é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Saric*: protocol verifiers of the world, unite!

Vincent Cheval, Inria Paris; Charlie Jacomme, CISPA Helmholtz Center for
Information Security; Steve Kremer, Université de Lorraine LORIA & Inria Nancy;
Robert Kiinnemann, CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity22/presentation/cheval

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

I
+ » e - =
. JEEEES o -
R W E »

SAPIC™: protocol verifiers of the world, unite!

Charlie Jacomme
CISPA Helmholtz Center
for Information Security

Vincent Cheval
Inria Paris

Abstract

Symbolic security protocol verifiers have reached a high de-
gree of automation and maturity. Today, experts can model
real-world protocols, but this often requires model-specific en-
codings and deep insight into the strengths and weaknesses of
each of those tools. With SAPICT, we introduce a protocol ver-
ification platform that lifts this burden and permits choosing
the right tool for the job, at any development stage. We build
on the existing compiler from SAPIC to TAMARIN, and extend
it with automated translations from SAPICT to PROVERIF
and DEEPSEC, as well as powerful, protocol-independent op-
timizations of the existing translation. We prove each part
of these translations sound. A user can thus, with a single
SAPIC™ file, verify reachability and equivalence properties
on the specified protocol, either using PROVERIF, TAMARIN
or DEEPSEC. Moreover, the soundness of the translation al-
lows to directly assume results proven by another tool which
allows to exploit the respective strengths of each tool. We
demonstrate our approach by analyzing various existing mod-
els. This includes a large case study of the 5G authentica-
tion protocols, previously analyzed in TAMARIN. Encoding
this model in SAPIC™ we demonstrate the effectiveness of
our approach. Moreover, we study four new case studies: the
LAKE-EDHOC [49] and the Privacy-Pass [22] protocols, both
under standardization, the SSH [50] protocol with the agent-
forwarding feature, and the recent KEMTLS [48] protocol, a
post-quantum version of the main TLS key exchange.

1 Introduction

By leveraging automated reasoning techniques and a symbolic
abstraction of cryptographic primitives, protocol verification
tools, such as PROVERIF and TAMARIN, have reached a high
degree of maturity in the last decades. Precise models of
real-world protocols like TLS 1.3 [17,29], 5G authentication
protocols [13], WPA 2 [30], Noise [34,39] and Signal [27,38],
show these tools can be used to great effect. However, such
case studies tend to only be carried out by experts of the

Université de Lorraine
LORIA & Inria Nancy

Robert Kiinnemann
CISPA Helmholtz Center
for Information Security

Steve Kremer

corresponding tool and often at the cost of significant efforts.
Further, although multiple tools have very different strength
and weaknesses, they have yet to be used in collaboration.

A closer look at the development workflow reveals why.
First, even specification languages that are very similar on the
surface, e.g., the SAPIC front end [40] to TAMARIN [47] and
PROVERIF’s applied © calculus [18] require different mod-
eling regimes, e.g., when storing or receiving values, setting
locks or parsing network messages. In practice, this makes it
very hard to switch between tools, even if they share many
syntactic elements.

Second, deciding which tool to target in the first place is
even harder. Powerful abstractions deployed by PROVERIF
generally offer better automation and speed than TAMARIN,
but may lead in some cases to false attacks or hinder at-
tack reconstruction. In cases where neither a proof nor an
attack is found expert knowledge, with a good understand-
ing of PROVERIF’s internals, is required to guide the proof.
TAMARIN on the other hand guarantees correctness, hence,
no false attacks, in case of termination. TAMARIN also pro-
vides a GUI to interactively guide the proof search when
automated search does not terminate. Experts may also write
so-called oracles to automate such guidance. Another aspect
that may guide the choice of the tool is the support for cryp-
tographic primitives. Both tools provide the possibility for
user-defined primitives, with slightly different, incomparable
scopes. In particular, TAMARIN has builtin support for several
theories that feature an associative, commutative operator and
therefore offers a more precise for modeling Diffie-Hellman
exponentiation and exclusive or (xor). Given all of these pa-
rameters, the choice of the right tool requires not only insight
into the protocol, but insight into the modeling strategy.

