data
flow and control flow analysis through the Java Native Inter-
face (JNI) bridge to capture file operations that occur within
C/C++ code. However, the Android framework also includes
a collection of system services written entirely in C/C++ (e.g.,
the Camera Service). FANS [30] recently performed fuzz
testing of these native system services, primarily looking for
memory safety vulnerabilities. We leave extending FRED to
entirely native system services to future work.

The remainder of this paper proceeds as follows. Section 2
provides background and a motivating example. Section 3
overviews FRED. Section 4 describes the design of FRED.
Section 5 evaluates FRED by applying it to three device
firmware images. Section 6 discusses limitations. Section 7
overviews related work. Section 8 concludes.

2 Background and Problem

The Android platform is built on Linux primitives, including
its traditional Unix-based system calls, file system, and ac-
cess control. However, unlike traditional Linux distributions,
Android provides an extensive application runtime environ-
ment that strongly controls software execution. Both Android
applications and most of the framework are built upon four
types of components: activities for user interfaces, broadcast
receivers for asynchronous communication, content providers
for data sharing, and services for daemon-like servers.

The framework primarily consists of service components,
which provide an abstraction layer for accessing sensitive re-
sources including system files and device nodes. Applications
make remote procedures calls (RPCs) to service entry points

1 boolean removeSharedAccountAsUser(Account ac, int userId) {
2 int uid = getCallingUid();
3 userId = handleIncomingUser(uid);
4 UserAccounts acs = getUserAccounts(userId);
5 boolean deleted = acs.accountsDb.deleteSharedAccount(ac);
6 if (deleted)
7 removeAccountInternal(acs, ac, uid);
8 return deleted;
9 }

Figure 1: The RPC entry point removeSharedAccountAsUse-
r in the AccountManagerService allows any app to remove
shared accounts the user does not manage.

using Android’s custom binder inter-process communication
(IPC) message passing system. Services then perform access
control checks on RPCs using conditional statements that con-
sider the Android permissions [15, 48] granted to the calling
application (usually at install-time). This abstraction layer
allows Android to significantly privilege separate functional-
ity into different services running as separate processes and
assign least-privilege access control policy to sensitive files
using traditional Unix permissions, user identities (UIDs),
and group identities (GIDs). Recent versions of Android also
use a version of SELinux designed for Android [40]. In a
small number of cases where using a framework abstraction
layer is not practical, the Android runtime will add GIDs to
applications based on the permissions they are granted. In
such cases, the application can access associated files directly.

In this model, Android’s system services act as privileged
deputies, which are expected to perform authorization checks
before accessing sensitive resources. Failing to perform
proper authorization checks at RPC entry points may result in
confused deputy vulnerabilities. ARF [23] identifies confused
deputy vulnerabilities that result when an RPC entry point
calls a different (privileged) RPC entry point. The authors
found that Android’s RPC entry points are highly intercon-
nected and that the calling identity often changes as the exe-
cution passes between RPC entry points. However, ARF does
not consider confused deputies where an RPC entry point
accesses a privileged file. Since file access is determined
based on the authority of the service’s process and not the
original calling application, confused deputy vulnerabilities
may result if proper checks are not made.

Figure 1 shows an example of a file-based confused deputy
vulnerability in Android discovered with FRED. The figure
shows the removeSharedAccountAsUser RPC entry point in
the AccountManagerService. In this context, an account is
an online service such as Facebook, Google, or Dropbox.
Accounts are created and managed by specific applications
and typically, aside from the system, only the applications
that create accounts can remove or modify them. A shared
account is an account that has been shared across multiple
users of the device. Traversing the call graph from acs.ac-

countsDB.deleteSharedAccount ten methods deep reveals a
call to nativeOpen. Propagating constant string information
shows access to two files: /data/system_ce/[userId]/accou-

1526 31st USENIX Security Symposium USENIX Association

https://github.com/wspr-ncsu/fred

nts_ce.db and /data/system_de/[userId]/accounts_de.db

(where [userId] is the RPC argument). Ultimately, removeS-
haredAccountAsUser deletes rows in these files to remove the
shared accounts of a specified user. It is a confused deputy, be-
cause both files are only accessible by system UID processes,
and it does not ensure the removal is safe (e.g., by calling
isAccountManagedByCaller). We reported this vulnerability
to Google and were assigned CVE-2020-0208.

FRED seeks to semi-automatically identify such file-based
confused deputy vulnerabilities within Android’s system ser-
vices. Fully-automated identification of such vulnerabilities
requires modeling the semantics of all safety checks that oc-
cur on the path to file access. Doing so generically is not
tractable. Instead FRED seeks to reduce the search space
from the over 6,000 RPC entry points (Android 10) to the
smaller set of RPC entry points that access security-sensitive
files, which we term candidate RPC entry points.

Definition 1 (Candidate RPC entry points). Let E be the set
of all methods handling binder interfaces registered as system
services with Android’s Service Manager. Let CFGe be the
inter-procedural control flow graph of e ∈ E. We note that
CFGe stops when it encounters a call to another e′ ∈ E. The
set of candidate RPC entry points Ec ⊆ E contains all e such
that CFGe accesses (e.g., opens) a security-sensitive file.

We note that the access of a security-sensitive file may
be a primary function of the RPC entry points, or it may be
ancillary to performing a primary functionality (e.g., reading
configuration). Differentiating primary function from ancil-
lary function requires modeling the semantics of the RPC
entry point’s functionality, and heuristics to do so may miss
vulnerabilities. Therefore, we do not explicitly attempt to
differentiate it via program analysis. Furthermore, manual
inspection is ultimately required to determine if a candidate
RPC entry point contains an improper file re-delegation.

Definition 2 (Improper file re-delegation). Let e ∈ Ec be a
candidate RPC entry point. Let f be a security-sensitive file
(or directory) accessed by e. Let c be a caller of e, where c
does not have privilege to access f . Then e has an improper
file re-delegation if c can violate the secrecy or integrity of f .

We note that whether or not the secrecy or integrity of
f is violated is contextual to the semantics of the service
functionality. An RPC entry point may safely allow a caller
to read or modify a part of a file related to the caller. The
violation may also be subjective with respect to the purpose.

3 Overview

FRED seeks to semi-automatically identify improper file re-
delegation by Android’s system services by automating the
discovery of candidate RPC entry points and then using man-
ual inspection to determine if the secrecy or integrity of files is

violated. Conceptually, FRED operates by (1) traversing the
call graph from RPC entry points to methods that access files
(e.g., java.io.FileInputStream), and then (2) performing a
backwards data flow analysis from the file path arguments to
determine their values from either constant strings or RPC ar-
guments. It then compares the access control policy for those
files with the access control policy of the RPC entry point.
Performing this static program analysis requires overcoming
the following research challenges.

• Android system developers use a variety of file access
method APIs. The backwards data flow analysis to deter-
mine file paths starts at the code instruction that invokes
a file access method. If this invocation is within a generic
wrapper API, the data flow analysis will not be specific
to the RPC entry point.

• File paths are built from many parts, which are not al-
ways available to the analysis. Paths are frequently con-
structed using a variety of system environment variables,
as well as path and string builder APIs. When the analy-
sis cannot identify constant values for all parts, it should
be as precise as possible to match concrete file paths.

• Java-based services call native methods through JNI.
RPC entry points registered as system services call 387
unique JNI methods in Android 10. Files paths and calls
to file access methods may only exist within native code,
requiring the analysis to span both the Java and C/C++
portions of services.

Figure 2 shows the overall flow of our approach consisting
of the following high-level steps.
Step 1 - Identify File Access Methods: Knowledge of the
specific methods used to access files provides more pre-
cise mapping of RPC entry points to file paths. For exam-
ple, attempting to perform a backwards data flow analysis
from a generic Java API file method may significantly over-
approxiate file paths when that Java API file method is called
indirectly via a generic Android API file methods. We use a
combination of manual review, program analysis, and man-
ual refinement to identify four types of file methods: libc
file methods, JNI file methods, Java API file methods, and
Android API file methods. While not fully automated, the
manual steps are largely one-time efforts and require minimal
effort to transition to a new Android version (e.g,. transition-
ing from Android 9 to Android 10 took less than 5 hours).
Step 2 - Identify Accessed Sensitive Files: For each RPC
entry point, FRED identifies the set of security-sensitive files
that it accesses. This step begins by walking the call graph
from the RPC entry point to all of the file methods identified
in Step 1. FRED then performs a backwards inter-procedural
data flow analysis from the file methods to identify file paths
that flow to it. FRED analyzes the Java and native code por-
tions of the RPC entry point separately using Soot [29,43] and

USENIX Association 31st USENIX Security Symposium 1527

System
Image

Real
Device

Extract
RPC Policy

(ACMiner [22])

Identify File Methods
(Manual Refinement)

Call Graph:
RPC→ File

Data Flow:
File Patterns

Concrete Files

File Policy

Sensitive
File Filter

Sensitive Files
Accessed by RPCs

Re-Delegation
Analysis

Candidate RPC
Entry Points

Manual
Inspection

Improper File
Re-Delegation

1 2

3 4

Figure 2: Overview of FRED’s static program analysis process

angr [39], respectively, and then identifies which JNI meth-
ods are called by the RPC entry point. For Java code, where
string construction is more intricate, FRED derives an inter-
mediate representation that describes the string construction.
This intermediate representation is then converted into regular
expressions for file paths. For native code, where string con-
struction is based on variants of strcpy, FRED simply derives
the full file paths. Finally, these regular expressions and file
paths are matched to a list of security-sensitive files from a
real device. For the purposes of this paper, we consider a file
to be security sensitive if the UID or GID is system or the
GID corresponds to a GID mapped to an Android permission.

