
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Back-Propagating System Dependency Impact
for Attack Investigation

Pengcheng Fang, Case Western Reserve University; Peng Gao, Virginia Tech;
Changlin Liu and Erman Ayday, Case Western Reserve University; Kangkook Jee,

University of Texas at Dallas; Ting Wang, Penn State University; Yanfang (Fanny) Ye,
Case Western Reserve University; Zhuotao Liu, Tsinghua University; Xusheng Xiao,

Case Western Reserve University
https://www.usenix.org/conference/usenixsecurity22/presentation/fang

Back-Propagating System Dependency Impact for Attack Investigation

Pengcheng Fang1∗ Peng Gao2∗ Changlin Liu1 Erman Ayday1 Kangkook Jee3

Ting Wang4 Yanfang (Fanny) Ye1 Zhuotao Liu5 Xusheng Xiao1

1Department of Computer and Data Sciences, Case Western Reserve University, USA
2Department of Computer Science, Virginia Tech, USA

3Department of Computer Science, University of Texas at Dallas, USA
4College of Information Sciences and Technology, Penn State University, USA
5Institute For Network Sciences And Cyberspace, Tsinghua University, China

1{pxf109, cxl1029, exa208, yanfang.ye, xusheng.xiao}@case.edu 2penggao@vt.edu 3kangkook.jee@utdallas.edu
4tbw5359@psu.edu 5zhuotaoliu@tsinghua.edu.cn

Abstract

Causality analysis on system auditing data has emerged

as an important solution for attack investigation. Given a

POI (Point-Of-Interest) event (e.g., an alert fired on a sus-

picious file creation), causality analysis constructs a depen-

dency graph, in which nodes represent system entities (e.g.,

processes and files) and edges represent dependencies among

entities, to reveal the attack sequence. However, causality

analysis often produces a huge graph (> 100,000 edges) that

is hard for security analysts to inspect. From the dependency

graphs of various attacks, we observe that (1) dependencies

that are highly related to the POI event often exhibit a differ-

ent set of properties (e.g., data flow and time) from the less-

relevant dependencies; (2) the POI event is often related to a

few attack entries (e.g., downloading a file). Based on these

insights, we propose DEPIMPACT, a framework that identifies

the critical component of a dependency graph (i.e., a sub-

graph) by (1) assigning discriminative dependency weights to

edges to distinguish critical edges that represent the attack

sequence from less-important dependencies, (2) propagating

dependency impacts backward from the POI event to entry

points, and (3) performing forward causality analysis from the

top-ranked entry nodes based on their dependency impacts

to filter out edges that are not found in the forward causality

analysis. Our evaluations on the 150 million real system au-

diting events of real attacks and the DARPA TC dataset show

that DEPIMPACT can significantly reduce the large depen-

dency graphs (∼ 1,000,000 edges) to a small graph (∼ 234

edges), which is 4611× smaller. The comparison with the

other state-of-the-art causality analysis techniques shows that

DEPIMPACT is 106× more effective in reducing the depen-

dency graphs while preserving the attack sequences.

1 Introduction

Recent cyber attacks have plagued many well-protected busi-

nesses, causing significant financial losses [1–3, 6, 8, 24, 75].

∗Equal contribution

These attacks often exploit multiple types of vulnerabili-

ties to infiltrate into target systems in multiple stages, pos-

ing challenges for detection and investigation. To counter

these attacks, recent approaches based on ubiquitous sys-

tem monitoring have emerged as an important approach for

monitoring system activities and performing attack investi-

gation [28, 30, 31, 44, 45, 48, 49, 55, 56]. System monitoring

collects kernel auditing events about system calls as system

audit logs. The collected data enables approaches based on

causality analysis [33, 38, 45, 47–49, 55, 57] to identify entry

points of intrusions (backward tracing) and ramifications of

attacks (forward tracing), which have been shown to be ef-

fective in reducing false alerts of intrusions [38, 67, 71] and

assisting timely system recovery [33, 47].

Despite the great promise of causality analysis, existing

approaches require non-trivial efforts of inspection [38, 39],

which limits their wide adoption. Causality analysis ap-

proaches assume causal dependencies between system en-

tities (e.g., files, processes, and network connections) that are

involved in the same system call event (e.g., a process reading

a file). Based on such assumption, these approaches orga-

nize system call events in a system dependency graph, with

nodes being system entities and edges being system events.

By inspecting such a dependency graph, security analysts can

obtain the contextual information of an attack by reconstruct-

ing the chain of events that lead to the POI (Point-Of-Interest)

event (i.e., an alert event reported by anomaly detection tools

or manually observed). Such contextual information is par-

ticularly effective in distinguishing benign and attack-related

events such as distinguishing benign uses of ZIP from ran-

somware [38, 46]. However, due to the dependency explosion

problem [53, 74, 78], the dependency graph could be gigantic,

typically containing >100,000 edges [38, 39]. As a result, it

is difficult for security analysts to soundly reason the graph,

and find the edges that are critical to the attack.

Key Insight. By carefully inspecting the dependency graphs

of various attacks [31, 45, 55, 57], we have two key observa-

tions. First, on a large dependency graph constructed from

a POI event, a small number of critical edges (e.g., events

USENIX Association 31st USENIX Security Symposium 2461

that create and execute malicious payloads) that represent

the attack sequence are typically buried in many non-critical

edges (e.g., events that perform irrelevant system activities).

Compared to non-critical edges, critical edges typically ex-

hibit a different set of properties and are more related to the

POI event in these properties. For example, critical edges that

read data from a suspicious IP and then write the data to a

malicious script file will have the similar data flow amount as

the script file’s size. Second, a POI event is often caused by a

few sources, referred to as attack entries. These attack entries

are represented as entry points of the attack sequence that lead

to the POI event, and are buried in many other irrelevant entry

nodes (i.e., nodes without incoming edges) in the dependency

graph. For example, many attacks start by injecting a mali-

cious script into the victim host and may further download

more tools along the attack. Such an attack is captured in

a dependency graph with the attack entries representing the

downloaded malicious script and tools.

Challenges. While identifying critical edges and attack en-

tries has the great potentials in reducing the size of the depen-

dency graph while preserving the attack sequence, there are

three major challenges for achieving such goals.

First, the processes that are causally related to the POI

event usually perform other irrelevant system activities in

the background, causing a large number of less-important

dependencies to be included in the dependency graphs. More-

over, these irrelevant system activities often trace back to

many irrelevant sources (e.g., irrelevant web browsing and

file downloads) that have low impact on the POI event, and

thus causality analysis may identify more than a thousand

entry nodes (Section 5.1). As a result, it is often infeasible to

manually inspect these daunting number of edges and entry

nodes to identify critical edges and attack entries.

Second, data flow amount seems like a promising feature

for distinguishing critical edges in some attacks. However,

based on our empirical observations (Section 5.1), for many

attacks, there are usually lots of non-critical edges that have

the similar data amount as the critical edges in the depen-

dency graphs. This indicates that a single feature is limited in

addressing diversified attack scenarios.

Third, while existing techniques have also made attempts

to identify critical edges, they mainly rely on heuristic

rules that cause loss of information [48], intrusive system

changes [45, 57] such as binary instrumentation and kernel

customization, or execution profiles [38], hindering their prac-

tical adoption. For example, PrioTracker [55] assigns pro-

cesses with many dependencies lower priorities to focus the

search on a smaller scope (i.e., processes with fewer depen-

dencies). But such strategy will miss the attacks that utilize

the vulnerable complex software (e.g., web browsers) that

have lots of dependencies (e.g., read/write many files and

interact with other processes). Another common component

adopted by existing techniques is to use execution profiles

for detecting anomaly events. However, for large enterprises,

the number of running instances is huge and they have very

diverse behaviors. Obtaining a general execution profile for

these instances is almost impossible under such complex sce-

narios. Thus, there is a strong need for a general solution that

does not suffer from the same adoption limitations.

Contributions. Based on the key insights, we propose DE-

PIMPACT, a novel framework that facilitates attack investiga-

tion by identifying critical edges and attack entries in large

dependency graphs. Specifically, given a POI event to be

investigated, DEPIMPACT first applies causality analysis to

construct a backward dependency graph for the POI event,

and then employs automated techniques to identify the criti-

cal component of the dependency graph. Critical component

is a subgraph of the dependency graph that preserves the in-

formation critical to attack investigation (i.e., critical edges

and attack entries) and eliminates irrelevant system activities.

As it preserves attack information and its size is significantly

reduced from the original dependency graph, it drastically

reduces the complexity for revealing attack steps, facilitating

attack investigation. DEPIMPACT develops three major tech-

niques to address the aforementioned technical challenges.

(1) Dependency Weight Computation: Unlike existing work

that relies on execution profiles [38] or a single feature [55],

DEPIMPACT captures the differences between critical edges

and non-critical edges by profiling multiple features for each

edge, including timing, data flow amount, and node degree

(Section 4.2.2). Then, DEPIMPACT employs a discrimina-

tive feature projection scheme based on Linear Discriminant

Analysis (LDA) [60] to compute a weight score based on the

features, referred to as dependency weight (Section 4.2.3).

This scheme aims to maximize the weight differences be-

tween critical and non-critical edges. Instead of using global

weights as the existing work [38], for each node, DEPIMPACT

normalizes the weights of its outgoing edges, and thus the

final weights are local weights for each node. This addresses

the limitation of using global weights: certain critical edges

might be important when compared to the other edges origi-

nating from the same sources, but they may receive very low

global weights when they are far from the POI event. An edge

with a higher dependency weight (ranging from 0.0 to 1.0)

implies more relevance to the POI event, and is more likely

to be a critical edge.

(2) Dependency Impact Back-Propagation & Entry Node

Ranking: To reveal attack entries, DEPIMPACT employs a no-

tion of dependency impact. The dependency impact of a node

is defined as a score that models the node’s impact on the POI

event, i.e., a higher score implies a higher impact. To compute

the dependency impacts for all nodes, DEPIMPACT employs a

weighted score propagation scheme that propagates the depen-

dency impact from the nodes in the POI event backward along

the edges to all entry nodes. Inspired by TrustRank [36], our

score propagation scheme computes the dependency impact

of a node as a weighted sum of its children’s dependency im-

pact scores where each child node’s weight is the normalized

2462 31st USENIX Security Symposium USENIX Association

dependency weight of the edge between the parent node and

the child node. The intuition behind our score propagation

scheme is that an attack entry’s impact on the POI event is

proportionally distributed to its children based on the edge

dependency weights. After propagation, DEPIMPACT ranks

the entry nodes based on their dependency impacts, and the

top-ranked entry nodes are more likely to be attack entries.

(3) Forward Causality Analysis for Critical Component

Identification: After ranking the entry nodes, DEPIMPACT

performs forward causality analysis from the top-ranked entry

nodes, producing another dependency graph, called forward

dependency graph. The overlapping part between the forward

graph and the original backward dependency graph accurately

preserves the nodes and edges that are highly relevant to

both the POI event and the attack entries. We refer to this

overlapping part as the critical component of the original

dependency graph.