Third, these requirements change during development. As
protocol modeling is an incremental process, it may for in-
stance be desirable to use a simplified Diffie-Hellman theory
in the early stages. Throughout the development, it is vital to
perform sanity checks, i.e., to find honest traces that show the
protocol can execute and thus spot bugs in the model before
starting time-consuming proofs. While PROVERIF is often

USENIX Association

31st USENIX Security Symposium 3935

faster in finding proofs, it can sometimes struggle to show
the existence of ‘good’ traces. Given the radically different
reasoning techniques underlying these two tools it is hard to
predict which one will perform better on a given protocol. On
a same protocol, one tool may even be capable of proving one
property, but not another, while the other tool has the reverse
capabilities.

In this work, we aim at exploiting the strengths of each
of the tools. Therefore, we design a common input lan-
guage, called SAPIC™, which may be used as an input for
several tools: TAMARIN, PROVERIF, GSVERIF [24], and
DEEPSEC [26]. SAPIC™T is an extension of SAPIC (which
only translated to TAMARIN and did not support equivalence-
based properties) that can be automatically translated to each
of these tools, thus removing the need to choose and making
these tools more accessible. While current protocol mod-
els only target one of these tools, a common platform en-
courages the implementation of tool-specific encodings in a
model-agnostic manner, which promises consistent verifica-
tion results even for users who are oblivious to the underlying
reasoning technique which is necessary for wide adoption.
We believe that this approach has a number of advantages.
(1) The distinctive features of each tool are available for the
same model while sidestepping many encoding pitfalls (such
as subtle differences in the semantics for similar syntactic
constructs) that one would encounter when porting manually
an existing model to another tool. Moreover, even though we
generate the specification for each particular tool, we main-
tain the possibility for experts to guide the tools. We illustrate
this fact on the 5G case study [13]: we are able to use ora-
cles to provide termination for TAMARIN. Moreover, unlike
SAPIC, we support the verification of equivalence properties
through PROVERIF, and above all DEEPSEC, a tool that spe-
cializes in these properties. (2) An essential part of our work
is that we formally prove the correctness of the translations,
which enables a workflow that can take advantage of each of
these tool’s strengths throughout model development on the
same input file. Lemmas proven in one verifier can be used as
assumptions in the other, potentially increasing the scope of
verification. Again, on the 5G case study, we show that several
attacks can be recovered much faster using PROVERIF. On
the other hand, we are able to use TAMARIN to prove axioms
assumed by PROVERIF, removing the need to prove correct-
ness of these lemmas by hand on some examples. (3) Similar
to Isabelle’s Sledgehammer, multiple verifiers can be run in
parallel, terminating when any of them does. This is especially
useful when it is not clear if security is provable or an attack
can be found, or when the user is unsure which verifier is
most suited for the lemma at hand. (4) Finally, for researchers,
SAPICT provides a convenient target for meta-theories and
encodings. Existing results (e.g., distance-bounding [44] or
human errors [16]) could cover a wide set of tools rather than
being developed for a single tool. Source-to-source encod-
ings in applied-mt-like calculi (e.g., [37,38,41]) translate with

relatively little work.

Contributions We can summarize our contributions as fol-
lows.

1. Translations: we provide provably correct translations
from SAPICT to both PROVERIF (supporting stateful
reasoning by using PROVERIF’s GSVERIF frontend)
and DEEPSEC and extend the existing translation to
TAMARIN. Our translations cover both protocol and prop-
erty specification. In addition, unlike SAPIC, we sup-
port privacy-type properties expressed as process equiv-
alences in DEEPSEC (verifying trace equivalence) and
PROVERIF (verifying diff equivalence, which implies
trace equivalence). The translations’ correctness proof
guarantees that results from one tool carry over to any
of the other tools as explained above. Our proofs also
relate PROVERIF’s and TAMARIN’s security property
languages in terms of expressivity, showing subtle dif-
ferences that even experts of one of the tools may not be
aware of.

2. Protocol-platform: we automate these translations
by integrating SAPIC™ (including [40]) directly into
TAMARIN to improve visual feedback in manual, in-
teractive proofs, and include a(n optional) type system,
similar to that of PROVERIF, to catch modeling errors
in development. This allows to easily use the different
tools from a single input file and exploit the strengths
of each of the tools, avoiding the time-consuming and
potentially error-prone process of carrying over models.