Note that our approach primarily identifies when files are
opened. It does not attempt to differentiate read and write
access. First, read and write operations are typically methods
invoked on objects returned from the open call. Tracking
these objects can be imprecise and cause FRED to miss file
accesses. Second, the read and write methods of file access
wrappers are unknown and require additional manual effort to
identify. Given that we found the number of candidate RPC
entry points for file open was manageable (see Section 5), and
manual inspection is needed anyway (Step 4), there was no
need to build this additional analysis.

Step 3 - Re-Delegation Analysis: Candidate RPC entry
points provide indirect file access in ways that may or may
not be safe. First, FRED determines if and how each RPC
entry point can be called by a third-party application using
information and techniques developed for ACMiner [22] and
ARF [23]. ACMiner uses Soot to statically identify inconsis-
tent access control checks between similar RPC entry points,
and ARF builds on ACMiner to identify re-delegation be-
tween RPC entry points. FRED uses ACMiner’s mapping
of RPC entry points to permissions as input. It also adopts
several of ARF’s heuristics to determine if the RPC entry
point can only be accessed by system services (e.g., UID
checks as the first conditional). Finally, for each RPC entry
point accessible to third-party applications, FRED combines
(a) permission requirements with (b) the Unix permissions for
the security sensitive files accessed by the RPC entry point
(Step 2). It produces the set of candidate RPC entry points.

Step 4 - Manual Inspection: Since it is not practical to cap-
ture all of the ways in which an RPC entry point may allow
safe access to sensitive files, FRED relies on manual inspec-
tion to identify improper file-redelegation. Since the total
number of candidate RPC entry points is relatively small for
Android 10, an expert can review how each RPC entry point
uses sensitive files. We also identified several heuristics to
further reduce this list, incorporating them into Step 3. Fi-
nally, the manual inspection should also consult SELinux
policy to determine if (a) the service can access the given
file and (b) a third-party application can invoke the service.
In our study, these additional SELinux checks were simple
to confirm manually and no discovered vulnerabilities were
limited by SELinux policy. Future versions of FRED could
incorporate SELinux policy checks into the pipeline.
Alternate Approaches: While FRED uses static program
analysis to help discover improper file re-delegation, alterna-
tive approaches exist for identifying the regular expressions
of file paths accessed by RPC entry points. Dynamic anal-
ysis provides evidence that files are accessed during execu-
tion; however, code coverage and test case generation are
frequently limiting factors for dynamic approaches. Recently,
Centaur [32] proposed phased concrete-to-symbolic execu-
tion (PC2SE) to avoid state space explosion during the initial-
ization phase of Android’s system services. This optimized
symbolic execution is a promising direction for future work;
however, its dependence on concrete execution within an em-
ulator limits its application to non-AOSP firmware images.
We apply FRED to non-AOSP firmware in Section 5.

4 Design

This section details the design of FRED following the first
three steps described in Section 3.

4.1 Identifying File Methods
FRED seeks to identify the highest abstraction level possible
for file methods in order to best match the potential file paths
to the RPC entry points. Figure 3 shows four data flow paths
of interest. First, Figure 3a depicts when the file path origi-
nates in native code and is either directly or indirectly passed

1528 31st USENIX Security Symposium USENIX Association

Java

Native

Libc	File	Methods

open unlink ...

File	path	input	as	a	String

(a) JNI methods using file paths
defined in native code

Java

Native

Libc	File	Methods

open unlink ...

File	path	input	as	a	String,	File,	or	Path	Object

com.android.server.net.
NetworkStatsFactory:

nativeReadNetworkStatsDetail
...

(b) JNI methods using file paths
defined in Java code

Java

Native

Libc	File	Methods

open unlink ...

File	path	input	as	a	String,	File,	or	Path	Object

java.io.FileInputStream java.io.FileWriter ...

(c) Java API File Methods

Java

Native

Libc File Methods

open unlink ...

File path input as a String, File, or Path Object

android.util.AtomicFile android.os.FileUtils ...

Java File Methods

(d) Android API File Methods

Figure 3: Four data flow paths in which file paths arrive as the arguments to libc file methods.

to a libc file methods. Next, Figure 3b depicts when the file
path originates in Java code and is passed to a JNI method
that is not a generic file method. Finally, Figures 3c and 3d
depict when the file paths are passed to the Java or Android
API file methods designed as generic file methods.

4.1.1 Libc File Methods

Standard libc file methods are well-known and defined in a
handful of header files, including stdio.h, fcntl.h, unist-
d.h, sys/stat.h, and stdlib.h. Libc file methods can be
distinguished from other methods by their arguments. Specif-
ically, a libc file method has either a string file path or a file
descriptor as an argument. We manually explored the approx-
imately 400 methods in these header files and identify 70 libc
file methods (e.g., fopen, open, rename, and unlink).

Android also uses Fortify [9] to ensure developers properly
use standard libc methods. Fortify wraps the standard libc
methods at compile time with methods that perform safety
checks at both runtime and compile time. Since FRED ana-
lyzes compiled native binaries (Section 4.3), these Fortified
libc methods must also be included in our list of libc file meth-
ods. Our manual investigation identified 6 additional libc file
methods for Android 10.0.0.

4.1.2 JNI File Methods

To find the JNI file methods, FRED first uses Soot [29, 43]
to extract a list of all JNI methods. Each method is then
processed to add back in argument variable names by extract-
ing them from the Java source code using features available
in the standard javac compiler [34]. Since many JNI file
methods have names similar to the libc file methods they
invoke, we use keywords from the file methods determined
in Section 4.1.1 (e.g., open, read, write, link, unlink, and
remove) along with their synonyms to identify potential JNI
file methods. We then identified the JNI file methods by
further filtering the resulting methods using their arguments,
looking for methods with argument names or types such as
file, path, fd, and fileDescriptor. If the Java source code
for the operating system is not available, such as in OEM

builds of Android, we decompile the Java code of the OEM
build and manually inspect the call sites of the JNI methods
to determine the arguments purpose from context in the code.

4.1.3 API File Methods

As shown in Figure 3, two classes of API file methods exist:
1) standard Java API methods, and 2) Android API methods
that make use of the standard Java API methods while provid-
ing additional functionality. FRED identifies these API file
methods using the JNI file methods identified in Section 4.1.2.
Intuitively, FRED begins with the set of all API methods
in Android. It then traverses the call graph from each API
method to find a path to a JNI file method. However, given
how heavily interconnected Android’s API methods are, re-
lying only on the occurrence of JNI file methods in the call
graph to identify API file methods results in many false pos-
itives. Therefore, we use an iterative process with manual
refinement to improve precision.
Extracting API Methods: FRED extracts the complete set
of the Android API methods available to both third-party
applications and system developers from the framework Jar
file from an AOSP build. Java language abstractions (e.g.,
abstract classes and interfaces) complicate the identification
of callable methods. For example, java.nio.file.FileSy-
stem is an abstract class and only defines private methods;
however, class implementations are accessible through static
methods in the class java.nio.file.FileSystems. To con-
sider such overriding methods, FRED uses Soot [29, 43] to
load and extract the classes and methods within the Jar file.
It then uses Soot’s class hierarchy analysis (CHA) [12] of all
the classes and methods, including additional methods that
override methods from the current set of API methods.
Identifying API File Methods: FRED performs a reaching
analysis on the call graph of each API with calls to file meth-
ods as sinks. Soot’s CHA over-approximates the runtime
call graph, introducing edges between methods that do not
exist at runtime. As such, FRED’s reaching analysis over-
approximates the actual API file methods.

To reduce over-approximation, FRED uses the following

USENIX Association 31st USENIX Security Symposium 1529

semi-automated process. (1) FRED performs a reaching anal-
ysis on the API methods, reporting an API as a possible file
method if at least one sink is encountered during the reaching
analysis. (2) The source code of the reported APIs is exam-
ined to determine if they are actually file methods. (3) Based
on this inspection, API methods are placed in either an ex-
clude list (if not a file method) or an include list (if a file
method). (4) The process is repeated from step (1), ignoring
the methods in both the exclude and include lists and repeat-
ing until all reported API methods have been examined. We
note that iteration is required due to the heavily interconnected
nature of the API methods.

This semi-automated process is completed twice: first for
Java API file methods and then for Android API file methods.
The identification Java API file methods only include those
API in java.* classes. The identification of Android API file
methods additionally uses Java API file methods as sinks.

4.2 Extracting File Paths Used in Java Code

For each RPC entry point, FRED identifies all calls to file
methods. It then performs a backwards inter-procedural data
flow analysis to identify the file paths passed to those file
methods. We now describe FRED’s data flow analysis in Java
code. Section 4.3 discusses C/C++ code called through JNI.

Java file paths are represented by the three key classes:
java.lang.String, java.io.File, or java.nio.file.Path,
where File and Path are wrappers for a String representation
of the file path. These wrappers use a combination of class
constructors and methods to specify the String value. There-
fore, extracting the file paths used in the file methods can
be reduced to reconstructing strings. To extract all the pos-
sible file paths accessed for a given RPC entry point, FRED
performs a backwards inter-procedural data flow analysis
from the variable containing the representation of the file path
opened by a file method to the RPC entry point.

Since complete file paths cannot always be determined via
static analysis, FRED creates regular expressions to match the
concrete security sensitive file paths identified in Section 4.4.
However, before generating these regular expressions, FRED
captures these partial file paths using an intermediate expres-
sion generated during the data flow analysis.