Evaluation. We implemented a prototype of DEPIMPACT in

roughly ∼20K lines of code and deployed it on a physical

testbed for evaluation. We performed 7 attacks that are used in

prior studies [23, 52, 55, 78] and 3 multi-host intrusive attacks

based on the Cyber Kill Chain framework [11] and CVE [63],

and applied DEPIMPACT to investigate them. During our eval-

uation, the deployed hosts continue to resume their routine

tasks to emulate the real-world deployment where irrelevant

system activities and attack activities co-exist. We addition-

ally include 5 attack cases in DARPA TC dataset [22] in our

evaluation. In total, we collected ∼100 million system au-

diting events for our performed attacks and the DARPA TC

dataset contains ∼50 million events. Our tool and dataset are

available at the project website [12].

The evaluation results demonstrate that DEPIMPACT is

highly effective in revealing critical edges and attack entries.

On average, the size of the critical component produced by

DEPIMPACT has ∼ 234 edges, which is ∼ 4611× smaller

than the size of the original dependency graph (∼ 1 million

edges). Such a high reduction rate is achieved without missing

any critical edge, which is mainly due to the fact that DE-

PIMPACT consistently ranks the attack entries at the top. The

comparison with four other state-of-the-art causality analysis

techniques (CPR [78], ReadOnly [54], PrioTracker [55], and

NoDoze [38]) shows that DEPIMPACT is at least 72× more

effective in dependency graph reduction, and does not miss

critical edges as the compared techniques. Additionally, com-

pared with the version of DEPIMPACT that uses less features

and the average-projection approach that uses an average

projection vector for computing dependency impacts, DE-

PIMPACT achieves at least 69.91% improvement in ranking

attack entries, demonstrating the superiority of DEPIMPACT’s

discriminative feature projection scheme and proving the ne-

cessity of features. Finally, DEPIMPACT finishes analyzing an

attack within 6 minutes, which is∼ 4× faster when compared

with the average-projection approach. The results also show

that DEPIMPACT and NoDoze have similar runtime perfor-

mance for most of the attacks, while DEPIMPACT achieves

much better reduction rates than NoDoze.

2 Background and Motivation

2.1 System Monitoring

System monitoring collects auditing events about system

calls that are crucial in security analysis, describing the in-

teractions among system entities. As shown in previous stud-

ies [30,31,33,38,44,45,48,49,55,56], on mainstream operat-

ing systems (Windows, Linux, and Mac OS), system entities

in most cases are files, processes, and network connections,

and the collected system calls are mapped to three major types

of system events: (1) file access, (2) processes creation and

destruction, and (3) network access. Following the established

trend, in this work, we consider system entities as files, pro-

cesses, and network connections. We consider a system event

as the interaction between two system entities represented as

〈subject, operation, object〉. Subjects are processes originat-

ing from software applications (e.g., Chrome), and objects

can be files, processes, and network connections. We catego-

rize system events into three types according to the types of

their object entities, namely file events, process events, and

network events. Both entities and events have critical security-

related attributes (Tables 1 and 2). Representative attributes

of entities include file name, process executable name, IP, and

port. Representative attributes of events include event origins

(e.g., start time/end time) and operations (e.g., file read/write).

2.2 Causality Analysis

Causality analysis [33, 38, 45, 47–49, 55, 57] analyzes the

auditing events to infer their dependencies and present the

dependencies as a directed graph. In the dependency graph

G(E,V), a node v∈V represents a process, a file, or a network

connection. An edge e(u,v) ∈ E indicates a system auditing

event that involves two entities u and v (e.g., process creation,

file read or write, and network access), and its direction (from

the source node u to the sink node v) indicates the direction of

data flow. Each edge is associated with a time window, tw(e).
We use ts(e) and te(e) to represent the start time and the end

time of e. Formally, in the dependency graph, for two events

e1(u1,v1) and e2(u2,v2), there exists causal dependency be-

tween e1 and e2 if v1 = u2 and ts(e1)< te(e2).

Causality analysis enables two important security appli-

cations: (1) backward causality analysis that identifies entry

points of attacks, and (2) forward causality analysis that in-

vestigates ramifications of attacks. Given a POI event es(u,v),
a backward causality analysis traces back from the source

node u to find all events that have causal dependencies on u,

and a forward causality analysis traces forward from the sink

node v to find all events on which v has causal dependencies.

USENIX Association 31st USENIX Security Symposium 2463

?

xx.xx.xx.xx

[Rank ?]

xx.xx.xx.xx
[?]

xx.xx.xx.xx

[Rank 10] 192.1.1.254

[Rank 1]

config

file1

account

Data

history

xx.xx.xx.xx

[?]
xx.xx.xx.xx

[?]

xx.xx.xx.xx

[?]

ping
wget

wget

.wget-hsts

bash

bash

wget

systemd dockerd?

libxxx.so

libxxx.so

libxxx.so

libxxx.soFiles

/bin/mv: 1

mal.sh: 2
xxx: 3

?

Processes

?

Ranking of Entry Nodes

IP Prefixes

192.1.1.254: 1
?

xx.xx.xx.xx: 10
?

bash

mal

mv

mvuser/mal user/file.txt

bash

mal.sh

[Rank 2]

/bin/mv

[Rank 1]

?

libxxx.so

libxxx.so

libxxx.so

Point-of-Interest Event

python ping

/dev/null .bash_history

ping ping

bash

bash
bash

bash

bash

?

?
bash

?

ping

File Entry Nodes: ~7K Process Entry Nodes: 62 Critical Edges: 12

Irrelevant Nodes: ~194K Non-Critical Edges: ~3 Million

Network Entry Nodes: ~27K

?

?

Network Entry

Node

File Entry
Node

Process Entry

Node

Critical Edge

xxxx Irrelevant System

Entity

Figure 1: Partial dependency graph of an attack that downloads a malicious file and hides the file by renaming it (rectan-

gles for processes, ovals for files, parallelograms for network connections). The complete dependency graph constructed

from the POI event (renaming to user/file.txt) via backward causality analysis contains 194,208 nodes and 3,273,769

edges. The critical component identified by DEPIMPACT is colored in dark black, which contains 10 nodes (including

2 attack entries) and 12 edges (these edges are all critical edges). As can be seen, DEPIMPACT significantly reduces the

size of the dependency graph while preserving the critical attack information.

Table 1: Representative attributes of system entities

Entity Attributes Shape in Graph

File Name, Path Ellipse

Process PID, Name, User, Cmd Square

Network Connection IP, Port, Protocol Parallelogram

Table 2: Representative attributes of system events

Operation Read/Write, Execute, Start/End

Time Start Time/End Time, Duration

Misc. Subject ID, Object ID, Data Amount, Failure Code

2.3 Motivating Example

Figure 1 shows a partial dependency graph of a file hiding

activity: a suspicious script mal.sh is executed to download a

malicious file mal from a remote host 192.1.1.254. The file is

then moved to user/mal and renamed to user/file.txt. Given

a POI event which renames the file to user/file.txt, the de-

pendency graph produced by backward causality analysis

contains 194,208 nodes and 3,273,769 edges. The critical

edges and attack entries (192.1.1.254, mal.sh) that represent

the attack sequence are colored in dark black. The goal of at-

tack investigation is to inspect the dependency graph to reveal

critical edges and attack entries of the attack.

Challenges. As observed in Figure 1, attack investigation is

a process of finding a needle in a haystack: a limited number

of critical edges (i.e., 12) are buried in an overwhelmingly

large number (∼ 3 million) of non-critical edges (i.e., less-

important dependencies), and same for attack entries (i.e.,

2 out of ∼ 35K irrelevant entry nodes). When existing tech-

niques, such as PrioTracker [55] and NoDoze [38], are applied

to identify these critical edges, they achieve poor performance.

PrioTracker relies on the fanout value of a node to prioritize

the edges. As the process bash has a high fanout value and

the critical edges are connected with it, PrioTracker needs a

higher threshold to keep the critical edges, and thus produc-

ing a dependency graph with 114,614 edges. NoDoze relies

on an execution profile to filter irrelevant events. However,

due to the complex nature of computer systems, it is almost

impossible to obtain an execution profile that covers most

common system behaviors. Specifically, there are many edges

introduced by the irrelevant process grep, which is not fre-

quently observed when the execution profile is trained. Such

rare benign events cause NoDoze to produce a dependency

graph with 37,251 edges.

Using DEPIMPACT to Identify Critical Component. DE-

PIMPACT first divides the entry nodes into 3 categories (i.e.,

network connections, files, and processes), and ranks the en-

try nodes in each category. Here, DEPIMPACT ranks the IP

192.1.1.254 for mal downloading as top 1, the malicious script

mal.sh and the executable /bin/mv as top 1 and top 2. By per-

forming forward causality analysis from top-ranked entry

nodes and taking the overlap, DEPIMPACT filters out most

less-important dependencies (∼ 3 million) and identifies the

critical component (colored in dark black; 10 nodes, 12 edges)

that preserves all critical edges and attack entries. Note that

2464 31st USENIX Security Symposium USENIX Association

Table 3: Representative system calls processed

Event Category Relevant System Call

Process/File read, write, readv, writev

Process/Process execve, fork, clone

Process/Network read, write, sendto, recvfrom, recvmsg

PrioTracker’s graph is ∼ 141× bigger than DEPIMPACT’s

graph, and NoDoze’s graph is ∼ 46× bigger than the DE-

PIMPACT’s graph.

3 Overview

Figure 2 shows the architecture of DEPIMPACT. Given a

POI event, DEPIMPACT automatically identifies the critical

component of the dependency graph produced by causality

analysis. DEPIMPACT consists of three phases: (1) depen-

dency graph generation, (2) dependency weight computation,

and (3) critical component identification.

In Phase I, DEPIMPACT leverages mature system audit-

ing frameworks [19, 59, 69, 73] to collect system audit logs.

Given a POI event, DEPIMPACT parses the collected logs

and performs backward causality analysis [48, 49] to gen-

erate a backward dependency graph for the POI event. In

Phase II, DEPIMPACT first employs state-of-the-art depen-

dency graph reduction techniques [78] to reduce the graph

size (Section 4.2.1). Then, DEPIMPACT extracts features for

edges and employs a discriminative feature projection scheme

based on LDA to compute dependency weights from the fea-

tures, so that critical edges can be better revealed. The output

of Phase II is a weighted dependency graph for the POI event.

In Phase III, DEPIMPACT first employs a weighted score prop-

agation scheme to propagate the dependency impact from the

POI event backward along the edges to all entry nodes. Then,

DEPIMPACT ranks entry nodes based on their dependency

impacts and selects the top candidates. Finally, DEPIMPACT

performs forward causality analysis from the top-ranked entry

nodes and identifies the overlap of the backward dependency

graph and the forward dependency graph as the critical com-

ponent for output.

Threat Model. Our threat model is similar to the threat model

of previous work on system monitoring [28, 30, 31, 38, 48,

49, 54, 55]. We assume that kernel and kernel-layer auditing

framework [19, 59, 69, 73] are part of our trusted comput-

ing base (TCB), and existing software and kernel hardening

techniques [16, 21] can be used to secure log storage. Any

kernel-level attack that deliberately compromises security au-

diting systems is beyond the scope of this work. We assume

an outside attacker that attacks the system remotely (from

outside of the system). Thus, the attacker either utilizes the

vulnerabilities in the system or convinces the user to down-

load a file with malicious payload.