3. Extensions and optimizations of SAPIC: we extend
the scope and efficiency compared to SAPIC [40]. We
encode support for destructor symbols, let-bindings and
macro declarations in SAPIC’s translation procedure to
TAMARIN. We also introduce a compression technique to
reduce the size of the models produced by the translation,
prove its correctness and demonstrate its efficiency. Our
case studies show that this significantly increases the
scope of SAPIC™, enabling the verification of larger and
more realistic protocol models.

4. Case studies: we evaluate the new development work-
flow on four entirely new protocol models: KEMTLS,
Privacy-Pass, LAKE-EDHOC and SSH with agent for-
warding. We also demonstrate that existing case stud-
ies would have benefited from being directly analyzed
in SAPICT without loss of efficiency. In particular, we
ported an existing TAMARIN model of the complex 5G
authentication protocols case study [13] to SAPICT: we
observe that the dedicated, handwritten oracles used to
automate the proofs in TAMARIN carried over straight-
forwardly, and verification time was preserved, showing
the efficiency of the generated model. Moreover, using

3936 31st USENIX Security Symposium

USENIX Association

PROVERIF, with a less precise, but attack preserving
modeling of xor, we detected the existing attacks in a
completely automated way, and much faster.

Related Work The AVISPA [7] and, its successor,
AVANTSSAR projects [6] pioneered the protocol platform
approach. They provide a front end for modeling protocols
that allows to use different tools to verify security properties.
However, the expressiveness and efficiency of these back-
ends lack in comparison to the more recent TAMARIN and
PROVERIF. Also, contrary to our work, the translations were
not formally proven correct, limiting the interaction between
the backends.

Other works have taken a different approach by develop-
ing front ends for a single tool to make it more expressive
(e.g., [5, 15,46]). Similarly, many other independent tools
enable automatic protocol verification (see [11] for an almost
extensive presentation), but we believe that they have not yet
reached TAMARIN’s and PROVERIF’s level of maturity and
adoption by the community.

Outline We provide some general background about the
symbolic model and the multiple tools we rely on in Section 2.
We then define the SAPICT language in Section 3, before de-
scribing the translations and their optimizations for TAMARIN
in Section 4 and PROVERIF in Section 5. We finally showcase
the tool and our case studies in Section 6. An understanding
of the more formal definitions of Section 3 is neither needed
to understand at a high-level the remainder of the paper nor
to use the tool.

2 Background

In this section, we provide background on symbolic meth-
ods for the verification of cryptographic protocols. We first
explain how messages and cryptographic primitives are rep-
resented using a term algebra. We then review the different
verification tools that are relevant for this work.

2.1 Modeling messages as terms

Terms and substitutions Messages sent in a protocol ex-
ecution are modeled as terms. Fresh values are modeled by
constants from an infinite set of names A/, divided into public
(attacker) names Ay, and secret (protocol) names Ag,i,. We
also assume a set of variables X. Terms are then built over
names in A/, variables in X and applications of a function
symbols in F on terms. We consider two kinds of function
symbols, i.e., ¥ = F. W Fy, for constructor and destructor
function symbols. Consider for example the term enc(m, k)
modeling the encryption of another term m with the secret key
k: encryption is modeled by the constructor function enc € ¥,
ke %riv is a secret name and m is another term.

A substitution 6 is a function from variables to terms. We
lift the application of substitutions from variables to terms and
use postfix notation, i.e., we write ¢tG for the term in which
we replace each variable x occurring in the domain of ¢ and
int by o(x).

Equational theories and rewrite systems Properties of
constructor terms, i.e., terms containing no destructor sym-
bol, are expressed by an equational theory E, which is de-
fined by a set of equations (#; = f) on name-free construc-
tor terms. This induces a relation =g on constructor terms,
defined as the smallest equivalence relation =g that con-
tains all 1; =1, € E, is closed under substitution of variables
for constructor terms, and application of function symbols.
For example, dec(enc(x,y),y) = x models functional correct-
ness of an encryption scheme. An equational theory for DH
exponentiation could include (among others) the equations
exp(exp(g,a),b) =exp(g,a-b)anda-b=b-a.