4.2.1 Intermediate Expressions

FRED uses intermediate expressions to represent both file
paths and metadata (e.g., source method and statement) for
each expression part. The metadata aids post-processing, mak-
ing it possible to detect situations not handled by the data flow
analysis, and to simplify the expressions when transforming
them to regular expressions.

FRED’s intermediate expressions are trees that join string
segments using boolean decisions. Each node in an interme-
diate expression tree is either a Leaf or a Branch. As shown

Table 1: Building Blocks for Intermediate Expressions

Node Name Type Description
Constant Leaf A Java primitive or string constant value.
Any Leaf Represents a value that could not be determined.
Unknown Leaf Represents a unexpected outcome in the analysis.
PlaceHolder Leaf A placeholder for a value that is being computed.
Append Branch Concatenates the values of its children.
Or Branch Represents the possibility that any one of its chil-

dren is a valid value.
Loop Branch Indicates the existence of a loop.
Parent Branch The value is the parent path of its child’s value.
Name Branch The value is the file name of its child’s value.
EnvVar Branch Represents a value retrieved from the environment.

Its child represents the key used to get the value.
SysVar Branch Represents a value retrieved from the system prop-

erties. Its child is the key used to retrieve the value.

in Table 1, each Leaf node is sub-divided into Constant, Any,
Unknown, and PlaceHolder. A Constant node identifies lit-
eral constants hard-coded into the Java source code. An Any
node represents a value that could not be determined from the
source code. Examples of Any nodes include values repre-
senting a UserId, package name, time stamp, or array value.
In Section 4.2.3, these values resolve to regular expressions
of either .* or \d+. In contrast, an Unknown node indicates
the data flow analysis encountered a situation that it could not
handle. Finally, a PlaceHolder node is used for values that
have not yet been computed by the data flow analysis. The
occurrence of Unknown and PlaceHolder nodes in the final
intermediate expression output indicates that the data flow
analysis needs modification to handle a special case.

Branch nodes are primarily either an Append or an Or node.
An Append node represents a boolean AND operation, where
child nodes are concatenated in the order listed. The Append
node is specifically designed to handle the concatenation of
strings and other values that commonly occur when a file path
is constructed in Java source code. In contrast, an Or node
represent a boolean OR operation and captures when the data
flow analysis encounters a variable with multiple possible
values. There are also several other subtypes of Branch nodes.
Section 4.2.2 describes them in more detail.

4.2.2 Data Flow Analysis

FRED performs a backwards inter-procedural data flow anal-
ysis to determine possible values for the file paths passed as
arguments to file methods invoked by Java-based RPC en-
try points. The sink for this backwards data flow analysis is
the file path argument. For many file methods, the sink is
a string (i.e., java.lang.String). When a file methods has
multiple string arguments, it is difficult to know which ar-
gument is the file path. Fortunately, the regular expressions
produced for non-file paths will not match any concrete files
from the file system. Therefore FRED conservatively de-
termines values for all string arguments. For file methods
that are passed non-string file paths (e.g., java.io.File and
java.nio.file.Path), FRED first performs use-def analysis
from the argument to identify the location of the constructor,

1530 31st USENIX Security Symposium USENIX Association

which is passed a string. For this discussion, this constructor
can be viewed as the sink for the data flow analysis.

At a high level, FRED determines the possible values of
file paths by annotating instructions in the Inter-procedural
Control Flow Graph (ICFG) of the Android framework with
intermediate expressions. This process begins by annotating
the data flow sink (i.e., file path argument) with a Place-
Holder node. FRED then performs a inter-procedural use-def
analysis to traverse the ICFG backwards, using CHA [12]
where necessary. If the definition of the argument is a con-
stant value, the PlaceHolder node is replaced with a Constant
node that includes the value. However, there are various sce-
narios when the definition is not a constant. In these cases,
FRED annotates the definition with a new PlaceHolder node
and recursively1 attempts to determine the value for this new
PlaceHolder node. Once the value for a PlaceHolder node
is determined, the recursive call returns the resulting inter-
mediate expression to the earlier invocation, populating its
PlaceHolder node, and possibly combining multiple inter-
mediate expressions with Append or Or branch nodes. We
note that while FRED identifies the values for each sink se-
quentially, it retains the annotations on the ICFG to avoid
resolving them multiple times.

As this recursive algorithm proceeds, there are frequently
multiple PlaceHolder nodes annotated on the ICFG at any
point in time. FRED leverages this fact to handle loops, en-
suring that the value for a PlaceHolder node is only ever
computed once. Specifically, FRED constructs a graph of
PlaceHolder nodes where an edge between two PlaceHolder
nodes occurs when one references the other in its computing
expression. FRED then uses Johnson’s algorithm [28] for
detecting elementary circuits to locate simple cycles in the
graph. When this occurs, the PlaceHolder node referencing
the head of the simple cycle is replaced with a Loop node.
Empirically, we found that Loop nodes are little more than a
source of noise in our analysis. Therefore, FRED currently
removes Loop nodes when transforming intermediate expres-
sions into regular expressions (Section 4.2.3).

There are various scenarios when the use-def analysis for
a PlaceHolder node does not find a constant at the defini-
tion. FRED handles a variety of special cases including string
builders, path builders, directory listings, and parent path
and file name access methods. FRED also handles envi-
ronment variables and system properties by identifying the
string-based keys used to look up these values. Finally, FRED
handles specific fields in Android framework classes by per-
forming a def-use analysis to determine all possible assign-
ment sites for the framework. This information is later used
during the backwards data flow analysis to combine possible
values. Appendix A details each of these cases.

1While we describe the algorithm as recursive to simplify discussion, it
is in fact tail-recursive and our implementation is iterative.

4.2.3 Regular Expression Transformation

After FRED identifies intermediate expressions for the argu-
ments to file methods, it transforms them into regular expres-
sions. This transformation is performed as follows.
Step 1 (Remove Loops): FRED removes all Loop nodes
from intermediate expressions and any empty Branch nodes
that result. We empirically found that the loops captured by
our data flow analysis did not actually influence the construc-
tion of the file paths within the code. As such, Loop nodes
can be safely removed from intermediate expressions.
Step 2 (Resolve System and Environmental Variables):
To resolve system properties, FRED uses the various .prop

files of the Android system (e.g., /default.prop and /system-

/build.prop) to lookup the value based on the key determined
during data flow analysis. To resolve environmental variables,
FRED uses adb shell echo ${VARIABLE} to get their values.
Step 3 (Resolve UserId Variables): Android supports mul-
tiple physical users. It is common for file paths to include the
UserId of the current physical user to separate user specific
files. To avoid unnecessary Any nodes, we replace UserId
with the string “0”, which is the UserID for the primary user
(and the only user on our test devices).
Step 4 (Resolve TVInputManagerService Regex): The
TVInputManagerService contains two entry points that open
file paths in the /dev directory based on a regular expression.
For these entry points, FRED extracts the regular expression
used to match files and replaces the Any node with the ex-
tracted expressions.
Step 5 (Convert to DNF): FRED transforms the AND and
OR logic of Append and Or nodes into disjunctive normal
form (DNF), maintaining the order of the append operations
throughout the transformation. This process flattens the tree
and simplifies file path dependent transformations (e.g., de-
termining the parent or file name of a existing file path).
Step 6 (Resolve Parent and File Names): With the interme-
diate expression in DNF and the remaining constants resolved,
FRED can evaluate the Parent and Name branch nodes. At
this point, Parent and Name nodes typically have a single
Append child that concatenates parts of a path. For this Ap-
pend node, FRED locates the last occurrence of the ‘/’ path
separator. Parent nodes are replaced with a new Append node
containing all the children that occur before the last ‘/’ from
the previous Append node. Any text after the ‘/’ within the
node that contains the last occurrence of ‘/’ is removed. Name
nodes are replaced with a new Append node containing all the
children that occur after the last ‘/’ from the previous Append
node. Any text before the ‘/’ within the node that contains the
last occurrence of ‘/’ is removed. When the child of a Parent
or Name node is an Any node, the Parent or Name node is
simply replaced with the Any node.
Step 7 (Combine and Normalize): After the previous step,
the intermediate expression only contains Constant, Any, Ap-

USENIX Association 31st USENIX Security Symposium 1531

pend, and Or nodes. All adjacent Constant nodes under an
Append node are concatenated into a single Constant node.
Similarly, all adjacent Any nodes under an Append node are
replaced with a single Any node. The single Any node is
only set to \d+ if all of the Any nodes under the Append are
\d+. Otherwise, a .* Any node is used. Finally, duplicate and
trailing ‘/’ characters are removed from Constant nodes.

Step 8 (Duplicates Removal): The DNF form of the inter-
mediate expression may cause a Or node to have multiple
children that resolve to the same regular expression value.
FRED removes these duplicates.

Step 9 (Regular Expression Creation): In the final step,
FRED creates the regular expression. Constant nodes are
string values. Any nodes are either .* or \d+, which was
determined during data flow analysis. The children of Append
nodes are concatened. Finally, the children of Or nodes are
combined by inserting ‘|’ between each node.

4.3 Extracting File Paths Used in Native Code

Android’s Java-based RPC entry points often use the Java
Native Interface to invoke code written in C/C++. Figure 3
shows two scenarios that are not covered by the Java analysis
described in Section 4.2. Both scenarios occur when a JNI
method that is not a generic file method calls a libc file method.
The first scenario defines the file path string within C/C++
code (Figure 3a), whereas the second scenario passes the file
path string from Java to C/C++ code (Figure 3b). FRED
extracts these file paths from binary .so files using angr [39].