We do not consider the attacks performed using implicit

flows (e.g., side channels) or inter-procedural communica-

tions (IPC) that do not go through kernel-layer auditing and

thus cannot be captured by the underlying provenance tracker.

Finer-grained auditing tools that capture memory traces or

program analysis techniques can be used to address these

types of the attacks and it is not the focus of this work. We

also do not consider mimicry attacks [76] where attackers de-

liberately evade intrusion detection systems through a chain

of events that seem benign in enterprises. Existing intrusion

detection systems [17, 51, 64] often rely on heuristics or anal-

ysis based on the properties of a single event, and thus are

vulnerable to such attacks. While detecting mimicry attacks is

the limitation of the detection systems, it is beyond the scope

of this work since our focus is to identify the relevant events

as the contextual information for the alerts generated by the

detection systems.

4 Design of DEPIMPACT

In this section, we present the design details of each phase

shown in Figure 2. Specifically, Section 4.1 describes how

DEPIMPACT collects system audit logs and generates a de-

pendency graph, Section 4.2 describes how DEPIMPACT com-

putes the weight for each edge in the dependency graph to

generate a weighted dependency graph, and Section 4.3 de-

scribes how DEPIMPACT identifies critical components based

on the weighted dependency graph.

4.1 Dependency Graph Generation

In Phase I, DEPIMPACT leverages system monitoring to col-

lect auditing logs of system activities and applies causality

analysis on the collected logs to generate a dependency graph

based on the given POI events.

4.1.1 System Auditing

DEPIMPACT leverages mature system auditing frame-

works [19,59,69,73] to collect system audit logs about system

calls from the kernel. DEPIMPACT then parses the collected

logs to build a global system dependency graph, where nodes

represent system entities and edges represent system (call)

events. In particular, DEPIMPACT focuses on three types of

system entities/events: (i) file access, (ii) process creation

and destruction, and (iii) network access. Table 3 shows the

representative system calls (in Linux) processed by DEPIM-

PACT. Failed system calls are filtered out by DEPIMPACT, as

processing them will cause false dependencies among events.

Tables 1 and 2 show the representative attributes of entities

and events extracted by DEPIMPACT. Following the existing

work [30, 31, 55], to uniquely identify entities, for a process

entity, we use the process name and PID as its unique iden-

tifier. For a file entity, we use the absolute path as its unique

identifier. For a network connection entity, we use 5-tuple

(〈srcip, srcport, dstip, dstport, protocol〉) as a network con-

nection’s unique identifier. Failing to distinguish different

USENIX Association 31st USENIX Security Symposium 2465

OS Kernel

System Auditing

Backward

Causality Analysis

POI Event

Phase I: Dependency Graph Generation

Dependency

Graph
Edge Merge

Feature Extraction

Dependency Weight

Computation
Weighted

Dependency Graph
Dependency Impact

Back-Propagation Entry Node

Ranking

Forward Causality

Analysis

Critical Component

Phase II: Dependency Weight Computation Phase III: Critical Component Identification

Figure 2: Architecture of DEPIMPACT

entities causes problems in relating events to entities and

tracking the dependencies among events.

4.1.2 Backward Causality Analysis

Given a POI event, DEPIMPACT performs backward causality

analysis (Section 2.2) to generate a local backward depen-

dency graph Gd for the POI event. Briefly speaking, back-

ward causality analysis adds the POI event to a queue, and

repeats the process of finding eligible incoming edges of the

edges/events (i.e., incoming edges of the source nodes of

edges) in the queue until the queue is empty. The output of

Phase I is a backward dependency graph that only contains

system events (and associated entities) and that are causally

dependent on the POI event.

4.2 Dependency Weight Computation

In Phase II, DEPIMPACT first merges parallel edges between

two nodes in the dependency graphs, and compute the weights

of the edges using three types of features, including timing,

data flow amount, and node degree. Based on these features,

DEPIMPACT clusters edges into two groups and leverages

LDA to compute a weight score such that the weight dif-

ferences of the edges in these two groups are maximized.

The final step of the weight computation is to normalize the

weights of all outgoing edges for each node. This step miti-

gates the weight degradation for the edges that are far from

the POI events.

4.2.1 Edge Merge

The dependency graph produced by causality analysis often

has many parallel edges between two nodes [78]. The rea-

son is that OS typically finishes a read/write task (e.g., file

read/write) by distributing the data proportionally to multi-

ple system calls. Inspired by the recent work for dependency

graph reduction [78], DEPIMPACT merges the edges between

two nodes if the time differences of these edges are smaller

than a given threshold. We tried different values for the merge

threshold and selected 10s, as it gives reasonable results in

merging system calls for file manipulations, file transfers, and

network communications, which is consistent with [78].

4.2.2 Feature Extraction

For each edge, DEPIMPACT extracts three features to com-

pute a dependency weight, enabling DEPIMPACT to address

scenarios where a single feature (e.g., data flows) cannot be

used to distinguish critical edges.

Data Flow Relevance fS(e). Intuitively, edges that have simi-

lar data flow amount as the data size of the entities in the POI

event are more likely to be relevant. As such, we design fea-

ture fD(e) to model the data flow relevance of an edge e(u,v)
to the POI event:

fS(e) = 1/(| se− ses |+α) (1)

where se and ses represent the data flow amount associated

with the edge e and the POI event es. The smaller the differ-

ence | se− ses |, the higher the data flow relevance fS(e). Note

that we use a small positive number α (we set α = 1e−4) to

handle the special case when e is the POI event: POI event

has the highest feature value fS(es) = 1/α.

Temporal Relevance fT (e). Intuitively, edges that occurred

at relatively the same time are more likely to be relevant. As

such, we design feature fT (e) to model the temporal relevance

of an edge e(u,v) to the POI event:

fT (e) = ln(1+1/ | te− tes |) (2)

where t(e) and tes represent the timestamp values (we use the

event end time) of the edge e and the POI event es. The smaller

the difference | te− tes |, the higher the temporal relevance

fT (e). To handle the special case when e is the POI event

(i.e., | te− tes |= 0), we use one tenth of the minimal time unit

(nanosecond) in the audit logging framework (i.e., 1e-10) to

compute its feature value: fT (es) = ln(1+1e10). This ensures

that the POI event has the highest feature value.

Concentration Ratio fC(e). In the backward causality anal-

ysis, if the number of source nodes that can be traced from

a node v is 1 (i.e., only one incoming edge from v), we say

that the dependency represented by this edge is highly con-

centrated for v. Also, we would like to give higher weights

to the node that can be reached from multiple paths in the

backward direction. Thus, we define the concentration ratio

for the edge e(u,v) as:

fC(e) = OutDegree(v)/InDegree(v) (3)

2466 31st USENIX Security Symposium USENIX Association

Here, InDegree(v) and OutDegree(v) represent the in-

degree and out-degree of the sink node v.

4.2.3 Dependency Weight Computation

To compute a dependency weight from the features, DEPIM-

PACT leverages linear projection that is known for high inter-

pretability and low computational cost [26]. Instead of directly

taking the average, DEPIMPACT employs a discriminative fea-

ture projection scheme based on Linear Discriminant Analysis

(LDA) [60] to compute a projection vector to maximize the

differences between critical edges and non-critical edges, with

critical edges assigned with higher weights. Next, we present

the scheme in detail.

Step 1: Edge Clustering. In the first step, DEPIMPACT lever-

ages clustering to separate edges into two groups: one is

likely to contain critical edges, and the other for non-critical

edges. Specifically, DEPIMPACT first normalizes features to

0-1 range [26], and then employs Multi-KMeans++ clustering

algorithm [15], which improves over standard KMeans algo-

rithm on initial seeds selection and clustering robustness. We

choose k = 2 since we want to cluster edges into two groups,

as required by LDA. We experimented a range of values for n

([5,30]) and chose n = 20 as it delivers the best clustering re-

sults without much overhead. While the clustering results can

be used to directly distinguish critical and non-critical edges,

such approach will suffer from the same problem as global

weights [38], which is shown to be ineffective in Section 5.2.

Step 2: Discriminative Feature Projection. Given two

groups of edges, DEPIMPACT leverages Linear Discriminant

Analysis (LDA) [60] to compute an optimal projection vec-

tor that maximizes the separation between group projections.

LDA finds the optimal projection plane such that the pro-

jected points in the same group are close to each other, and

the projected points in different groups are far from each

other. Formally, LDA finds the projection vector ω that max-

imizes the Fisher criterion, J(ω) = ωT Sbω

ωT Swω
, where Sb and Sw

are between-group scatter matrix and within-group scatter

matrix, respectively. Solving the optimization problem yields:

ω∗ = argmaxJ(ω) = S−1
w (µ1−µ2) (4)

Denote the solution to Equation (4) as ω∗ = [ω∗S ω∗T ω∗C]
T .

For an edge e, its unnormalized weight WeUN
is computed as:

WeUN
= ω∗S fS(e)+ω∗T fT (e)+ω∗C fC(e) (5)

One remaining issue is that Equation (4) does not guarantee

the direction of the projection vector, and it might be possible

that critical edges have lower weights than non-critical edges.

To address the issue, we leverage the observation that, in most

cases, the number of critical edges is significantly less than

the number of non-critical edges (as can be seen from attack

cases in Section 5.1). Specifically, we negate the direction of

the projection vector if the average of the projected weights

Algorithm 1: Dependency Impact Propagation

Input: Weighted dependency graph, G

threshold, δ

Output: Weighted dependency graph, G; nodes are

associated with dependency impact scores

1 POI.score← 1

2 while di f f > δ do

3 di f f ← 0

4 for ∀u ∈ G do

5 if u is POI then

6 continue

7 else

8 res← 0

9 for ∀v ∈ G.childNodes(u) do

10 res += v.score∗G.edge(u,v).weight

11 di f f += |u.score− res|
12 u.score← res

for a smaller edge group (likely to be the group of critical

edges) is smaller. As shown in Section 5.4, compared to the

naive approach of taking the average of features (the average-

projection approach), our feature projection scheme preserves

as much of the group discriminatory information as possible

and leads to better performance for entry node ranking.

Step 3: Edge Weight Normalization. For an edge e(u,v),
we normalize its projected weight by the sum of weights of

all outgoing edges of the source node u:

We =WeUN
/ ∑

e′∈outgoingEdge(u)

We′UN
(6)

The rationale behind is to ensure that for each node, the

weights of all its outgoing edges are in the range [0.0,1.0]
and the sum of the weights is equal to 1.0. Coupled with

our score propagation scheme for dependency impact (Sec-

tion 4.3), such way of normalization ensures that (1) the de-

pendency impact of any node does not exceed the maximum

dependency impact of its child nodes, and (2) the dependency

impact of any node does not exceed the dependency impact of

the nodes in the POI event (i.e., 1.0). The output of Phase II

is a weighted backward dependency graph for the POI event,

in which the dependency weights encode the differences be-

tween critical edges and non-critical edges.