The semantics of destructor symbols is defined through a
set of rewrite rules of the form d(t,,...,t,) — r where d € Fy
of arity n and the #;s are name-free constructor terms. Terms
are rewritten bottom-up modulo the equational theory E to
ensure that destructors are only applied to constructor terms.
We require that the resulting rewrite system is convergent
modulo E, meaning that (roughly speaking) any term ¢ has a
normal form modulo E, which we denote by ¢ . For example,
assuming that dec € ¥ is a destructor, we can define the rule
dec(enc(x,y),y) — x. Then, assuming the equational theory
for DH from above, dec(enc(m,g*"), g"“) rewrites into m, as
g% =F g”* When a term ¢ contains a destructor symbol that
does not rewrite, we say that the destructor fails, and we write
t — fail. Note that the decryption of an invalid ciphertext
(here modeled as a random value n) dec(n,k) would fail. Fi-
nally, we lift =g to arbitrary terms and define #; =g t, to hold

ift) Ag fail Aty AEfail At =g 6.

Patterns We define the set of parterns Pat C T (F., N, X)
to be a subset of terms. Patterns define the terms against
which we can perform pattern matching in let constructs and
protocol inputs. Typically, TAMARIN allows matching against
arbitrary terms. PROVERIF, on the other hand, only allows
executable patterns, that is patterns where the variables to be
bound can only directly occur under data constructors. A data
constructor is a function for which there exist destructors that
allow to access each of its arguments. Tuples are a typical
example. We denote the set of executable patterns Pat,,. In
the DEEPSEC tool, the only data functions are built-in tuples.

2.2 The TAMARIN prover

Protocol specification In TAMARIN protocols are described
using multiset rewrite (MSR) rules of the form

[lhs] - actions }- [rhs].

USENIX Association

31st USENIX Security Symposium 3937

They describe the manipulation of the protocol state repre-
sented as a multiset of facts. Intuitively, for such a rule to fire,
we require the (multiset of) facts on the left-hand side lhs.
Then these facts are deleted, and the facts on the right-hand
side rhs are added. The actions are facts that annotate this
rule, and will be used to specify properties. As an example,
consider the following 3 rules.

Ro : [Fr(1k)] {}~ [!SP(1k), !SQ(1k)]
Rp : [SP(1k),Fr (k)] | Honest(k) |+
[Out(enc({key, hs’),1k))]

Rg: [SQ(1k),In(enc((k, hs’),1k))] -{ Accept(k) |-]

In rule Ry we require a fresh long-term key 1k, shared be-
tween P and Q, and move these two parties into the states
SP(1k) and SQ(1k), respectively. Whenever P is in state SP
and we have a fresh session key k, then P may output the
term enc((k, hs’),1k) where 'hs’ is a constant. During this
transition, the key k is tagged as an honest key. Q on the
other hand, when in state SQ(1k) and with an available in-
put matching enc(({k,'hs’),1k), can accept key k. The facts
Fr(-),In(-) and Out(-) are built-in facts. The fresh fact Fr(-)
is always available, but guarantees that its argument is in-
stantiated with a fresh name, i.e., a name that did not appear
elsewhere, modeling the generation of a random key. In(-)
and Out(-) facts provide the network interface. As we assume
that the network is controlled by the attacker, creating a fact
Out(t) adds t to the attacker knowledge; conversely, In(t)
requires the attacker to construct a term that matches t. When
we generated the facts SP(1k) and SQ(1k) we preceded them
by ‘!’, marking them as permanent. They are available an un-
bounded number of times, modeling that P and Q can execute
an arbitrary number of sessions with the long-term key 1t,
generating a fresh session key k each time.

Equational theories In TAMARIN, cryptographic primi-
tives can be specified by an arbitrary equational theory that
is convergent and has the finite variant property. Introducing
these notions goes beyond the scope of this paper and we refer
the reader to [32,47]. In addition, TAMARIN offers built-in
support for several other operations, including DH exponenti-
ation and exclusive or. TAMARIN allows to pattern match any
term in its inputs, but does not support destructors.