Identifying JNI Methods in Native Code: While the nat-

ive keyword identifies JNI methods in Java code, the corre-
sponding C/C++ function is not clearly annotated in either the
source or binary code. The C/C++ name also does not always
match the Java name (e.g., method overloading). For each
.so file, we use angr to traverse the CFG from all exposed
library functions to identify calls to jniRegisterNativeMeth-

ods. We then use angr’s symbolic execution engine to identify
the array of JNINativeMethod structures passed as a parame-
ter. This structure provides a mapping from the Java method
signature to a function pointer in the .so file. We traverse
the array to identify the function address of the C/C++ han-
dler for each JNI method. In a small number of cases, we
found function addresses to be NULL and used function name
matching as a fallback. As the function name resolution was
verified to be correct for all such NULL address cases, we leave
additional address resolution techniques to future work.

Identifying File Paths: FRED first traverses the ICFG from
the JNI method handler to identify any calls to libc file meth-
ods (Section 4.1.1). When a file method is found, FRED uses
angr’s Reaching Definition Analysis (RDA) to determine the
possible values for the relevant file path arguments. To reduce
the search space, FRED only includes nodes in the variable’s
backward slices as potential sources. For each variable defini-

tion source, FRED determines if the value originates within
the C/C++ code or if it is passed from Java. If it originates
in C/C++ code, FRED extracts the constant string. Note that
angr correctly propagates strings through standard libc func-
tions (e.g., strcpy) and therefore automatically handles string
construction. We did not encounter the more complicated
string construction methods found in the Java code.

Finally, FRED outputs a JSON file mapping each Java JNI
method name to the file paths used in file methods, including
when the path originates in Java. FRED then uses Soot’s call
graph from RPC entry points to JNI calls to supplement the
file paths identified in Section 4.2.

4.4 Security-Sensitive File Paths

FRED’s re-delegation analysis (Section 4.5) matches the file
paths from Sections 4.2 and 4.3 with concrete file paths on a
device. Using concrete file paths both reduces noise and helps
determine if a re-delegation is possible on a given device. We
further consider only security-sensitive concrete file paths to
limit manual inspection to areas of potential vulnerabilities.

FRED uses a real device to extract the concrete file paths
and file access control policy. Specifically, FRED executes
adb shell ls -laRZ as root on a rooted device to extract this
information. FRED then processes the file system informa-
tion to resolve symbolic links, taking care to avoid circular
paths. In doing so, FRED ignores symbolic links in paths
starting with /sys/.*/subsystem and /proc/.*/fd as these
all point back to the root of the file system. We considered
statically extracting files from the firmware image using Big-
MAC [26]; however, it has very limited ability to identify
files in /data, which contains many security-sensitive files
that match file paths determined by FRED.

Finally, FRED classifies each concrete file and directory as
security-sensitive based on the file owner and group. Specif-
ically, we observe that most system services run as system

and Android has multiple files in /system/etc/permissions

that define GIDs that are automatically given to applications
granted specific Android permissions. Therefore, a path is
marked security sensitive if it has a owner or group of system,
or the group corresponds to an Android permission GID.

4.5 Re-Delegation Detection

FRED’s re-delegation analysis identifies a set of candidate
RPC entry points (Definition 1) for manual inspection. FRED
focuses on exploitation by third-party applications as these
represent the most significant risk. Malicious applications and
services included in OEM builds are outside the scope of this
paper. While it is possible for exploited system applications
to exploit confused deputies, the interactions between system
applications and system services have been considered by
prior work [23, 24, 46].

1532 31st USENIX Security Symposium USENIX Association

Re-Delegation of System Files: For each RPC entry point
that accesses a system UID or GID file or directory, FRED
checks if the RPC entry point’s authorization checks contain
at least one system-level permission (i.e., those permissions
without a protection level of normal, dangerous, instant, run-
time, or pre23). If so, FRED excludes the RPC entry point
from the candidate set. RPC entry points can also be restricted
based on specific PIDs, UIDs, and GIDs. Similar to ARF [23],
FRED checks if the first conditional statement is a check for
a special UID, PID, or GID, and if the RPC entry point in-
cludes an authorization check that restricts it to special callers
(e.g., calling getActiveAdminWithPolicyForUidLocked() in
the DevicePolicyManagerService). If so, FRED excludes the
RPC entry point. The remaining RPC entry points that access
system UID or GID files and directories are candidates.

Re-Delegation of Other Files: FRED also considers files
and directories with a GID that maps to an Android permis-
sion. An RPC entry point is a candidate for manual inspection
if the permissions mapped to a file’s GID is not a subset of
the permissions checked by the RPC entry point. Similar to
system files, FRED excludes RPC entry points that are not
accessible to third-party applications.

Reducing Manual Inspection: While performing manual
inspection of the AOSP Android 10.0.0, we developed two
methods to systematically reduce the number of candidate
RPC entry points that require manual inspection.

System-Specified Values - We discovered a number of un-
resolved Any nodes that are the result of values that are both
specific to the caller and cannot be influenced by the caller
(e.g., application name, data path, and code path). As such,
a file path constructed of such components is unique to the
caller, implying the caller is intended to have access to these
resources. Since these Any nodes caused the regular expres-
sions to match the majority of file paths within the file system,
they were excluded before matching security-sensitive files.

Safe File Method Callers - We also found that file methods
accessing security-sensitive files were often called from the
same method. Reviewing these methods, we found that many
of them could only be called in safe ways. In total, we found
41 unique callers of file methods where the file being accessed
could not be influenced or have its data retrieved by any entry
point. We exclude the regular expressions steaming from
these 41 sinks from the output of FRED.

5 Evaluation

This section demonstrates FRED’s utility by applying it to
three Android firmware images and investigates potential
vulnerabilities. Recall that FRED automates the discovery
of candidate RPC entry points (Definition 1) and manual
investigation is required to determine if a given candidate
RPC entry point has improper file re-delegation (Definition 2).

5.1 Experimental Setup
Our current implementation of FRED was designed for AOSP
version 10.0.0_r1 (i.e., API 29) built for a Pixel 3a device. We
previously ran FRED on AOSP version 9.0.0_r11 for a Pixel
3 device, identifying the same vulnerabilities and comparable
findings as those highlighted this section. We also ran FRED
on two additional Android 10 firmware images. Our study
included the following three devices.

• AOSP Pixel 3a running a user debug build of Android
10 r1. This device represents the primary target used
when developing FRED.

• Google Pixel 3a running Android 10 build QQ3A.20-
0805.001. This device represents a target close to our
original target, demonstrating FRED’s ability to run on
firmware images without source code. No changes were
required to run FRED on this target.

• Samsung S20 running Android 10 build QP1A.19071-
1.020. This device has significant differences from our
original target. Running FRED on this target required
modifications to ACMiner’s list of methods to not an-
alyze to address call graph imprecision that prevented
analysis from completing on our computing resources.
We also added 88 file methods identified by re-running
FRED’s semi-automated API file method analysis.

Our analysis was run on a Dell R611 server with an Intel
Xeon E5-2620 V3 (2.40 GHz) processor and 128 GB RAM
running VMware ESXi. A single VM running Ubuntu 18.04.3
and OpenJDK 1.8.0_171 was given full host resources.

ACMiner took approximately 1 hour and 45 minutes to
extract authorization checks of RPC entry points for the AOSP
Pixel 3a. FRED took approximately 10 minutes to construct
a complete list of the security sensitive file paths, 1 hour and
16 minutes to extract the intermediate expressions from Java
code, 15 minutes to extract file paths from native code, and
12 minutes to convert the intermediate expressions to regular
expressions and identify candidate RPC entry points. For the
Google Pixel 3a, all stages of the analysis had a runtime that
was virtually the same as that of the AOSP Pixel 3a. However,
as a result of the increased code base and the significant
increase in the number of RPC entry points, the runtime of
FRED on the Samsung S20 doubled to approximately 4 hours
when extracting authorization checks and 2 hours and 45
minutes when extracting the intermediate expressions from
Java code. All other stages had virtually the same runtime.

5.2 FRED Characterization
We initially analyzed an AOSP Pixel 3 running Android 9.0.0
(the current version when we began our work). We then
migrated to different builds of Android 10. The following
discussion focuses on the Android 10 builds. However, we

USENIX Association 31st USENIX Security Symposium 1533

Table 2: Characterization of Program Analysis

AOSP
Pixel 3
(9.0.0)

AOSP
Pixel 3a
(10.0.0)

Google
Pixel 3a
(10.0.0)

Samsung
S20

(10.0.0)
API Methods 65,508 73,073 73,461 83,346
JNI Methods 5,176 5,416 5,419 7,023
JNI File Methods 368 360 360 360
Java API File Methods 907 888 888 888
Android API File Methods 962 1,068 1,087 1,155
Total File Methods 2,237 2,316 2,335 2,403
Total RPC Entry Points 5,337 6,287 6,304 12,169
RPCs with File Methods 1,966 2,927 2,985 4,163
File Methods in RPCs 661 602 717 766
JNI Methods in RPCs 365 387 390 860
Sec. Sensitive File Paths 139,463 157,074 56,434 56,559

include general statics for Android 9.0.0 in Table 2 to provide
context as we discuss the minimal manual effort required to
migrate FRED between different versions of Android.