4.3 Critical Component Identification

In Phase III, given the weighted dependency graph computed

in Phase II, DEPIMPACT propagates the dependency impact

from the POI event to the entry nodes based on the depen-

dency weights. DEPIMPACT then ranks entry nodes based on

the dependency impacts and performs forward analysis from

the top-ranked entry nodes to identify the critical component

from the dependency graph.

USENIX Association 31st USENIX Security Symposium 2467

4.3.1 Dependency Impact Back-Propagation

Given a weighted dependency graph, DEPIMPACT propagates

the dependency impact from the POI event to all other nodes

backward along the weighted edges. The dependency impact

for the nodes (both source node and sink node) in the POI

event is 1.0 by default. For a node u, its dependency impact is

iteratively updated by taking the weighted sum of dependency

impacts of its child nodes:

DIu = ∑
v∈childNodes(u)

DIv ∗We(u,v) (7)

where DIu denotes the dependency impact of node u and

We(u,v) denotes the dependency weight (after normalization)

of edge e(u,v). Such score propagation scheme guarantees

that the score of any node does not exceed the maximum score

of its child nodes, and the score of any node does not exceed

the score of the nodes in the POI event. Furthermore, com-

pared to the distribution-based score propagation algorithms

like PageRank [65], our scheme preserves the scores along

long dependency paths and prevents fast degradation.

Algorithm 1 illustrates our dependency impact score propa-

gation algorithm. In each iteration, the algorithm updates the

dependency impact score of each node by taking the weighted

sum of the scores of all its child nodes (Line 10), and com-

putes the sum of score differences for all nodes (Line 11).

The propagation terminates when the aggregate difference

between the current iteration and the previous iteration is

smaller than a threshold, δ (Line 2), indicating that the scores

of all nodes have reached a stable point. We set δ = 1e-13 as

it gives robust results from our evaluations.

4.3.2 Entry Node Ranking

After dependency impact propagation, DEPIMPACT ranks the

entry nodes based on their dependency impacts. The intuition

behind entry node ranking is that entry nodes with higher

dependency impacts are more related to the POI event and are

more likely to be the attack entries, and thus their descendant

nodes and associated edges are more likely to be included in

the critical component. Specifically, we classify entry nodes

into three categories: (1) file entry node: file nodes that do

not have incoming edges except system libraries; (2) process

entry node: process nodes whose parent nodes are all system

libraries; (3) network entry node: network nodes that do not

have incoming edges. In particular, system library files are

typically loaded by certain processes, and do not have incom-

ing edges on the dependency graph [74]. Thus, for system

library nodes, we take the process nodes that load them as

entry nodes. We then select the top-ranked entry nodes from

each category.

4.3.3 Critical Component Identification

From the top-ranked entry nodes, DEPIMPACT performs for-

ward causality analysis until reaching the POI event. As a

final step, DEPIMPACT identifies the overlap of the backward

dependency graph and the forward dependency graph as the

critical component for output. Compared to the original large

backward dependency graph, the critical component contains

the parts of dependencies that are actually relevant to the POI

event and its size is significantly reduced. Furthermore, the

critical component illustrates how the attack-relevant infor-

mation flows from attack entries to the POI event through

critical edges, which facilitates further attack investigation.

5 Evaluation

We built DEPIMPACT (∼20K lines of code in Java) upon

Sysdig [73], and evaluate DEPIMPACT using both the attack

cases constructed based on the known exploits [23,52,55,78]

and the attack cases collected by the DARPA Transparent

Computing (TC) program [22]. In the evaluations, we aim to

answer the following research questions:

• RQ1: How effective is DEPIMPACT in revealing attack

sequences in comparison with other state-of-art techniques?

• RQ2: How many top-ranked entry nodes should be used in

DEPIMPACT for revealing attack sequences?

• RQ3: How effective is DEPIMPACT in revealing attack

entries?

• RQ4: How efficient is DEPIMPACT in investigating an at-

tack?

5.1 Evaluation Setup

We deployed Sysdig [73] on 5 Linux hosts to collect system

auditing events and then applied DEPIMPACT to perform at-

tack investigation. DEPIMPACT is executed on a server with

an Intel(R) Xeon(R) CPU E5-2637 v4 (3.50GHz), 256GB

RAM running 64bit Ubuntu 18.04.1. For investigating the

attack cases based on the known exploits, we performed 10

attacks in the deployed environment: 7 attacks based on com-

monly used exploits and 3 multi-host and mutli-step intrusive

attacks based on the Cyber Kill Chain framework [11] and

CVE reports [63]. The deployed hosts have 12 active users

with hundreds of processes, and are used for various types of

daily tasks such as file manipulation, text editing, and soft-

ware development, which are representative of real-world

usage. During evaluation, the deployed hosts continue to re-

sume their routine tasks to emulate the real-world deployment

where irrelevant system activities and attack activities co-exist.

The routine tasks on these machines ensure that enough noise

of irrelevant system activities is collected. In total, the real

system audit logs collected in our deployed hosts contain

∼100 million events. The DARPA dataset includes system

audit logs collected from 5 hosts with different OS systems.

2468 31st USENIX Security Symposium USENIX Association

Table 4: Statistics of dependency graphs generated for all the 15 attacks

Attack Causality Analysis # V Causality Analysis # E Edge Merge #V Edge Merge # E Entry Nodes Critical Edge Attack Entries POI

Wget Executable 126 673 126 363 46 8 2 ∼50MB

Illegal Storage 8,450 93,085 8,450 62,073 960 6 2 ∼50MB

Illegal Storage2 42,450 658,913 42,450 378,326 3,499 4 2 ∼50MB

Hide File 194,208 6,464,098 194,208 3,273,769 35,203 12 2 ∼50MB

Steal Information 195,636 6,493,626 195,636 3,291,208 35,213 4 2 ∼50MB

Backdoor Download 7,510 69,479 7,510 60,390 157 8 2 ∼50MB

Annoying Server User 114 585 114 318 34 10 2 ∼50MB

Shellshcok 1,648 20,332 1,648 3,600 1,273 30 3 124B

Dataleak 407 2,262 407 1,152 234 18 3 7.1KB

VPN Filter 1,195 5,212 1,195 1,879 999 10 2 1.6KB

Five Dir Case1 240 272 240 272 232 2 1 50.78KB

Five Dir Case3 5,907 78,075 5,907 78,075 879 4 1 121.85KB

Theia Case1 184,352 816,277 184,352 816,277 151,827 8 2 166.78KB

Theia Case3 334,441 1,500,717 334,441 1,500,717 282,651 6 2 166.64KB

Trace Case5 263 971 263 971 28 3 1 95.KB

AVG 65,129.80 1,080,305.13 65,129.80 631,292.67 34,215.67 8.87 1.93 –

We developed a tool to parse the released logs and loaded the

events into our databases. In total, the DARPA dataset used in

our evaluation contains ∼50 million events. We next describe

these attacks in detail.

5.1.1 Attacks Based on Commonly Used Exploits

These 7 attacks are used in prior work’s evaluations [23, 52,

55, 78], which consist of the following scenarios:

• Wget Executable: A vulnerable server allows the attacker to

download executable files using wget. The attacker down-

loads python scripts and executes the scripts.

• Illegal Storage: A server administrator uses wget to down-

load suspicious files to a user’s home directory.

• Illegal Storage 2: A server administrator uses curl to down-

load suspicious files to a user’s home directory.

• Hide File: The goal of the attacker is to hide malicious file

among the user’s normal files. The attacker downloads the

malicious script and hides it by changing its file name and

location.

• Steal Information: The attacker steals the user’s sensitive

information and writes the information to a hidden file.

• Backdoor Download: A malicious insider uses the ping

command to connect to the malicious server, and then down-

loads the backdoor script from the server and hides the

script by renaming it.

• Annoying Server User: The annoying user logs into other

user’s home directories on a vulnerable server and writes

some garbage data to other user’s files.

5.1.2 Multi-host Intrusive Attacks

These 3 multi-host intrusive attacks capture the important

traits of attacks depicted in the Cyber Kill Chain frame-

work [11] and CVE [63]. In these 3 attacks, the attacker

uses an external host, referred to as the C2 (Command and

Control) server, to perform penetration, distribute malware,

and receive data. The first host that is compromised by the

attack is called Host 1, which is a starting point to perform

lateral movement and other malicious actions to compromise

more hosts inside the network (i.e., Host 2, . . . , Host n).

Attack 1: Shellshock Penetration. After the initial shell-

shock penetration at Host 1, the attacker connects to Cloud

services (e.g., Dropbox, Twitter) and downloads an image

where C2 server’s IP address is encoded in the EXIF meta-

data. The behavior is a common practice shared by APT

attacks [14, 25] to evade the network-based detection sys-

tem based on DNS blacklisting. Based on the IP, the attacker

downloads a malware from the C2 server to Host 1. When

the script is executed, it scans the ssh configuration file to

locate reachable hosts in the network, discovering Host 2,

Host 3, and Host 4. After this discovery phase, the malware

downloads another script from the C2 server and sends it to

these discovered hosts and steals password from them.

Attack 2: Data Leakage After Shellshock Penetration. Af-

ter the previous reconnaissance, the attacker downloads an-

other malware, leak_data.sh, from the C2 server and sends

it to Host 2. The malware scans for hidden files and files

containing sensitive strings, and compresses them in a tarball

leak.tar.bz2. The malware then transfers the tarball back to

Host 1. On Host 1, the tarball is encrypted and uploaded to

the Internet.

Attack 3: VPN Filter. At this stage, the attacker seeks to

maintain a direct connection to the victim hosts from the

C2 server. He utilizes the notorious VPN Filter malware [7]

which infected millions of IoT devices by exploiting a number

of known or zero-day vulnerabilities [4, 5]. After the initial

penetration on Host 1 and discovery of Host 2, the attacker

downloads the VPN Filter stage 1 malware from the C2 server

to Host 1 and transfers it to Host 2. This malware then down-

loads another executable from the C2 server, and executes it to

launch the attack and establish a connection to the C2 server.

Using this connection, the attacker transfers a malicious script

to Host 2 which will gather sensitive data on Host 2.

USENIX Association 31st USENIX Security Symposium 2469

5.1.3 DARPA TC Attack Cases

The dataset released by the DARPA TC program contains

attack cases performed on different operating systems. Based

on the attack descriptions provided in the dataset, we excluded

the attack cases that fail to launch the attacks, and the attack

cases on the Android system since mobile applications’ be-

haviors are constrained by the Android sandbox and are not

suitable for our analysis. We also excluded the phishing e-mail

attacks since most of their operations are through clicking

links in the browsers and leave limited traces in the system

audit logs. In total, we chose five attacks that target different

operating systems (Linux, Windows) and exploit different vul-

nerabilities (Firefox backdoor and browser extensions). These

attack cases span multiple days (e.g., Theia data contains logs

for 8 days).