Property specification TAMARIN uses a temporal logic
to express security properties about the possible protocol
executions, which are modeled as traces. Traces are simply
the sequence of actions triggered by MSR rules. We can
write lemmas that must be valid on all traces. For instance, to
express in our previous example that, whenever Q accepts a
key k, k must have been honestly generated by P. This can be
written as:

k #i.Accept (k)@i = #9.Honest (k)@ & j < i

1
2
3
4
5
6
7
8

9
10
11
12
13

let P(lk, k) =
event Honest (k);
out (¢, enc(<k,’'hs’>, 1k))

let Q(l1k) =
in(c, cipher);
let <key,'hs’>=dec(cipher, sk)
event Accept (key);
out (¢, "accept’)
else
out (c,

in

"abort’)

'new 1k; (!'new k; P(lk,k) | 1Q(1k))

Figure 1: Protocol example in the applied & calculus

More precisely, we require that if an Accept event was
raised for x at any time point i of the trace, then the Honest
event must have been raised for the same value k at a previous
time point 5. We can also write restrictions, which constrain
the set of traces considered when proving security properties.
In our example, it could be used to only focus on traces with
at most one successful session of Q by writing:

k 1 #i #j.Accept (k)@i & Accept (1)@€j = #i=#j

Automation To automatically find proofs, TAMARIN tries
to refute the existence of a counter-example by negating the
property and exploring in a backward search all paths that
would lead to this negated formula. The reasoning is done
symbolically, based on a dedicated constraint solving algo-
rithm. If the tool can prove that no such path exists, the prop-
erty is valid. The proof search may, however, not terminate.
In such cases, the user can guide the backward search in inter-
active mode, or (requiring more advanced knowledge) specify
tailored heuristics through so-called oracles.

2.3 PROVERIF

Protocol specification In PROVERIF protocols are ex-
pressed in a dialect of the applied 7 calculus. As an example
consider the protocol described in Figure 1, similar to the
example given for TAMARIN. We define two agents P and
0, parameterized by a long-term secret key 1k and for P a
fresh session key x as well. The main process is described on
line 13: the ! operator allows to spawn an unbound number of
sessions, and in each session we sample a fresh value k thanks
to the new instruction. On line 3, P outputs (on channel ¢) an
encryption with 1k of the key on the network. ! may input
a ciphertext, and check if decryption succeeds and whether
the plaintext is of the expected form <k, 'nhs’>. If so, it raises
a success event and sends a success message. Else, it outputs
an error message.

Equational theories As for TAMARIN, cryptographic prim-
itives can be specified using arbitrary convergent equa-

3938 31st USENIX Security Symposium

USENIX Association

tional theories that have the finite variant, but in PROVERIF,
no associative-commutative symbols are allowed, such as
required for DH exponentiation or exclusive. However,
PROVERIF additionally allows for so-called linear equations
(where each variable appears at most once on the left-hand
and on the right-hand side). This allows to approximate DH
exponentiation by the equation (g*)” = (g”)* for a constant
g. Moreover, PROVERIF supports the definition of destructor
symbols, hence allowing a convenient way to model that some
function applications may fail.

Property specification Properties on traces can be ex-
pressed by means of (injective) correspondence queries. E.g.,

query event (Accept(x) == event (Honest (x))

expresses that whenever (an instance of) the event accept (x)
executes, the event Honest (x) must have been executed before
(with the same value for x). If the query is specified to be
injective we require that each accept (x) can be matched by a
distinct Honest (x).

Moreover, PROVERIF offers support for properties ex-
pressed in terms of indistinguishability, i.e., by specifying
that two protocols cannot be distinguished by an attacker.
Continuing our example, we could specify strong secrecy of
k as a non-interference property, encoded as an equivalence.
PROVERIF can then be used to prove this equivalence:
let scenl = in(c, <kl1,k2>); !new sk; (P(sk, kl)|Q(sk)).

let scen2 = in(c, <kl1,k2>); !new sk; (P(sk, k2)|Q(sk)).
equivalence scenl scen2

Intuitively, even if the attacker chooses two session keys k1
and k2, it is unable to distinguish which one was used. Sim-
ilarly, we could model unlinkability: can the attacker distin-
guish the case where all sessions of p and ¢ have the same
shared secret key from the scenario where each pair of ses-
sions has a distinct key?

let scenl = new sk; (!new key; P(sk,key) \ 'Q0(sk)

let scen2 = !new sk; (!new key; P(sk,key) \ 10 (sk)
equivalence scenl scen2.