5.2.1 File Methods in Practice

JNI File Methods: The procedure in Section 4.1.2 took 24
hours to identify the JNI file methods from a total of 5,176 JNI
methods for AOSP 9.0.0. The process only took an additional
hour for the 240 JNI methods added to AOSP 10.0.0. As
Google 10.0.0 only added 3 JNI methods over AOSP 10.0.0,
it only took a few minutes. However, the added 1,607 JNI
methods of the Samsung S20 device took an additional 3
hours to evaluate. As shown in Table 2, we identified 368
JNI file methods for AOSP 9.0.0 which was reduced to 360
JNI file methods for AOSP 10.0.0 because of changes in the
code of the Java API. We did not find any additional JNI file
methods for either the Google or Samsung devices.
API File Methods: While the semi-automated procedure
for identifying API file methods (Section 4.1.3) may appear
manually intensive, it is largely a one-time cost with minimal
additional manual effort needed to transition to a new version
or build. For AOSP 9.0.0, the process took approximately 96
hours to identify the API file methods from a total of 65,508
API methods. However, the process only took an additional
5 hours to consider the 7,565 API methods added in AOSP
10.0.0. As there was a minimal addition of 388 API methods
for Google 10.0.0 compared to AOSP 10.0.0, the process only
took an additional 30 minutes and no adjustments were made
manually. However, the additional 10,273 API Methods for
the Samsung S20 device took an additional 7 hours.

Table 2 shows that for AOSP 9.0.0, out of the possible
65,508 API methods, FRED identified 2,237 file methods
consisting of 368 JNI file methods, 907 Java API file methods,
and 962 Android API file methods. For AOSP 10.0.0, out
of the possible 73,073 API methods, number of file methods
increased to 2,316 despite a decrease in the number JNI file
methods (360) and Java API file methods (888). This decrease
in JNI and Java API file methods was a result of modifications
made to the Java API in Android 10. Across different builds of

the same version, we observed no changes in the JNI and Java
API file methods. All changes were in the Android API for
the Google 10.0.0 and Samsung devices which increased the
total number of file methods to 2,335 and 2,403 respectively.
RPC Entry Points Accessing Files: Using these lists of file
methods, FRED identified 1,966 RPC entry points containing
calls to 661 unique file methods for AOSP 9.0.0. For AOSP
10.0.0, the number of RPC entry points increased to 2,927
while the number of unique file methods decreased to 602.
As shown in Table 2, the Google 10.0.0 and Samsung devices
both saw an increase in the RPC entry points and the unique
file methods called by them over those in AOSP 10.0.0.

5.2.2 Characterizing Security Sensitive Files Paths

As discussed in Section 4.4, a file path is considered secu-
rity sensitive if it has a UID or GID of system, or a GID
corresponding to an Android permission. Table 2 illustrates
the number of security sensitive files identified for each de-
vice. Both AOSP 9.0.0 and AOSP 10.0.0 devices contain over
130,000 security sensitive file paths, while both the Google
and Samsung devices have around 56,000 security sensitive
file paths. The difference results from the AOSP images being
built with the user debug flag (providing root access). The
user debug flag also provides a more permissive SELinux
policy for adb, allowing it to view file paths that are normally
restricted by production builds.

5.2.3 Reducing Candidate RPC Entry Points

For AOSP 10.0.0, the file path extraction procedure (Sec-
tion 4.2) produced 7,331 unique intermediate expressions
spanning 2,927 unique RPC entry points and reducing to 462
unique regular expressions. Table 3 shows there was only a
minor change in these numbers for the Google device; how-
ever, the Samsung device saw a significant increase in all
three. This difference is likely attributed to there being al-
most double the number of RPC entry points for the Samsung
device compared to AOSP 10.0.0 (Table 2).

Table 3 also shows the reduction after using the regular
expressions to match security-sensitive files and applying
the refinements to reduce manual inspection. AOSP 10.0.0
contains 327 unique intermediate expressions spanning 179
unique RPC entry points and reducing to 63 unique regular
expressions that match 738 unique security sensitive file paths.
Table 4 characterizes the number of intermediate expressions
removed by each reduction method. As shown, the most
significant reduction in intermediate expressions is a result
of our list of 41 file method callers predetermined to be safe.
Table 5 shows the number of intermediate expressions that
when transformed into regular expressions did not match any
security sensitive file paths.

Finally, Table 3 shows the remaining RPC entry points
requiring manual inspection after the re-delegation logic is

1534 31st USENIX Security Symposium USENIX Association

Table 3: FRED Reducing Candidate RPC Entry Points

AOSP Pixel 3a Google Pixel 3a Samsung S20
All RPC Entry Points With Intermediate Expressions

Intermediate Exprs. 7,331 7,281 8,150
Regexes 462 463 769
RPC Entry Points 2,927 2,985 4,163

Regex Matches of Security Sensitive Files After Exclusions
Intermediate Exprs. 327 590 455
Regexes 63 88 115
RPC Entry Points 179 291 380
Files 738 1,152 1,403

Candidate RPC Entry Points Requiring Manual Inspection
Intermediate Exprs. 23 42 113
Regexes 7 10 36
RPC Entry Points 23 31 60
Files 51 44 143

Table 4: Intermediate Expressions Excluded from Analysis

AOSP Pixel 3a Google Pixel 3a Samsung S20
Composed of System Specified Values of the RPC Caller

Intermediate Exprs. 228 227 600
Regexes 16 16 31
RPC Entry Points 605 609 804

According to a List of Pre-Determined Safe File Method Callers
Intermediate Exprs. 5,208 5,173 5,540
Regexes 136 136 113
RPC Entry Points 914 920 1,329

applied. Note that while we discuss the results in terms of
the number of unique RPC entry points, expressions, and
files, a candidate RPC entry point may have multiple files
that require separate manual inspections. For AOSP 10.0.0,
FRED identified 23 candidate RPC entry points potentially
re-delegating access to 51 files. Of these 23 deputies, 21
resulted from Java file accesses and 2 resulted from C/C++ file
accesses. Each of the 2 candidate RPC entry points accessed a
single file in C/C++ code that was not in the list of files being
accessed by the other 21 candidate RPC entry points. Similar
results were observed for the Google device, including the
same candidate RPC and files from the C/C++ code analysis.

A manual review of the 23 candidate RPC entry points for
AOSP 10.0.0 identified 10 deputies that both (a) are accessi-
ble by third-party applications and (b) improperly re-delegate
access to one or more security-sensitive the files. The remain-
ing 13 deputies safely use the files, either using them in a
way that is not accessible to a caller or in a way that the caller
could only retrieve or modify a subset of the data in the file
by design. The same vulnerable deputies were found in both
the Google and Samsung devices.

For the Samsung device, FRED identified significantly
more candidate RPC entry points (60) and files (143) com-
pared to both the AOSP 10.0.0 and Google devices. This
likely results from the Samsung device containing more RPC
entry points accessing files. The Samsung device included the
same candidate RPC entry points and files from the C/C++
code analysis as the AOSP 10.0.0 and Google devices. In-

Table 5: Regex Does Not Match Any Security Sensitive Files

AOSP Pixel 3a Google Pixel 3a Samsung S20
Intermediate Exprs. 1,618 1,291 1,555
Regexes 279 255 534
RPC Entry Points 973 908 1,650

cluded in these 60 candidate RPC entry points were 2 that
re-delegate access to the same additional file from C/C++
code.

5.2.4 Impact of SEAndroid

Our re-delegation analysis did not account for the impact of
SEAndroid policy, which may restrict (a) the RPC entry point
from accessing a file even if allowed by the Unix permissions
and (b) a third-party application from accessing the service.

RPC entry points accessing files: The RPC entry points
considered by our analysis are registered with Android’s Ser-
vice Manager. We verified that most of the corresponding
services execute with the system_server SEAndroid label by
checking (1) whether a service gets started in system server’s
source code, (2) whether the service is running as a thread of
system server in ps -AZ, or (3) whether SEAndroid allows sys-
tem server to add the service. One exception is entry points
under com.android.internal.telephony which runs in the
com.android.phone process with radio SEAndroid label.

For each concrete security-sensitive file, we used SETo-

ols [1] to determine if the binary policy bundled with the
firmware allows the SEAndroid context (e.g., system_server)
of the entry point’s corresponding service to access the SEAn-
droid context for that file in any way. Empirically, we found
that SEAndroid does not affect our analysis with the AOSP
or Google Pixel 3a firmware. However, for the Samsung de-
vice, the SEAndroid policy removes 3 RPC entry point to file
mappings consisting of 2 RPC entry points and 3 files.

Apps accessing RPC entry points: We confirmed that the
SELinux policy does not restrict third-party applications from
calling the 10 vulnerable AOSP deputies discussed in Sec-
tion 5.3. SELinux policy defines call, transfer, and find

permissions for Binder service operations. The call and -
transfer permissions are generally granted to apps so that
they can make binder calls into the system server and ser-
vice manager. The find permission is commonly used to
allow finding services via the service manager (though An-
droid primarily gates access to services at the RPC entry point
level via Android permissions, not at the service level). The
AOSP policy allows the untrusted_app_all domain to find

any Binder service with the app_api_service SELinux at-
tribute. We confirmed that all four vulnerable AOSP system
services in Table 6 have this attribute. For the additional B-
lockchainTZService service in the Samsung device, we did
not observe the app_api_service attribute. However, due to
the more complex nature of the Samsung SELinux policy,

USENIX Association 31st USENIX Security Symposium 1535

we notified Samsung of the potential vulnerabilities anyway.
Interestingly, Samsung informed us that they fixed the two
vulnerable deputies adding SELinux policy to prevent third-
party applications from accessing BlockchainTZService.