5.1.4 Obtaining Ground Truth for the Attacks

For the attack cases performed on our hosts, we identified

the POI events based on the performed attacks and applied

backward causality analysis from the POI events to obtain the

system dependency graphs. For the attack cases in the DARPA

dataset, we queried the databases that are loaded with the logs

to identify the POI events based on the attack description, and

applied backward causality analysis from the POI events to

obtain the system dependency graphs. For the attacks involv-

ing multiple hosts, DEPIMPACT performs cross-host causality

analysis based on the existing techniques [49, 55], which

produces causality graphs that include special network con-

nection edges to represent connections among multiple hosts.

Finally, within our best efforts, we manually ensured that the

critical edges and the attack entries were identified based

on the knowledge of the performed attacks and the attack

descriptions in these system dependency graphs.

Table 4 shows the statistics of the generated dependency

graphs for the attacks. Columns “Causality Ana. # V” and

“Causality Ana. # E” show the number of nodes and edges

after performing the causality analysis from the POI events.

Columns “Edge Mer. # V” and “Edge Mer. # E” show the

number of nodes and edges after applying edge merges (Sec-

tion 4.2.1). Columns “Entry Nodes” and “Critical Edge” show

the number of entry nodes and critical edges of the depen-

dency graphs. Column “Attack Entries” shows the number of

entry nodes that are labelled as attack entries. Column “POI”

shows the data size of the files in the POI events. We clearly

observe that even after edge merges, there still remains a large

number of edges in the dependency graphs (631K on average

with the max being 3.3 million edges), which motivates the

further pruning provided by DEPIMPACT. Moreover, in these

15 attacks, the files in the POI events have diversified sizes,

ranging from 124 bytes to 50M bytes, and on average, there

are 42,757 edges (with the max being 962,706) that have

similar data sizes as the files in the POI events. Thus, directly

using the data flow amount to reveal attack sequences will

include lots of irrelevant edges in the results, which motivates

DEPIMPACT to combine multiple features for computing edge

weights to achieve better performance.

Evaluation Metrics. Besides measuring false positives (de-

tected edges that are not critical edges) and false negatives

(missing edges that are critical edges), we compute the false

negative rate FNR = FN/Ec, where FN represents the num-

ber of false positives and Ec represents the number of critical

edges (Column “Critical Edge” in Table 4), and the false pos-

itive rate FPR = FP/Etotal , where FP represents the number

of false positives and Etotal represents the number of edges

from the Column “Edge Merge # E” in Table 4.

5.2 RQ1: Revealing Attack Sequences

To demonstrate the effectiveness of DEPIMPACT in reveal-

ing the attack sequence by pruning non-critical edges, we

compare DEPIMPACT with 4 state-of-the-art techniques:

CPR [78], ReadOnly [54], PrioTracker [55], and NoDoze [38].

For each attack, DEPIMPACT ranks the entry nodes based on

their dependency impacts and chooses the nodes one by one

based on the ranks to perform forward causality analysis;

DEPIMPACT stops choosing new nodes if the newly chosen

node causes the critical component to include significantly

more edges (i.e., 1% of the total edges of the dependency

graphs). CPR merges edges between two nodes if the time

differences between the edges are within a threshold (i.e., 10

seconds). ReadOnly removes the edge whose source node is

the read-only file. PrioTracker mainly uses the fanout of nodes

to prioritize the dependencies in the causality analysis. We

then adapt the computed priories as the dependency weights

for edges and filter the edges with low weights. NoDoze as-

signs an anomaly score for each edge based on the frequency

of the corresponding system event, and then computes the

anomaly score for each path. As NoDoze requires an execute

profile, we use the daily log file of the deployed system as the

execution profile for the attacks in our deployed hosts, and

use the normal events in the logs (except the events whose

observed time are within the attack period) for the attacks in

the DARPA TC dataset. Based on the ground truth of each

attack, we manually assign lower reputation scores for the

malicious files and IP addresses as required by NoDoze. Once

NoDoze finishes computing the anomaly scores for the whole

graph, we perform the graph reduction based on the anomaly

score of each path in the dependency graph.

Table 5 shows the dependency graph reduction of DEPIM-

PACT and the other techniques. The results show that DEPIM-

PACT achieves the best performance for dependency graph

reduction. On average, the size of the dependency graph gen-

erated by DEPIMPACT (i.e., the critical component output by

DEPIMPACT) is at least 72× smaller than the second-best

result (i.e., NoDoze) and three or four orders of magnitudes

smaller than the other 3 techniques. Moreover, DEPIMPACT

does not lose any critical edges as other techniques. We next

2470 31st USENIX Security Symposium USENIX Association

Table 5: Dependency graphs generated by each technique

Attack
CPR ReadOnly Priotracker NoDoze DepImpact

FP FN # Edges FP FN # Edges FP FN # Edges FP FN # Edges FP FN # Edges

Wget Executable 355 0 363 50 0 58 50 0 58 283 3 288 45 0 53

Illegal Storage 62067 0 62073 16206 1 16211 6943 1 6948 10254 0 10260 71 0 77

Illegal Storage2 378322 0 378326 89775 0 89779 37108 0 37112 19509 1 19512 624 0 628

Hide File 3273757 0 3273769 613294 3 613303 114604 2 114614 37241 2 37251 797 0 809

Steal Information 3291204 0 3291208 618021 0 618025 115219 0 115223 20423 1 20426 854 0 858

Backdoor Download 60382 0 60390 15982 0 15990 6017 1 6024 261 0 269 121 0 129

Annoying Server User 308 0 318 46 0 56 31 2 39 219 2 227 14 0 24

Shellshcok 3570 0 3600 577 17 590 493 5 518 885 4 911 444 0 474

Dataleak 1134 0 1152 220 7 231 199 6 211 673 4 687 214 0 232

VPN Filter 1869 0 1879 290 2 298 238 4 244 208 1 217 59 0 69

Five Dir Case1 270 0 272 17 1 18 17 1 18 255 0 257 8 0 10

Five Dir Case3 78071 0 78075 77824 4 77824 7493 1 7496 595 1 598 29 0 33

Theia Case1 816269 0 816277 325459 8 325459 176794 2 176800 151233 1 151240 54 0 62

Theia Case3 1500711 0 1500717 537424 6 537424 269274 3 269277 9010 1 9015 46 0 52

Trace Case5 968 0 971 910 3 910 458 2 459 509 2 510 1 0 4

AVG 631283.80 0.00 631292.67 153073.00 3.47 153078.40 48995.87 2.00 49002.73 16770.53 1.53 16777.87 225.40 0.00 234.27

/home/admin/clean

firefox

fluxbox

IP-1 ->IP-2

/dev/glx_alsa_675

IP-1 ->IP-2

Critical edges

firefox

......

......

firefox

xxx/cookies.sqlite-well

xxx/cookies.sqlite

POI

Figure 3: Critical component generated by DEPIMPACT

for the “Theia Case 1” attack

explain the comparison with each technique.

CPR merges only the edges between pairs of nodes, and

thus lack the capabilities to prune irrelevant edges originated

from irrelevant system activities. Removing read-only files

is heuristics-based and cannot robustly achieve good perfor-

mance for different attacks as illustrated by the results (e.g., 58

for the “Wget executable” attack v.s. 600,000+ for the “Hide

File” attack). The comparison with PrioTracker shows the su-

periority of our discriminative feature projection scheme over

the fanout feature in PrioTracker. From the results, we can

observe that NoDoze performs generally well but poorly for

certain attacks (e.g., producing graphs with > 10,000 edges

for 5 attacks) The major reason is that there are many rare

benign events in these dependency graphs that do not appear

in the execution profiles. In other words, the effectiveness

of NoDoze heavily relies on whether the execution profile

can capture all the benign events, which is generally difficult

since the runtime environment of most organizations are dy-

namic and versatile. On the other hand, compared to NoDoze,

DEPIMPACT achieves better reduction results without sharing

its two major limitations: (1) DEPIMPACT does not rely on

third-party services to assign reputations to malicious files or

IP addresses; (2) DEPIMPACT does not require the execution

profile of the deployed system for training. These characteris-

tics greatly reduce the difficulty of deploying DEPIMPACT in

a new system, enabling DEPIMPACT to achieve better gener-

alization than NoDoze.

Table 6: Results of “Backdoor Download” attacks

Firefox Tabs 0 Tabs 1 Tab 5 Tabs 10 Tabs

FPR 0.15 0.16 0.19 0.21

FNR 0.00 0.00 0.00 0.00

Impacts of Background Behaviors. To better evaluate DE-

PIMPACT’s performance when substantial background benign

behaviors are mixed with attack behaviors for some applica-

tions, we launched Firefox browsers with different number

of open tabs and performed the “Backdoor Download” attack

on the Firefox browsers. The open tabs perform different

types of benign behaviors, such as loading/update pages and

JavaScript running, simulating the commonly seen benign

behaviors. We then applied DEPIMPACT to investigate these

attacks and the results are shown in Table 6. We can see that

when the open tabs increase from 0 to 10, the false positive

rates have a slight increase (from 0.15 to 0.21) and the false

negatives rates remain 0.0. Such results show the performance

of DEPIMPACT is not significantly affected by the workloads

of complex software.

Case Study. Figures 3 and 4 show the critical components of

two attacks. We use solid lines to represent critical edges, dash

lines to represent non-critical edges. POI events are clearly

marked with text descriptions.

Figure 3 shows the critical component generated by DE-

PIMPACT for the “Theia Case 1” attack in the DARPA TC

dataset. We can observe that the Firefox browser is started to

download the file /home/admin/clean from a malicious IP ad-

dress. Here, the IP addresses (i.e., the source of the backdoor)

are correctly identified as attack entries, and all the critical

edges are preserved.

Figure 4 shows the 3 critical components generated by DE-

PIMPACT for the “Shellshock” attack. The critical component

of POI I (step ①) shows that Host 1 first downloads a mali-

cious script from the C2 server, and then sends a malicious

script /tmp/crack_password.sh to Host 2 through the process

scp. Then, this malware collects user sensitive data in Host

2 and sends this data back to Host 1 through the process scp

(step ②). After this step, the sensitive data is compressed in

Host 1 and sent back to the C2 server (③). For this graph, the

USENIX Association 31st USENIX Security Symposium 2471

host2->host1

sshd

/motd.dynamic

sshd

scp password_crack.txt

john

/tmp/john

/tmp/john.zip

gpg

bash wget

/tmp/libfoo.so

/tmp/crack_password.sh

scp

host1->host2ssh

scp

bash

gather_password.sh

wget

bash

ssh

ssh

scp

bashtar

bzip2

passwords.tar.bz2

wget

crack_password.sh

Host 1: POI 1

Host 1: POI 3

Host 2: POI 2

......

......

1 Download malware

& Transfer to Host II

Compress data & Transfer
to C2 Server

3

host1->host2

host2->host1

2 Collect data &

Transfer to Host I

Figure 4: Critical components generated by DEPIMPACT for the “Shellshock” attack (non-critical edges are omitted).

DEPIMPACT generates critical components for the three POI events and takes the union of the generated critical com-

ponents, which covers all the attack steps as described in Section 5.1.2.