).
).

This property does, in fact, not hold. Moreover, PROVERIF
is unable to conclude, returning cannot be proved. This
comes in particular from the fact that PROVERIF tries to prove
a very strong form of equivalence, dubbed diff-equivalence
which is not satisfied on this example.

Automation Internally, PROVERIF translates the protocol
specification into a particular form of first-order logic formu-
las, called Horn clauses. It then uses a resolution algorithm
that simplifies these clauses in such a way that the security
property can be verified on this simplified form. The verifica-
tion in PROVERIF is generally much faster than in TAMARIN.
This is in particular due to the fact that the translation from
the applied 7 calculus into Horn clauses introduces (sound)

abstractions: in addition to nontermination the tool may some-
times fail and find neither a proof nor an attack. This problem
occurs in particular when protocols maintain a global, mu-
table state, i.e., different protocol sessions update this state.
Recently, the GS VERIF front end significantly improved on
this limitation building on the following simple, but effective
idea: rather than verifying the formula ¢, GSVERIF verifies
whether ‘¢ or some action that should occur only once oc-
curred twice’ by automatically adding protocol annotations
and transforming queries accordingly.

2.4 DEEPSEC

DEEPSEC specializes in indistinguishability properties, no-
tably trace equivalence. Protocols are described in basically
the same language as PROVERIF, but without replication,
hence limiting verification to a bounded number of sessions.
On the flip side, DEEPSEC provides a decision procedure,
ensuring termination (in theory—in practice the tool may
run out of resources on large instances). Therefore, when
PROVERIF does not terminate or is inconclusive, we can use
DEEPSEC, but we must bound the number of replications.
Continuing our example, this would correspond to:

let scenl = new sk; !"3(new key; P(sk, key) \ Q(sk)).

let scen2 = !"3(new sk; (new key; P(sk,key) \ Q(sk))).

query trace_equiv(scenl, scen2).

where we check the equivalence for three sessions. DEEPSEC
is indeed able to reconstruct an attack trace. Note that
PROVERIF may sometimes be unable to prove the equiva-
lence even when the processes are equivalent, as it verifies
a stricter form of equivalence than DEEPSEC. This happens
for instance on the Basic Access Control (BAC) protocol
implemented in the electronic passport [33].

Regarding equational theories, DEEPSEC provides support
for a class of subterm convergent destructor theories, a class
strictly included in those of PROVERIF.

2.5 SAPIC

In SAPIC, protocols are described in a stateful dialect of
the applied 7 calculus, including constructs for manipulating
global, mutable state and for acquiring locks to manipulate
this state concurrently. These processes are translated into
TAMARIN. The property specification language is exactly that
of TAMARIN. As a result, SAPIC inherits the strengths of
TAMARIN, but also its limitations. In particular, SAPIC does
neither support destructors nor equivalence properties. More-
over, the generated MSR rules sometimes add a performance
overhead.

3 The SAPICT language

Before defining SAPIC™’s language more formally, we give a
short overview of its main features.

USENIX Association

31st USENIX Security Symposium 3939

3.1 Overview

Protocol specification SAPIC™’s syntax for specifying pro-
tocols is an applied © calculus similar to PROVERIF and
SAPIC; Fig. 1 is actually a valid SAPICt example. Compared
to SAPIC, the added features include the definition of destruc-
tors, i.e., function symbols whose application may fail (see
below), let bindings with pattern matching and else branches.

Equational theories Through its exports, SAPICT sup-
ports the union of the theories supported by TAMARIN and
PROVERIF. When exporting a theory like DH exponentation
to PROVERIF (which only has partial support for this theory),
we export an abstraction of the theory, that can still be useful.

Property specification SAPIC™ supports reachability prop-
erties expressed in the same logic as SAPIC and TAMARIN, but
additionally translates and exports them to PROVERIF’s query
language. Further, SAPIC™ supports equivalence properties
that can be expressed similarly to PROVERIF and DEEPSEC.