5.3 Vulnerability Study
Table 6 shows the vulnerabilities discovered following our
manual inspection methodology described in Appendix B.
While some deputies may re-delegate access to multiple files,
we only report one vulnerability per deputy. We group the
re-delegation vulnerabilities into 3 categories: (1) ability to
manipulate data in the file(s), (2) exposure of data from or
about the file(s), and (3) denial of service. While 10 of the
12 vulnerabilities were originally discovered in AOSP 10.0.0,
they were confirmed to also exist in the Google and Samsung
devices. The remaining two vulnerabilities are specific to
the Samsung device. Finally, in all cases, the file path being
improperly accessed was statically defined in the code and
not controllable by an attacker.
Responsible Disclosure: We verified all of the potential re-
delegations in AOSP through manual inspection of source
code. All identified vulnerabilities identified in AOSP have
been submitted to Google via Android Security Rewards Pro-
gram. Of those submitted, 3 received a “moderate” severity
rating and have been assigned the common vulnerability and
exposures (CVE) identifiers CVE-2020-0208, CVE-2020-
0209, and CVE-2020-0210. All 3 CVE vulnerabilities were
fixed in the June 2020 security update for Android 10. The
two vulnerabilities identified in the Samsung device involved
code paths in native code for which we could not inspect.
We provided the names of the deputies and corresponding
JNI calls to Samsung, who confirmed the vulnerabilities and
assigned CVE identifiers CVE-2021-25460 and CVE-2021-
25459. Fixes for the Samsung vulnerabilities were released
to devices in September 2021.

5.3.1 VC1: Data Manipulation

FRED identified 5 vulnerabilities (1→5 in Table 6) that en-
able a third-party application to access or manipulate data in
security sensitive files. Deputies 1→4 allow third-party appli-
cations to manipulate data in the multiple files managed by the
AccountManagerService. For the purposes of this discussion,
we focus only on the key database files of /data/system_d-
e/0/accounts_de.db and /data/system_ce/0/accounts_ce.-

db as they are the main source of the vulnerabilities. Both
database files have ownership system:system.

In a multi-user system, removeSharedAccountAsUser and
renameSharedAccountAsUser (CVE-2020-0208 and CVE-
2020-0209) both allow any application running on the current
user to remove or rename the shared accounts (e.g., Facebook)
of that user. Account manipulation is typically restricted to
the application that manages the account. However, through

these deputies, any application can modify the shared account
data in the two database files, data which requires the caller
to have the system level permissions MANAGE_USERS and CR-

EATE_USERS to create. Similarly, invalidateAuthToken and
updateCredentials both manipulate data in these databases,
allowing any application to affect portions of the databases.

Deputy 5, add in the DropBoxManagerService, allows any
caller to clear system logging information which may hide
evidence of an attack. A call to add allows the caller to write
a data packet of any form to a temporary log file in the /dat-

a/system/dropbox with ownership system:system. However,
continuous calls to add cause the deputy to clear older logging
files when the device is low on space or the number of files
exceeds 1000. As such, an attacker could hide evidence of
their attacks by manipulating this deputy.

We note that Deputy 5 was previously independently iden-
tified by Invetter [47] via an alternative analysis approach
designed to study input validation. Whether or not Deputy 5
is a vulnerability is also subjective. The RPC documentation
indicates that it is designed to discards logged data after reach-
ing 1000 files. However, the service is designed to only be
accessed by other system services, as evidenced by the docu-
mentation and the system permissions checked by the other
RPCs (READ_LOGS or DUMP). We include it in our vulnerability
list, because it allows third-party applications to perform this
manipulation.

5.3.2 VC2: Data Leaks

FRED identified 5 deputies (6→10 in Table 6) that leak data
from security sensitive files to third-party applications. get-
SharedAccountsAsUser (CVE-2020-0210), like 1→2, affects
data in the databases managed by the AccountManagerServic-

e. It allows any application running on the current user to get
a list of the accounts for that user, an action that is typically
restricted to the application that manages the account. Similar
to 3→4, getPreviousName and isCredentialsUpdateSugge-

sted both manipulate data in the same databases. Finally,
deputies 9→10, return information about security sensitive
files, with getTotalBytes returning the size of /data and i-

sStorageLow returning if /data is low on space. /data has
ownership system:system.

5.3.3 VC3: Denial of Service

FRED identified 2 deputies (11→12 in Table 6) that result in
a local temporary denial of service. Both of these deputies
are unique to the Samsung firmware and exist within the Blo-

ckchainTZService. In both cases, the Java RPC entry points
(sspInit and sspExit) contain no authorization logic and
immediately call JNI methods (nativeSspInit and nativeS-

spExit). Our native code analysis identified that these JNI
methods both access the /dev/ssp device node, which is as-
signed the user and group system. We were unable to reverse

1536 31st USENIX Security Symposium USENIX Association

Table 6: A description of vulnerabilities, along with the services in which they are present.

Deputy (RPC Service) Impact Firmware File Path Vulnerability Description
VC1: Data Manipulation

1. removeSharedAccountAsUser
(AccountManagerService)

Moderate
(CVE)

AOSP Static Missing check isAccountManagedByCaller allows apps of the current user to remove shared
accounts they do not manage.

2. renameSharedAccountAsUser
(AccountManagerService)

Moderate
(CVE)

AOSP Static Missing check isAccountManagedByCaller allows apps of the current user to rename shared
accounts they do not manage.

3. invalidateAuthToken
(AccountManagerService)

Minor AOSP Static Missing check isAccountManagedByCaller allows callers to invalidate an authorization to-
ken for an account they do not manage.

4. updateCredentials
(AccountManagerService)

Minor AOSP Static Missing check isAccountManagedByCaller allows callers to update the credentials of an
account they do not manage.

5. add
(DropBoxManagerService)

Minor AOSP Static A missing permission check for writing to system log files allows any app to record system
restricted logging information.

VC2: Data Leaks
6. getSharedAccountsAsUser
(AccountManagerService)

Moderate
(CVE)

AOSP Static Missing check isAccountManagedByCaller allows apps of the current user to get shared
accounts they do not manage.

7. getPreviousName
(AccountManagerService)

Minor AOSP Static Missing check isAccountManagedByCaller allows any caller to get the previous name for
an account they do not manage.

8. isCredentialsUpdateSuggested
(AccountManagerService)

Minor AOSP Static Missing check isAccountManagedByCaller allows non-managing callers to see if the ac-
count credentials should be updated.

9. getTotalBytes
(StorageStatsService)

Minor AOSP Static Missing check for PACKAGE_USAGE_STATS allows any app to get the size of system restricted
directories /system and /data.

10. isStorageLow
(PackageManagerService)

Minor AOSP Static A lack of any authorization checks allows any app to determine if the system restricted direc-
tory /data is low on space.

VC3: Denial of Service
11. sspInit
(BlockchainTZService)

Moderate
(CVE)

Samsung Static Missing privilege check allows apps to perform temporary denial of service of the /dev/ssp
device node.

12. sspExit
(BlockchainTZService)

Moderate
(CVE)

Samsung Static Missing privilege check allows apps to perform temporary denial of service of the /dev/ssp
device node.

engineer the logic in the native library. We informed Sam-
sung of the potential vulnerability, and they confirmed that
the RPC entry points were indeed missing checks. Samsung
indicated that the missing checks allow a third-party applica-
tion to start or terminate the BlockchainTZService, leading
to a local temporary denial of service of the /dev/ssp device
node. Samsung assigned two CVEs (CVE-2021-25459 and
CVE-2021-25460) and added SELinux policy to ensure only
privileged callers can access the BlockchainTZService.

5.3.4 Non-Vulnerable RPCs

Of the 23 candidate RPCs for AOSP 10.0.0, 13 were deter-
mined to be non-vulnerable. As outlined in the inspection
methodology (Appendix B), these were eliminated for two
reasons. (1) The arguments passed in or actions of a RPC
caller could not effect modifications made to the files by the
RPCs or the data returned by the RPCs from the files. (2)
The RPCs were determined to be operating correctly by del-
egating restricted access to a more sensitive file. The same
reasoning was used to eliminate the additional 8 candidate
RPCs for the Google device. We also applied the reasoning to
the additional 35 candidate RPC entry points for the Samsung
device; however, the significant amount of new functionality
restricted the manual inspection. We focused efforts on RPCs
and files with interesting names, but found many new types
of Samsung-specific authorization checks, which prevented
improper file re-delegation.

6 Limitations

FRED relies on ACMiner [22] and retains many of its limi-
tations. These limitations include the limitations shared by
static analysis tools of Android (e.g., native code, runtime
modifications, reflection, dynamic code loading, and Message
Handlers), the inability to reason about authorization check
ordering, and manually defined input. In addition to the man-
ually defined input required by ACMiner, FRED requires a
domain expert to define the file methods used for file path
extraction. Additionally, as file access control policy is some-
times defined at runtime, FRED can only detect re-delegation
instances for files that exist on the device at the time the
file system dump is produced. Finally, as the extracted file
paths sometime depend on runtime generated values (e.g., val-
ues from databases, RPC callers, package information, etc.),
FRED approximates these values by replacing them with .*

in the regular expressions. We found these approximations
minimal effect on FRED’s ability to detect re-delegation.