0 1 2 3 4 5 6 7 8 9

Number of Top Entry Points
0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
N

eg
at

iv
e

R
at

e

Dataleak
Five Dir. Case1
Five Dir. Case3
Wget Executable
Illegal Storage
Illegal Storage2
Hide File
Steal information
Backdoor Download
Annoying Sever User
Shellshock
Theia Case1
Theia Case3
Trace Case5
VPN Filter

Figure 5: False negative using different number of top-

ranked entry nodes

union of the 3 critical components in 2 hosts covers all the

critical edges. In particular, the two special network connec-

tion edges in steps ① and ② enable the cross-host dependency

tracking for revealing attack sequences.

5.3 RQ2: Selection of Entry Nodes

Intuitively, the more entry nodes DEPIMPACT uses to perform

forward causality analysis, the less likely DEPIMPACT will in-

correctly filter out critical edges. But using more entry nodes

is likely to produce more false positives in the output graph.

To demonstrate the effectiveness of selecting the top-ranked

entry nodes in revealing attack sequences, we show how the

increase of the selected entry nodes impacts the effective-

ness of DEPIMPACT in terms of FPR and FNR. DEPIMPACT

chooses the top-ranked entry nodes in each of three system-

entity categories and perform forward causality analysis from

the nodes in the order of decreasing dependency impacts.

Impacts on FPRs and FNRs. Figure 5 and Figure 6 show the

impacts of top entry nodes on FPRs and FNRs. As expected,

when more entry nodes are used, the FNR decreases while the

FPR increases. We can notice that when the FNR becomes

zero (using 2−6 nodes in different attacks), if DEPIMPACT

continues to utilize more entry nodes to do the forward analy-

0 1 2 3 4 5 6 7 8 9

Number of Top Entry Points
0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
P

os
iti

ve
 R

at
e

Dataleak
Five Dir. Case1
Five Dir. Case3
Wget Executable
Illegal Storage
Illegal Storage2
Hide File
Steal information

Backdoor Download
Annoying Sever User
Shellshock
Theia Case1
Theia Case3
Trace Case5
VPN Filter

Figure 6: False positive using different number of top-

ranked entry nodes

sis, FPR will increase significantly. Based on this observation,

we suggest that DEPIMPACT stops choosing more entry nodes

when including one more entry node for forward analysis will

result in a significant increase of the critical component.

5.4 RQ3: Revealing Attack Entries

In this RQ, we aim to measure the effectiveness of DEPIM-

PACT in revealing attack entries (i.e., whether the attack en-

tries are among the top-ranked entry nodes). Specifically, we

compare DEPIMPACT with 4 baseline approaches: the uni-

form random approach, 2 simplified versions of DEPIMPACT:

DEPIMPACT-, DEPIMPACT--, and the average-projection ap-

proach. The uniform random approach ranks all the entry

nodes randomly. DEPIMPACT- uses the temporal relevance

and the data flow relevance to compute the dependency

weight, but not the concentration ratio. DEPIMPACT-- uses

only the temporal relevance to compute dependency weights.

The average-projection approach uses a fixed parameter vec-

tor (0.334,0.333,0.333) to compute dependency weights.

Table 8 shows the average ranks of all the attack entries

computed by DEPIMPACT and the baseline approaches. We

observe that DEPIMPACT consistently ranks the attack en-

tries at the top (average rank 2.41) and achieves the best

2472 31st USENIX Security Symposium USENIX Association

Table 7: Runtime performance of DEPIMPACT and baseline approach
Dependency Weight Computation (s) Dependency Impact Propagation (s)

Attack Causality Ana.(s) Edge Merge(s)
DEPIMPACT Avg. Proj. DEPIMPACT Avg. Proj.

NoDoze(s)

Wget Executable 120.97 0.05 0.26 0.02 0.06 0.06 1.55

Illegal Storage 92.86 0.38 7.43 0.39 19.48 47.77 173.65

Illegal Storage2 95.13 3.02 52.68 33.79 160.08 1,038.55 329.31

Hide File 223.63 42.16 463.68 16.14 1,150.35 8,486.32 899.29

Steal Information 129.82 39.51 479.02 15.98 1,157.45 8,128.28 620.87

Backdoor Download 19.74 0.44 13.87 0.32 12.75 24.05 0.71

Annoying Server User_user 17.23 0.01 0.18 0.01 0.03 0.03 0.44

Shellshcok 0.05 0.03 0.07 0.01 0.02 0.06 0.08

Dataleak 0.09 0.01 0.28 0.02 0.14 0.16 0.01

VPN Filter 0.28 0.04 0.35 0.03 0.11 0.14 0.07

Five Dir. Case1 0.81 0.01 0.10 0.01 0.04 0.02 0.02

Five Dir. Case3 2.38 0.29 9.68 0.12 1.93 2.21 39.50

Theia Case1 73.28 8.75 276.80 1.88 289.77 191.85 30.36

Theia Case3 106.17 8.34 498.81 3.06 561.95 391.96 65.88

Trace Case5 1.92 0.01 0.14 0.01 0.11 0.01 0.54

AVG 58.96 6.87 120.22 4.78 223.62 1,220.77 144.15

Table 8: Average rank of attack entries
Attack Temp. Relv. Temp & Data Size Fiexd Proj. Uni. Random DEPIMPACT

Wget Executable 5.50 12.25 20 23.45 2

Illegal Storage 25 13 18 475.99 5

Illegal Storage2 1 1 1 1,893.66 2.50

Hide File 22 10.50 13.50 17,284.72 4

Steal Information 11 3.50 7 17,304.32 2

Backdoor Download 3.50 3.50 7.50 76.57 2

Annoying Server User 5 5 13 15.82 2

Shellshcok 11 19 13 22.63 2.30

Dataleak 35 9 9 48.34 4.30

VPN Filter 46 34 8 236.77 2.50

Five Dir. Case1 5 5 5 115.50 2

Five Dir. Case3 1 1 1 327.10 2

Theia Case1 1.5 1.5 1.5 88,956.70 1

Theia Case3 1 2 1 70,610.50 1.50

Trace Case5 2 2 2 10.10 1

AVG 11.67 8.12 8 13,160.14 2.41

performance. Compared with DEPIMPACT--, DEPIMPACT-

, the average-projection approach (shown in Column “Avg.

Proj.”), and the uniform random approach (shown in Column

“Rand.”), DEPIMPACT achieves 79.14%, 70.06%, 69.62% and

99.98% improvement in ranking the attack entries. These re-

sults demonstrate the necessity for DEPIMPACT to include all

three features, and the comparison with the average-projection

approach demonstrates the superiority of our discriminative

feature projection scheme over a fixed parameter vector.

5.5 RQ4: System Performance

To understand the performance of DEPIMPACT, we measure

the execution time of each step in DEPIMPACT, as shown in

Table 7. On average, DEPIMPACT takes 343.84s to finish ana-

lyzing an attack (i.e., weight computation and impact propaga-

tion) and dependency graph construction requires 65.83s (i.e.,

causality analysis and edge merge). We next compare DE-

PIMPACT with the average-projection approach and NoDoze.

We exclude the comparison of the execution times for the

common steps (causality analysis and edge merge).

From the comparison results of DEPIMPACT and the

average-projection approach in Table 7, we observe that (1)

DEPIMPACT takes more time for dependency weight computa-

tion (∼ 120s) because DEPIMPACT uses the Multi-KMeans++

clustering and LDA to find the optimal projection vector; (2)

DEPIMPACT takes less time for dependency impact propaga-

tion. The reason is because the dependency weights computed

by DEPIMPACT are much more discriminative, and hence the

score propagation can converge faster. As a result, DEPIM-

PACT reduces the execution time by 71.94% when compared

with the average-projection approach.

From the comparison results of DEPIMPACT and Nodoze

in Table 7, we can see DEPIMPACT need 343.84s to finish the

weight computation and impact propagation, NoDoze need

144.15s to finish the s anomaly score computation. In partic-

ular, while DEPIMPACT requires more time for processing

the 2 attacks whose dependency graphs have more than 3

million edges (i.e., the “Hide File” attack and the “Steal infor-

mation” attack), DEPIMPACT produces much smaller graphs

(∼ 800 edges) than NoDoze (> 20,000 edges). On average,

DEPIMPACT needs 343.84s to finish the dependency weight

computation and the dependency impact propagation, and

NoDoze needs 144.15s to finish the anomaly score compu-

tation (409.67s v.s. 209.98s for the whole analysis). Thus,

DEPIMPACT and NoDoze have similar runtime performance

for most of the attacks, and NoDoze is more efficient for

certain attacks but achieves much lower graph reduction.

6 Discussion

Evasion Attacks. Existing causality analysis techniques,

such as NoDoze [38], leverage execution profiles and rep-

utations of entities (e.g., IP and file reputations) to identify

anomaly edges. As shown in Section 5.2, attackers may hide

their attack steps in benign events or try to abuse the repu-

tation system to conceal their attack steps. Unlike existing

techniques, DEPIMPACT will not suffer from this type of

attacks since DEPIMPACT does not rely on execution pro-

files and reputations of system entities. To abuse our weight

USENIX Association 31st USENIX Security Symposium 2473

computation and back-propagation techniques, attackers may

perform multiple writes to inject the complete payload into a

file, with most of the writes behaving like normal behaviors.

To mitigate such attacks, we may treat each of the write event

as a POI event, apply DEPIMPACT on all the write events to

the malicious file that contains the payload, and investigates

all the generated graphs. We may also adopt process-based

anomaly detection techniques [70, 77] to help distinguish

these malicious writes.

Forensics of Real-World Attacks. Advanced Persistent

Threat (APT) and other real-world attacks are sophisticated

(multi-step attacks that exploit various vulnerabilities) and

stealthy (staying dormant for long period). Due to the ad-

vances of log compression techniques [41, 58, 74, 78] and

continuing decreases of storage costs, storing system audit

logs for months even years becomes affordable. Furthermore,

recent distributed database solutions [9, 10] show promising

results to improve the analysis performance of the logs. By

operating together with these solutions, DEPIMPACT can be

efficiently applied to long-period log data to investigate the

potential attacks. DEPIMPACT can be seamlessly integrated

with threat detection techniques [13, 37, 51, 64] to automati-

cally generate critical components for the reported alerts (i.e.,

the POI events), and security analysts can inspect the small

graphs (i.e., critical components) to obtain the contextual

information for handling the alerts.

Design Alternatives. DEPIMPACT is a general framework

that can use different combinations of features to investigate

different types of attacks. Our evaluations on a wide range of

attack scenarios (Section 5.1) demonstrate the effectiveness

and robustness of the chosen features. Besides the proposed

features, DEPIMPACT supports easy incorporation of other

features according to specific forensic investigation needs.

For edge weight computation, one alternative is to train a

binary classifier using the features and output a probability

score as the edge weight. However, such supervised learning-

based approach faces significant limitations in our problem

context: (1) as some of our features are computed with respect

to the specific POI, the classification model learned for one

type of attack can hardly generalize to other types of attacks

with different POIs; (2) such approach typically requires large

amount of training data, while our problem context is highly

imbalanced in which critical edges are limited. Among un-

supervised learning-based approaches, approaches based on

anomaly detection [20] could be a substitution for KMeans

clustering, and there could be alternatives for LDA to achieve

discriminative dimensionality reduction [60, 72].