Automation SAPICT automatically translates to
PROVERIF, TAMARIN and DEEPSEC, and thus bene-
fits from the automation of each of those backends. In
contrast to SAPIC, which was a stand-alone preprocessor,
SAPICT is integrated into TAMARIN. This improves user
interaction, as now SAPICT-generated rules display as
process actions in interactive proofs and error reporting
is more precise. Moreover, it aids future development, as
the SAPICT module interfaces directly with TAMARIN’s
term theory and parser, benefiting from new developments.
Most importantly, we significantly improved on SAPIC’s
level of automation, first through several (provably correct)
optimizations for the translation to TAMARIN and second
with the addition of translations to PROVERIF and DEEPSEC.
Both improvements are illustrated by our case-studies,
notably 5G-AKA.

Extra features SAPIC' naturally inherits previous exten-
sions to SAPIC (e.g., a local-progress semantics, needed to
show liveness-like properties [8]). Direct encodings in SAPIC
(e.g., SGX reports [37] or accountability [41]) translate for
free, and become available in PROVERIF for the first time.

3.2 Protocols
3.2.1 Syntax

We present the syntax of SAPICT in Fig. 2 where ¢, st,; range
over arbitrary terms, n ranges over private names in Apyiv,
X ranges over variables in X and p ranges over patterns in
Pat. Elementary processes model finite protocols that simply
sample fresh values with the new construct and perform input
and output over a channel ¢, based on some control flow.

(R0} =
(elementary processes) (extended processes)
0 | event F; P
| newn; P | P
| P|Q (stateful processes)
| out(t;,nn); P | insert st,t; P
| in(t1,x); P | delete st; P
| if ¢ then P else Q | lookup st as x in P else QO
| let p=tinPelse Q | lock st; P
| unlock st; P

Figure 2: Syntax of our process calculus

Extended processes model unbounded protocols which may
also raise events. Events provide a convenient way to model
reachability properties. Stateful processes can manipulate
globally shared states sz. Conditionals are described by first-
order formulae ¢ over equalities on terms, possibly containing
variable quantifiers, as in [40].

3.2.2 Semantics

We equip SAPICT with an operational semantics suited for
expressing both equivalence and reachability properties, in
contrast to SAPIC, which only supported reachability proper-
ties. A configuration defines the current execution of the pro-
cess and contains, among others, a set of executable processes
P and the attacker knowledge inside a substitution 6. The
domain of ¢ will contain variables from AX = {att;}ieN.

The semantics is a labeled transition system between con-

figurations, defined by a relation L, where ¢ may be empty,
or a set of facts. We use facts to annotate processes and log
events. For instance, ¢ may contain K(¢) to log that the at-
tacker knows 7; In(R, R') to log the recipes used by the attacker
to compute the protocol inputs; Out(R) to log the recipe used
by the attacker to compute the channel of an output. Formally,
a recipe is a term containing only variables from A4X and
public names. We give an excerpt of the semantics in Fig. 3
(see Fig. 9 in Appendix A for the full version).

We define P when {P},0—>*l—l>—>*‘..—>*li>

—*C. Such a sequence of labels, together with the attacker
knowledge o of the resulting configuration C, defines a trace.
We denote by traces” (P) the set of traces of a process P, i.e.,

{(tr,0) | 3P. P2 G}. For equivalence properties, we only

consider the traces (tr,6) of traces” (P) where we removed
from #r all facts other than In and Out, denoted traces% (P).

3940 31st USENIX Security Symposium

USENIX Association

Out(R),K
PU* {out(ty,1n); P}, 62 BK 0, b it 1Py s U {attn s 1o}

if 11 =g Ro, R arecipe,t; /4 fail and n = 6|+ 1

In(RR) K(1R)), 1, (Plxos Ro)).o

ift =g Ro,R'c 4 fail and R, R’ recipes
PU* {let p=rin Pelse Q},6—PU" {P1},6
if pT =g t and 7 is grounding for p

PU* {in(t,x); P},0

Figure 3: Operational semantics (excerpt)

3.3 Security properties
3.3.1 Reachability properties

To express reachability properties, we use the same temporal
logic as the one of TAMARIN [47] and introduced in Sec-
tion 2.2. In the TAMARIN tool, security properties are de-
scribed in an expressive two-sorted first-order logic: we dis-
tinguish the sort msg that ranges over terms and the sort temp
used for time points. Intuitively, a time point corresponds to
an index of a trace sequence tr = {;..... £,. We denote by
Xiemp the set of time point variables.