7 Related Work

Nearly all modern operating systems rely on privileged
deputies to protect security sensitive resources while pro-
viding an interface for indirect access by lesser-privileged
software. As such, it is no surprise that confused deputy vul-
nerabilities [25] are a classic software security problem. Felt
et al. [19] were the first to directly discuss confused deputies
in the context of Android, introducing the concept of permis-
sion re-delegation (though Davi et al. [11] had previously

USENIX Association 31st USENIX Security Symposium 1537

identified privilege escalation attacks). However, these and
other works [13, 24, 31, 46] largely considered permission
re-delegation in cases where the deputies are applications.
Performing static program analysis of Android applications
is significantly easier than the Android framework, and there
are many tools [5, 20, 21] publicly available for doing so.

ARF [23] was the first tool to consider permission re-
delegation in the Android framework, which contains a highly
interconnected collection of system services that frequently
call RPC interfaces in one another. This work identified that
this high degree of interconnection combined with frequent
changes in ambient authority can easily result in confused
deputy vulnerabilities. However, ARF does not directly con-
sider files as protected resources. Rather, it considers the pro-
tection policy for each RPC entry point and identifies when a
caller entry point is not at least as restrictive as a callee entry
point. Similar to FRED, ARF is built upon ACMiner [22],
which identifies all of the RPC entry points in the Android
framework and extracts the access control checks that have
been hard-coded by developers. ACMiner’s design shares
much in common with Kratos [38] and AceDroid [2]. These
three tools seek to identify missing checks at RPC entry points
by using consistency as an approximation for correctness, as
there is no ground truth for the access control specification.
Invetter [47] combines machine learning and static program
analysis of Android system services to identify insecure in-
put validations, which represent service-specific sanity checks
when performing operations. A number of their findings relate
to missing permission checks in RPC entry points. Finally,
FANS [30] fuzzes entirely native system services; however, it
does not consider access control policy.

System service RPC entry points are similar to, but differ-
ent than the Android APIs called by third party applications.
These so called “public APIs” are wrappers around binder
IPC code that sends messages to a subset of the overall RPC
entry points. Mapping public Android APIs to permissions
is a well researched topic. Stowaway [16] fuzzes the APIs to
determine which permissions are required. PScout [6] uses
static call graph analysis of system service code. This ap-
proach is refined by Axplorer [7], which uses more detailed
program analysis. Most recently, Arcade [3] improved the
mapping by including logic requirements (e.g., permission A
or permission B vs. permission A and permission B). In doing
so, both Axplorer and Arcade provide enhanced techniques
to statically analyze code for RPC entry points.

Finally, prior work has also considered file access con-
trol policy in Android. Zhou et al. [49] compared Unix per-
missions across device vendors, identifying misconfigura-
tions. The introduction of SELinux for Android [40] gave
researchers a new target for analysis [27, 36, 37]. EASEAn-
droid [45] uses machine learning to classify SELinux audit
log events as benign or malicious. SPOKE [44] uses com-
patibility tests to approximate least-privilege execution and
identify over-permissive SEAndroid policy. Chen et al. [10]

and BigMAC [26] compare Unix permissions and SEAndroid
policy to identify access control policy flaws. FRED’s map-
ping between RPC entry points and files is a useful input to
consider in conjunction with SEAndroid policy analysis.

8 Conclusion
The Android framework prevents untrusted third-party appli-
cations from directly accessing sensitive resources by using
system services as privileged deputies. However, since ac-
cess control is hand-coded, there is potential for confused
deputy vulnerabilities. This paper proposed FRED, a static
program analysis tool that maps Android’s Java-based RPC
entry points to the security-sensitive files they access. By
contrasting permission checks by RPC entry points with the
corresponding file access control policy, FRED identifies
candidate RPC entry point that perform re-delegation. We
used FRED to study three devices running Android 10 and
identify 10 confused deputy vulnerabilities, three of which
were assigned moderate severity CVEs by Google. These
results demonstrate the utility of semi-automated approaches
to discover subtle flaws in access control enforcement.

Acknowledgements

This work was supported in part by the Army Research Of-
fice (ARO) grant W911NF-16-1-0299 and a Google ASPIRE
award. Opinions, findings, conclusions, or recommendations
in this work are those of the authors and do not reflect the
views of the funders.

References

[1] SETools: SELinux Policy Analysis Tools. h t t p s :
//github.com/SELinuxProject/setools, 2021.
Accessed Jun. 7, 2021.

[2] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang,
Ninghui Li, and Chen Tian. AceDroid: Normalizing
Diverse Android Access Control Checks for Inconsis-
tency Detection. In Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS),
February 2018.

[3] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu
Zhang, and Ninghui Li. Precise Android API Protection
Mapping Derivation and Reasoning. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), October 2018.

[4] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha
Fahl, Patrick McDaniel, and Matthew Smith. SoK:
Lessons Learned from android Security Research for
Appified Software Platforms. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2016.

1538 31st USENIX Security Symposium USENIX Association

https://github.com/SELinuxProject/setools
https://github.com/SELinuxProject/setools

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2014.

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. PScout: Analyzing the Android Permission
Specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228, 2012.

[7] Michael Backes, Sven Bugiel, Erik Derr, Patrick D Mc-
Daniel, Damien Octeau, and Sebastian Weisgerber. On
Demystifying the Android Application Framework: Re-
Visiting Android Permission Specification Analysis. In
Proceedings of the USENIX Security Symposium, Au-
gust 2016.

[8] David Barrera, H. G unes Kayacik, Paul C. van Oor-
shot, and Anil Somayaji. A Methodology for Empirical
Analysis of Permission-Based Security Models and its
Application to Android. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), October 2010.

[9] George Burgess. FORTIFY in Android, April 2017.

[10] Haining Chen, Ninghui Li, William Enck, Yousra Aafer,
and Xiangyu Zhang. Analysis of SEAndroid Policies:
Combining MAC and DAC in Android. In Proceedings
of the Annual Computer Security Applications Confer-
ence (ACSAC), December 2017.

[11] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege Escalation
Attacks on Android. In Proceedings of the 13th Infor-
mation Security Conference (ISC), October 2010.

[12] Jeffrey Dean, David Grove, and Craig Chambers. Op-
timization of Object-Oriented Programs Using Static
Class Hierarchy Analysis. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming
(ECOOP), August 1995.

[13] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei
Shu, and Dan S. Wallach. Quire: Lightweight Prove-
nance for Smart Phone Operating Systems. In Pro-
ceedings of the USENIX Security Symposium, August
2011.

[14] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. On Lightweight Mobile Phone Application

Certification. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (CCS),
November 2009.

[15] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. Understanding Android Security. IEEE Security
& Privacy Magazine, 7(1), January 2009.

[16] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android Permissions De-
mystified. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2011.

[17] Adrienne Porter Felt, Serge Egelman, Matthew Finifter,
Devdata Akhawe, and David Wagner. How to Ask for
Permission. In Proceedings of the USENIX Workshop
on Hot Topics in Security (HotSec), 2012.

[18] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman,
Ariel Haney, Erika Chin, and David Wagner. Android
Permissions: User Attention, Comprehension and Be-
havior. In Proceedings of the Symposium on Usable
Privacy and Security (SOUPS), 2012.

[19] Adrienne Porter Felt, Helen J. Wang, Alexander
Moshchuk, Steven Hanna, and Erika Chin. Permission
Re-Delegation: Attacks and Defenses. In Proceedings
of the USENIX Security Symposium, August 2011.

[20] Xinming Ou Fengguo Wei, Sankardas Roy and Robby.
Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting of
Android Apps. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
November 2014.

[21] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei
Gilham, Nguyen Nguyen, and Martin Rinard. Informa-
tion Flow Analysis of Android Applications in Droid-
Safe. In Proceedings of the ISOC Network and Dis-
tributed Systems Symposium (NDSS), February 2015.

[22] Sigmund Albert Gorski III, Benjamin Andow, Adwait
Nadkarni, Sunil Manandhar, William Enck, Eric Bod-
den, and Alexandre Bartel. ACMiner: Extraction and
Analysis of Authorization Checks in Android’s Middle-
ware. In Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy (CODASPY),
March 2019.

[23] Sigmund Albert Gorski III and William Enck. ARF:
Identifying Re-Delegation Vulnerabilities in Android
System Services. In Proceedings of the 12th ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), May 2019.

USENIX Association 31st USENIX Security Symposium 1539

[24] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian
Jiang. Systematic Detection of Capability Leaks in
Stock Android Smartphones. In Proceedings of the
ISCO Network and Distributed System Security Sympo-
sium (NDSS), February 2012.

[25] N. Hardy. The Confused Deputy: (or why capabilities
might have been invented). SIGOPS Operating Systems
Review, 22(4):36–38, 1988.

[26] Grant Hernandez, Dave (Jing) Tian, Anurag Swarnim
Yadav, Byron J. Williams, and Kevin R.B. Butler. Big-
mac: Fine-grained policy analysis of android firmware.
In Proceedings of the USENIX Security Symposium, Au-
gust 2020.

[27] Bumjin Im, Ang Chen, and Dan S. Wallach. An His-
torical Analysis of the SEAndroid Policy Evolution. In
Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), December 2018.

[28] Donald B Johnson. Finding All The Elementary Circuits
of A Directed Graph. SIAM Journal on Computing,
4(1):77–84, 1975.

[29] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie
Hendren. The Soot framework for Java Program Anal-
ysis: A Retrospective. In Proceedings of the Cetus
Users and Compiler Infrastructure Workshop (CETUS),
October 2011.

[30] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng,
Haifeng Ruan4, and Jianwei Zhuge. FANS: Fuzzing
Android Native System Services via Automated Inter-
face Analysis. August 2020.