Runtime Performance Improvement. The performance of

DEPIMPACT may benefit from database optimization and par-

allelization. Causality analyses can be improved by adopting

the database optimization and parallelization techniques to

speed up the search [30, 31]. Feature extraction for differ-

ent edges is independent and can also be parallelized. Back-

propagation (Equation (7)) can be converted into a matrix-

vector product form to save CPU cycles. Further paralleliza-

tion is possible by leveraging ideas similar to parallelizing

PageRank [32, 50].

Limitations. To investigate attacks, DEPIMPACT depends on

the underlying detection systems to identify the POI events

that are related to the attacks. If the underlying detection sys-

tems fail to do so, DEPIMPACT will not be able to investigate

the attacks. Recent approaches [37,77] have proposed solu-

tions to improve the detection of abnormal system activities

and DEPIMPACT can work with these approaches to provide

better defenses. Moreover, the critical components produced

by DEPIMPACT still have 200+ edges on average (i.e., Ta-

ble 5) due to the irrelevant system activities performed by the

processes that produce critical edges. We plan to explore how

to incorporate expert knowledge [34] and cyber threat intelli-

gence (CTI) [27] to filter out these non-critical edges. Finally,

DEPIMPACT cannot be used for real-time analysis as depen-

dency graph generation is costly under some scenarios even

when advanced data compression and parallel computation

are applied [41, 74, 78]. We plan to explore options that can

provide quicker feedback such as progressive updates [34,35].

7 Related Work

Forensic Analysis via System Audit Logs. Causality anal-

ysis based on system auditing data plays a critical role for

forensic analysis. King et al. [48, 49] proposed a backward

causality analysis technique by automatically reconstructing

a series of events that are dependent on a user-specified POI

event. Goel et al. [33] proposed a technique that recovers from

an intrusion based on forensic analysis. Recent efforts have

been made to mitigate the dependency explosion problem by

performing fine-grained causality analysis [42, 43, 45, 53, 57],

prioritizing dependencies [38, 55], customized kernel [16],

and optimizing storage [41, 54, 74, 78]. However, these tech-

niques suffer from adoption limitations as they mainly rely

on heuristic rules that cause loss of information [48], intru-

sive system changes such as binary instrumentation [45, 57]

and kernel customization [16], or execution profiles that have

limited generalizations [38]. DEPIMPACT proposes to com-

pute discriminative dependency weights based on multiple

features and perform back-propagation from the POI event to

compute dependency impacts for identifying attack entries,

which do not share the same adoption limitations with the ex-

isting techniques. Our evaluation results further demonstrate

the effectiveness of DEPIMPACT over the existing techniques.

Behavior querying leverages domain-specific languages

(DSLs) to search for patterns of system call events. Gao et

al. [30, 31] proposed domain-specific languages that enable

efficient attack investigation and attack detection by querying

the historical and real-time stream of system call events. A

major limitation of these DSLs is that they require manual

efforts to construct the queries, which is labor-intensive and

error-prone. Gao et al. [28] further proposed an automated

2474 31st USENIX Security Symposium USENIX Association

threat hunting approach via extracting knowledge from cyber

threat intelligence (CTI) reports using NLP and synthesizing

threat hunting queries from the extracted knowledge. Mila-

jerdi et al. [62] proposed to rely on the correlation of suspi-

cious information flows to detect ongoing attack campaigns.

They further proposed to leverage the knowledge from CTI

reports to align attack behaviors recorded in system auditing

data via graph pattern matching [61]. Pasquier et al. [66] pro-

posed a runtime analysis of provenance by combining runtime

kernel-layer reference monitor with a query module. Hossain

et al. [40] proposed a tag-based technique to perform real-

time attack detection and reconstruction for system auditing

data. DEPIMPACT can be interoperated with these techniques

to achieve a better defense.

Score Propagation. Our relevance score propagation scheme

was inspired by the TrustRank algorithm [36], which was orig-

inally designed to separate spam and reputable web pages:

it first selects a small set of reputable seed pages, then prop-

agates the trust scores following the link structures using

the PageRank algorithm [65], and identifies spam pages as

those with low scores. Similar ideas have been applied in

security and privacy application scenarios including Sybil de-

tection [18,29] and fake review detection [68]. DEPIMPACT is

the first work that applies the score propagation idea in system

audit logging domain that propagates dependency impacts to

identify attack entries for filtering irrelevant dependencies.

Edge Weight Computation. Several components of DEPIM-

PACT are built up on a set of existing techniques. Our edge

clustering step is based on Multi-KMeans++ [15], which op-

timizes the seed initialization for better clustering quality,

compared with the standard KMeans. Our discriminative fea-

ture projection step is based on Linear Discriminant Analysis

(LDA) [60], which finds a linear combination of features that

characterizes or separates multiple classes of objects.

8 Conclusion

We propose DEPIMPACT, a framework that identifies the crit-

ical component of a dependency graph of a POI event gener-

ated by causality analysis, which preserves attack information

and filter out irrelevant dependencies. Specifically, DEPIM-

PACT assigns discriminative dependency weights to edges

for revealing critical edges, and computes and propagates de-

pendency impacts to entry nodes for revealing attack entries.

By further performing forward causality analysis from the

top-ranked entry nodes and taking the graph overlap, DEPIM-

PACT preserves only dependencies that are highly relevant

to the POI event and attack entries. Our evaluations on real

attacks demonstrate the effectiveness of DEPIMPACT in filter-

ing out irrelevant dependencies (producing∼ 6,250× smaller

graphs) while preserving the attack-relevant dependencies.

Acknowledgments

We would like to thank the anonymous reviewers for the

constructive comments and suggestions to improve the

manuscript. Pengcheng Fang, Changlin Liu, and Xusheng

Xiao’s work is partially supported by the National Sci-

ence Foundation under the grants CNS-2028748 and CCF-

2046953.

References

[1] Home Depot Confirms Data Breach

At U.S., Canadian Stores, 2014.

http://www.npr.org/2014/09/09/347007380/home-

depot-confirms-data-breach-at-u-s-canadian-stores.

[2] OPM government data breach impacted 21.5 million,

2015. http://www.cnn.com/2015/07/09/politics/office-

of-personnel-management-data-breach-20-million.

[3] Yahoo discloses hack of 1 billion accounts, 2016.

https://techcrunch.com/2016/12/14/yahoo-discloses-

hack-of-1-billion-accounts/.

[4] CVE-2017-6334: WEB Netgear NETGEAR DGN2200

dnslookup.cgi Remote Command Injection, 2017.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-6334.

[5] CVE-2018-7445: NETBIOS MikroTik RouterOS SMB

Buffer Overflow, 2018. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2018-7445.

[6] The Marriott data breach, 2018.

https://www.consumer.ftc.gov/blog/2018/12/marriott-

data-breach.

[7] Schneier on Security: Router Vulnera-

bility and the VPNFilter Botnet, 2018.

https://www.schneier.com/blog/archives/2018/06/router_-

vulnerab.html.

[8] The Equifax data breach, 2020.

https://www.ftc.gov/equifax-data-breach.

[9] Apache Cassandra, 2021. https://cassandra.apache.org/.

[10] Apache HBase, 2021. http://hbase.apache.org/.

[11] Cyber kill chain, 2021.

https://www.lockheedmartin.com/en-

us/capabilities/cyber/cyber-kill-chain.html.

[12] DepImpact Project Website, 2021.

https://github.com/usenixsub/DepImpact.

[13] Endpoint monitoring & security, 2021.

https://logrhythm.com/solutions/security/endpoint-

threat-detection/.

USENIX Association 31st USENIX Security Symposium 2475

[14] VPNFilter: New Router Malware with Destructive Ca-

pabilities, 2018. https://symc.ly/2IPGGVE.

[15] David Arthur and Sergei Vassilvitskii. K-means++: The

advantages of careful seeding. In ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), pages 1027–1035,

2007.

[16] Adam M. Bates, Dave Tian, Kevin R. B. Butler, and

Thomas Moyer. Trustworthy whole-system provenance

for the linux kernel. In USENIX Security Symposium,

pages 319–334, 2015.

[17] Matt Bishop. Introduction to Computer Security.

Addison-Wesley Professional, 2004.

[18] Qiang C., Michael S., Xiaowei Y., and Tiago P. Aid-

ing the detection of fake accounts in large scale social

online services. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), pages 197–

210, 2012.

[19] Bryan Cantrill, Adam Leventhal, and Brendan Gregg.

DTrace, 2017. http://dtrace.org/.

[20] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM computing surveys

(CSUR), 41(3):15:1–15:58, July 2009.

[21] Scott A. Crosby and Dan S. Wallach. Efficient data

structures for tamper-evident logging. In USENIX Secu-

rity Symposium, page 317–334, 2009.

[22] DARPA. Transparent Computing, Defense

Advanced Research Projects Agency, 2014.

http://www.darpa.mil/program/transparent-computing.

[23] Exploit Database. Exploit Database, 2017.

https://www.exploit-db.com/.

[24] Ebay. Ebay Inc. to ask Ebay users to change pass-

words, 2014. http://blog.ebay.com/ebay-inc-ask-ebay-

users-change-passwords/.

[25] FireEye Inc. HammerToss: Stealthy Tactics Define a

Russian Cyber Threat Group. Technical report, FireEye

Inc., 2015.

[26] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.

The elements of statistical learning, volume 1. Springer,

2001.

[27] Peng Gao, Xiaoyuan Liu, Edward Choi, Bhavna Soman,

Chinmaya Mishra, Kate Farris, and Dawn Song. A

system for automated open-source threat intelligence

gathering and management. In International Conference

on Management of Data (SIGMOD), Demonstrations

Track, pages 2716–2720, 2021.

[28] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao,

Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R

Kulkarni, and Dawn Song. Enabling efficient cyber

threat hunting with cyber threat intelligence. In IEEE

International Conference on Data Engineering (ICDE),

pages 193–204, 2021.

[29] Peng Gao, Binghui Wang, Neil Zhenqiang Gong, San-

jeev R. Kulkarni, Kurt Thomas, and Prateek Mittal.

Sybilfuse: Combining local attributes with global struc-

ture to perform robust sybil detection. In IEEE Confer-

ence on Communications and Network Security (CNS),

pages 1–9, 2018.

[30] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li,

Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, San-

jeev R. Kulkarni, and Prateek Mittal. SAQL: A stream-

based query system for real-time abnormal system be-

havior detection. In USENIX Security Symposium, pages

639–656, 2018.

[31] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu,

Sanjeev R. Kulkarni, and Prateek Mittal. AIQL: En-

abling efficient attack investigation from system moni-

toring data. In USENIX Annual Technical Conference

(ATC), pages 113–126, 2018.

[32] David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast

parallel pagerank: A linear system approach. Yahoo!

Research Technical Report YRL-2004-038, available via

http://research. yahoo. com/publication/YRL-2004-038.

pdf, 13:22, 2004.

[33] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li,

and Eyal de Lara. The taser intrusion recovery system.

In ACM Symposium on Operating systems principles

(SOSP), pages 163–176, 2005.

[34] Jiaping Gui, Ding Li, Zhengzhang Chen, Junghwan

Rhee, Xusheng Xiao, Mu Zhang, Kangkook Jee,

Zhichun Li, and Haifeng Chen. APTrace: A respon-

sive system for agile enterprise level causality analysis.

In IEEE International Conference on Data Engineering

(ICDE), Industry and Application Track, pages 1701–

1712, 2020.

[35] Jiaping Gui, Xusheng Xiao, Ding Li, Chung Hwan Kim,

and Haifeng Chen. Progressive processing of system

behavioral query. In Annual Computer Security Appli-

cations Conference (ACSAC), pages 378–389, 2019.

[36] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Peder-

sen. Combating Web Spam with Trustrank. In Interna-

tional Conference on Very Large Data Bases (VLDB),

pages 576–587, 2004.

[37] Xueyuan Han, Thomas Pasquier, Adam Bates, James

Mickens, and Margo Seltzer. Unicorn: Runtime

2476 31st USENIX Security Symposium USENIX Association

provenance-based detector for advanced persistent

threats. In Network and Distributed System Security

Symposium (NDSS), 2020.

[38] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang

Chen, Kangkook Jee, Zhichun Li, and Adam Bates.

Nodoze: Combatting threat alert fatigue with automated

provenance triage. In Network and Distributed System

Security Symposium (NDSS), 2019.

[39] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam

Bates, and Thomas Moyer. Towards scalable cluster

auditing through grammatical inference over provenance

graphs. In Network and Distributed System Security

Symposium (NDSS), 2018.

[40] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang,

Birhanu Eshete, Rigel Gjomemo, R. Sekar, Scott D.

Stoller, and V. N. Venkatakrishnan. SLEUTH: real-

time attack scenario reconstruction from COTS audit

data. In USENIX Security Symposium, pages 487–504,

2017.

[41] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D.

Stoller. Dependence-preserving data compaction for

scalable forensic analysis. In USENIX Security Sympo-

sium, pages 1723–1740, 2018.

[42] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mat-

tia Fazzini, Taesoo Kim, Alessandro Orso, and Wenke

Lee. Rain: Refinable attack investigation with on-

demand inter-process information flow tracking. In

Proceedings of the ACM Conference on Computer and

Communications Security (CCS), pages 377–390, 2017.

[43] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan

Downing, Taesoo Kim, Alessandro Orso, and Wenke

Lee. Enabling refinable cross-host attack investigation

with efficient data flow tagging and tracking. In Pro-

ceedings of the USENIX Security Symposium, pages

1705–1722, 2018.

[44] Xuxian Jiang, AAron Walters, Dongyan Xu, Eu-

gene H. Spafford, Florian Buchholz, and Yi-Min Wang.

Provenance-aware tracing of worm break-in and contam-

inations: A process coloring approach. In IEEE Inter-

national Conference on Distributed Computing Systems

(ICDCS), pages 38–38. IEEE, 2006.

[45] Yonghwi K., Fei W., Weihang W., Kyu H. L., Wen-C.

L., Shiqing M., Xiangyu Z., Dongyan X., Somesh J.,

Gabriela F. C., Ashish G., and Vinod Y. MCI : Modeling-

based causality inference in audit logging for attack in-

vestigation. In Network and Distributed System Security

Symposium (NDSS), 2018.

[46] Amin Kharraz, Sajjad Arshad, Collin Mulliner,

William K. Robertson, and Engin Kirda. UNVEIL:

A large-scale, automated approach to detecting ran-

somware. In USENIX Security Symposium, pages

757–772, 2016.

[47] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans

Kaashoek. Intrusion recovery using selective re-

execution. In USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), pages 89–104,

2010.

[48] Samuel T. King and Peter M. Chen. Backtracking in-

trusions. In ACM Symposium on Operating systems

principles (SOSP), pages 223–236. ACM, 2003.

[49] Samuel T. King, Zhuoqing Morley Mao, Dominic G.

Lucchetti, and Peter M. Chen. Enriching intrusion

alerts through multi-host causality. In Network and

Distributed System Security Symposium (NDSS), 2005.

[50] Christian Kohlschütter, Paul-Alexandru Chirita, and

Wolfgang Nejdl. Efficient parallel computation of pager-

ank. In European Conference on Information Retrieval

(ECIR), pages 241–252. Springer, 2006.

[51] Christopher Kruegel, Fredrik Valeur, and Giovanni Vi-

gna. Intrusion Detection and Correlation - Challenges

and Solutions, volume 14 of Advances in Information

Security. Springer, 2005.

[52] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung

Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang,

Dongyan Xu, Somesh Jha, Gabriela F Ciocarlie, et al.

Mci: Modeling-based causality inference in audit log-

ging for attack investigation. In Network and Distributed

System Security Symposium (NDSS), 2018.

[53] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.

High accuracy attack provenance via binary-based ex-

ecution partition. In Network and Distributed System

Security Symposium (NDSS), 2013.

[54] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.

Loggc: garbage collecting audit log. In ACM Confer-

ence on Computer and Communications Security (CCS),

pages 1005–1016, 2013.

[55] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun

Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. To-

wards a timely causality analysis for enterprise security.

In Network and Distributed System Security Symposium

(NDSS), 2018.

[56] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung

Lee, Xiangyu Zhang, Gabriela F. Ciocarlie, Ashish

Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh

Jha. Kernel-supported cost-effective audit logging for

causality tracking. In USENIX Annual Technical Con-

ference (ATC), pages 241–254, 2018.

USENIX Association 31st USENIX Security Symposium 2477

[57] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Pro-

tracer: towards practical provenance tracing by alter-

nating between logging and tainting. In Network and

Distributed System Security Symposium (NDSS), 2016.

[58] Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wa-

jih Ul Hassan, and Adam Bates. On the forensic validity

of approximated audit logs. In Annual Computer Secu-

rity Applications Conference (ACSAC), pages 189–202,

2020.

[59] Microsoft. ETW events in the common lan-

guage runtime, 2017. https://msdn.microsoft.com/en-

us/library/ff357719(v=vs.110).aspx.

[60] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-

hard Scholkopf, and Klaus-Robert Muller. Fisher dis-

criminant analysis with kernels. In IEEE Signal Pro-

cessing Society Workshop, pages 41–48, 1999.

[61] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo,

and V.N. Venkatakrishnan. Poirot: Aligning attack be-

havior with kernel audit records for cyber threat hunting.

In ACM Conference on Computer and Communications

Security (CCS), page 1795–1812, 2019.

[62] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,

R Sekar, and VN Venkatakrishnan. HOLMES: real-

time APT detection through correlation of suspicious

information flows. In IEEE Symposium on Security and

Privacy (IEEE S&P), pages 1137–1152, 2019.

[63] MITRE. Common Vulnerabilities and Exposures (CVE),

2020. https://cve.mitre.org/.

[64] netwrix. Insider threat detection, 2020.

https://www.netwrix.com/insider threat detection.html.

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry

Winograd. The pagerank citation ranking: Bringing

order to the web. Technical Report 1999-66, Stanford

InfoLab, November 1999.

[66] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam

Bates, Olivier Hermant, David Eyers, Jean Bacon, and

Margo Seltzer. Runtime Analysis of Whole-system

Provenance. In ACM Conference on Computer and Com-

munications Security (CCS), pages 1601–1616, 2018.

[67] Tadeusz Pietraszek. Using adaptive alert classification

to reduce false positives in intrusion detection. In Recent

Advances in Intrusion Detection (RAID), pages 102–124,

2004.

[68] Shebuti Rayana and Leman Akoglu. Collective opinion

spam detection: Bridging review networks and meta-

data. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), pages

985–994, 2015.

[69] Redhat. The linux audit framework, 2017.

https://github.com/linux-audit/.

[70] Suphannee Sivakorn, Kangkook Jee, Yixin Sun, Lauri

Kort-Parn, Zhichun Li, Cristian Lumezanu, Zhenyu Wu,

Lu-An Tang, and Ding Li. Countering malicious pro-

cesses with process-dns association. In Network and

Distributed System Security Symposium (NDSS). The

Internet Society, 2019.

[71] Georgios P. Spathoulas and Sokratis K. Katsikas. Re-

ducing false positives in intrusion detection systems.

Computers & Security, 29(1):35–44, 2010.

[72] Masashi Sugiyama. Local fisher discriminant analysis

for supervised dimensionality reduction. In Interna-

tional conference on Machine learning (ICML), pages

905–912, 2006.

[73] Sysdig. Sysdig, 2017. https://sysdig.com/.

[74] Yu Tao Tang, Ding Li, Zhi Chun Li, Mu Zhang,

Kangkook Jee, Xu Sheng Xiao, Zhen Yu Wu, Junghwan

Rhee, Feng Yuan Xu, and Qun Li. Nodemerge: Tem-

plate based efficient data reduction for big-data causality

analysis. In ACM Conference on Computer and Com-

munications Security (CCS), pages 1324–1337, 2018.

[75] New York Times. Target data breach incident, 2014.

http://www.nytimes.com/2014/02/27/business/target-

reports-on-fourth-quarter-earnings.html?_r=1.

[76] David A. Wagner and Paolo Soto. Mimicry attacks

on host-based intrusion detection systems. In ACM

Conference on Computer and Communications Security

(CCS), pages 255–264, 2002.

[77] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li,

Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li,

Haifeng Chen, and Philip S. Yu. Heterogeneous graph

matching networks for unknown malware detection. In

International Joint Conference on Artificial Intelligence

(IJCAI), pages 3762–3770, 2019.

[78] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee,

Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining

Wang, and Guofei Jiang. High fidelity data reduction for

big data security dependency analyses. In ACM Confer-

ence on Computer and Communications Security (CCS),

pages 504–516, 2016.

2478 31st USENIX Security Symposium USENIX Association

	1 Introduction
	2 Background and Motivation
	2.1 System Monitoring
	2.2 Causality Analysis
	2.3 Motivating Example

	3 Overview
	4 Design of DepImpact
	4.1 Dependency Graph Generation
	4.1.1 System Auditing
	4.1.2 Backward Causality Analysis

	4.2 Dependency Weight Computation
	4.2.1 Edge Merge
	4.2.2 Feature Extraction
	4.2.3 Dependency Weight Computation

	4.3 Critical Component Identification
	4.3.1 Dependency Impact Back-Propagation
	4.3.2 Entry Node Ranking
	4.3.3 Critical Component Identification

	5 Evaluation
	5.1 Evaluation Setup
	5.1.1 Attacks Based on Commonly Used Exploits
	5.1.2 Multi-host Intrusive Attacks
	5.1.3 DARPA TC Attack Cases
	5.1.4 Obtaining Ground Truth for the Attacks

	5.2 RQ1: Revealing Attack Sequences
	5.3 RQ2: Selection of Entry Nodes
	5.4 RQ3: Revealing Attack Entries
	5.5 RQ4: System Performance

	6 Discussion
	7 Related Work
	8 Conclusion