[31] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. CHEX: Statically Vetting Android Apps
for Component Hijacking Vulnerabilities. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security, 2012.

[32] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian
Liu, Limin Liu, Neng Gao, Min Yang, Xinyu Xing,
and Pen Liu. System Service Call-oriented Symbolic
Execution of Android Framework with Applications to
Vulnerability Discovery and Exploit Generation. In
Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2017.

[33] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker,
and Nick Kralevich. The Android Platform Security
Model, 2019.

[34] Oracle. Obtaining Names of Method Parameters. http
s://docs.oracle.com/javase/tutorial/reflec
t/member/methodparameterreflection.html,
2019. Accessed Jan. 15, 2019.

[35] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li,
Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and
Ian Molloy. Using Probabilistic Generative Models for
Ranking Risks of Android Apps. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2012.

[36] Elena Reshetova, Filippo Bonazzi, and N. Asokan.
Selint: an seandroid policy analysis tool. CoRR,
abs/1608.02339, 2016.

[37] Elena Reshetova, Filippo Bonazzi, Thomas Nyman,
Ravishankar Borgaonkar, and N. Asokan. Char-
acterizing seandroid policies in the wild. CoRR,
abs/1510.05497, 2015.

[38] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian,
and Z. Morley Mao. Kratos: Discovering Inconsistent
Security Policy Enforcement in the Android Framework.
In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), 2016.

[39] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy, 2016.

[40] Stephen Smalley and Robert Craig. Security Enhanced
(SE) Android: Bringing Flexible MAC to Android. In
Proceedings of the ISOC Network and Distributed Sys-
tems Symposium (NDSS), 2013.

[41] Vincent F. Taylor and Ivan Martinovic. To Update or
Not to Update: Insights From a Two-Year Study of An-
droid App Evolution. In Proceedings of the ACM Asia
Conference on Computer and Communications Security
(ASIACCS), April 2017.

[42] Liam Tung. Bigger than Windows, bigger than iOS:
Google now has 2.5 billion active Android devices. ht
tps://www.zdnet.com/article/bigger-than-wi
ndows-bigger-than-ios-google-now-has-2-5-b
illion-active-android-devices-after-10-yea
rs/, May 2019.

[43] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - A
Java Bytecode Optimization Framework. In Proc. of
the Conference of the Centre for Advanced Studies on
Collaborative Research, November 1999.

[44] Ruowen Wang, Ahmed M. Azab, William Enck,
Ninghui Li, Peng Ning, Xun Chen, Wenbo Shen, and
Yueqiang Cheng. SPOKE: Scalable Knowledge Col-
lection and Attack Surface Analysis of Access Control

1540 31st USENIX Security Symposium USENIX Association

https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html
https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html
https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/

Policy for Security Enhanced Android. In Proceedings
of the ACM Asia Conference on Computer and Commu-
nications Security (ASIACCS), April 2017.

[45] Ruowen Wang, William Enck, Douglas Reeves, Xinwen
Zhang, Peng Ning, Dingbang Xu, Wu Zhou, and Ahmed
Azab. EASEAndroid: Automatic Policy Analysis and
Refinement for Security Enhanced Android via Large-
Scale Semi-Supervised Learning. In Proceedings of the
USENIX Security Symposium, August 2015.

[46] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and
Xuxian Jiang. The Impact of Vendor Customizations on
Android Security. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
pages 623–634, 2013.

[47] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang,
Zhiyun Qian, Geng Hong, Yuan Zhang, and Min Yang.
Invetter: Locating Insecure Input Validations in Android
Services. In Proceedings of the ACM Conference on
Computer and Communcations Security (CCS), October
2018.

[48] Yury Zhauniarovich and Olga Gadyatskaya. Small
changes, big changes: An updated view on the android
permission system. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and De-
fenses (RAID), 2016.

[49] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muham-
mad Naveed, and XiaoFeng Wang. The Peril of Frag-
mentation: Security Hazards in Android Device Driver
Customizations. In Proc. of the IEEE Symposium on
Security and Privacy, 2014.

A Details of Java Path String Reconstruction

There are various scenarios when the use-def analysis for a
PlaceHolder node does not find a constant at the definition.
The following describes the special cases handled by FRED.
String Builders: The Java compiler translates inline string
concatenation into calls to the append() method of the Strin-

gBuilder and StringBuffer classes. While these classes have
many methods, we empirically found that only the append()

method occurred during our data flow analysis of file paths.
Furthermore, these instances were the result of inline string
concatenation, which allows FRED to assume all StringB-
uilder and StringBuffer objects are only used within the
method they are declared. Therefore, FRED handles these
classes using an Append node.
Path Builders: Android provides two similar APIs for file
path construction: buildPath() in android.os.Environment,
and get() in java.nio.file.Paths. Both methods take a root
file path and an array of zero or more file path parts, which

are appended to the root path. For example, calling build-

Path() with arguments /foo/bar, first/part, and /second-

/part produces the path /foo/bar/first/part/second/part.
Empirically, we found that the target array of file path parts is
generated at compile-time from a variable number of string
arguments. This observation allows FRED assumes the array
is defined and filled immediately before a call to buildPat-

h() and get(). Hence, FRED can determine the values in
the array. FRED uses an Append node to append the values,
inserting a ‘/’ between each part as needed.

Arrays and Collections: Extracting values from Arrays,
Collections, Iterators, and Maps is a known hard problem
for static analysis. Therefore, in most cases FRED represents
access to them as Any nodes. Exceptions include the Paths
and Environment scenarios.

Directory Listing: The java.io.File class provides five
methods for listing files in the directory. Since the return
value is runtime dependent, FRED appends an Any node to
the child path of a known directory path.

Parent Path and File Name: The java.io.File and java.-

nio.file.Path classes provide methods for getting the parent
path or file name of a existing file path. To model this func-
tionality, FRED uses the Parent and Name nodes. These
Branch nodes wrap an expression for the existing path, in-
dicating that either the parent path or file name needs to be
resolved once the existing path expression is known.

Environmental Variable and System Properties: Some
file paths are constructed from the values of environmen-
tal variables and system properties. However, these runtime
values can be looked up using a string that exists in the Java
source code. Therefore, FRED uses its data flow analysis
to determine the lookup string, which can be resolved later.
As such, FRED encodes lookup strings into intermediate
expressions using EnvVar and SysVar nodes.

Fields in Android Classes: The use-def analysis occasion-
ally encountered class fields which are initialized outside of
the path from the RPC entry point to the file method. To han-
dle these fields, we first perform a forward def-use analysis
to determine all possible assignment sites for all the fields of
the Android framework. Later, during our backwards data
flow analysis, FRED replaced uses of class fields with their
assignment sites and resolves them normally, combining all
of the possible values with a Or node. For any class field
whose value could not be resolved, FRED uses an Any node
(e.g., fields in android.content.pm.PackageParser and and-

roid.content.pm.ApplicationInfo).

B Manual Inspection Methodology

We used the following methodology when inspecting the
candidate RPC entry points to determine if a vulnerability
exists.

USENIX Association 31st USENIX Security Symposium 1541

1. Have FRED dump call graph representations of all can-
didate RPC entry points to aid in the analysis.

2. Confirm that the RPC entry point is callable by a third
party application by reviewing the authorization logic in
the source/decompiled code. While FRED’s ability de-
termine if a RPC entry point can be called by third party
applications is effective for both the AOSP and Google
builds of Android 10, Samsung’s unique authorization
checks caused some reported RPC entry points to not be
callable from third party applications.

3. Using the source code and call graph dump, for each file
path, determine if the statement that opens the file path
is actually reachable from the RPC entry point and is not
a result of the over approximation nature of CHA call
graphs.

4. For each file path of a candidate RPC entry point, de-
termine if the file path can be influenced by the caller
of the RPC entry point through arguments passed into
the RPC or through other means by examining the call
graph dumps and source/decompiled code. In practice,
we observed no such RPCs.

5. For each file path of a candidate RPC entry point, using
the source/decompiled code and call graph dumps, de-
termine if the arguments passed in or actions of a RPC
caller effect modifications made to a file by the RPC or
the data returned by the RPC from a file.

6. As it is common for RPC entry points to delegate partial
access to files with generally more restrictive access
control policy, determine if this flow is intended and
properly protected by some form of authorization logic.
If the flow is determined to not be intended or properly
protected by some form of authorization logic then it
is considered a vulnerability, withstanding the SELinux
policy confirmation.

7. Confirm the SELinux policy does not restrict (a) the RPC
entry point from accessing the file path and (b) third-
party applications from calling the RPC entry point.

1542 31st USENIX Security Symposium USENIX Association

	Introduction
	Background and Problem
	Overview
	Design
	Identifying File Methods
	Libc File Methods
	JNI File Methods
	API File Methods

	Extracting File Paths Used in Java Code
	Intermediate Expressions
	Data Flow Analysis
	Regular Expression Transformation

	Extracting File Paths Used in Native Code
	Security-Sensitive File Paths
	Re-Delegation Detection

	Evaluation
	Experimental Setup
	FReD Characterization
	File Methods in Practice
	Characterizing Security Sensitive Files Paths
	Reducing Candidate RPC Entry Points
	Impact of SEAndroid

	Vulnerability Study
	VC1: Data Manipulation
	VC2: Data Leaks
	VC3: Denial of Service
	Non-Vulnerable RPCs

	Limitations
	Related Work
	Conclusion
	Details of Java Path String Reconstruction
	Manual Inspection Methodology