An atomic trace formula is either false L, a term equality
1] & tp, a time point ordering i < j, a time point equality i = j,
or an action F@j for a fact F and a time point i. A trace
formula is a first-order formula over atomic trace formulas.

The satisfaction on closed atomic trace formulae on a trace
sequence tr ={j..... ¢, is naturally defined as

o 1R iff = t;
e i< jiff 1 <i<j<m
e and F@iiff 1 <i<npand F € /4;.

The satisfaction of a trace formula ¢ on a trace sequence r,
denoted tr = @, is extended as expected. Note that quantified
variables must be instantiated with terms of the same sort.
For example, the formula 3i € Xipp,x € X.@ holds in tr if
and only if there exists an integer n and a message ¢ such
that @{i — n;x +— ¢} holds in #r. Given a process P, we write
P E @ when for all traces (tr,0) in traces” (P), tr F .

3.3.2 Equivalence properties

Unlike SAPIC, SAPICT also supports indistinguishability
properties, as introduced in Section 2.3. Such properties can
be modeled by trace equivalence. We first define static equiv-
alence, modelling the indistinguishability of two sequences
of terms represented as substitutions.

Definition 1. Two closed substitutions 61,6, on messages
are statically equivalent, written G| ~g Gy, iff

VM,N recipes, MG| =g NG| < MGy =g No»

We can now define equivalence of processes P and Q by
requiring that for any trace of P there exists a trace in Q
obtained by the same sequence of labels, i.e., attacker actions,
and resulting in statically equivalent attacker knowledge (and
vice versa).

Definition 2 (Trace equivalence). Let P and Q be two pro-
cesses. P is a trace included in Q, written P Cg Q, iff

(tr,6p) € traces”.(P)
Vtr,op. HGQ. :>
(tr,0¢) € traces%(Q) A Op ~g Og

P and Q are trace equivalent, written P ~g Q, iff P Cg Q
and Q Cg P.

Other equivalence properties Besides trace equivalence,
other process equivalences are sometimes considered. In par-
ticular, observational equivalence (which can be characterized
as a labelled bisimulation [3]) is a stronger equivalence that
implies trace equivalence, which itself implies testing equiva-
lence [23]. On a subclass of processes, called determinate, all
these notions coincide [23].

In general, properties can be expressed with any of these
equivalences, but with subtle differences in the adversary’s
distinguishing power. For instance, (the notion of strong) un-
linkability was initially defined using observational equiva-
lence [4], and later using trace equivalence [10, 35].

Unfortunately, tools such as ProVerif and Tamarin can-
not directly show these equivalences. They support diff-
equivalence, a stronger equivalence that requires the two pro-
cesses to have the same structure and to only differ in the
terms [19]. While diff-equivalence is easier to prove and pro-
vides a convenient proof technique (as it implies observational
and trace equivalence) it may sometimes be too strong and
lead to false attacks.

As we will see below, for SAPICT we rely on PROVERIF’s
ability to prove diff-equivalence, which then implies trace
equivalence. Obviously, we suffer from the same limitation
as PROVERIF when false attacks arise. In that case we can
use DEEPSEC which proves trace equivalence precisely, but
at the cost of bounding the number of sessions.

3.4 Overview of translations and results

We give here a summary of the translations and associated
correctness results. Recall that TAMARIN’s input language is
a set of multiset rewrite rules and security properties are ex-
pressed in the first-order logic of Section 3.3.1. PROVERIF’s
specification language, on the other hand, is a dialect of the
applied 7 calculus, as SAPICT, but with subtle differences be-
tween both languages. Properties in PROVERIF are expressed
either using dedicated queries for reachability properties or
observational equivalence. We will denote the satisfaction
relation of PROVERIF’s reachability queries by EFPV.

USENIX Association

31st USENIX Security Symposium 3941

Reachability properties We will show that, for reachability,
it is possible to directly translate SAPIC™ specifications into
both TAMARIN’s and PROVERIF’s input formats. In the fol-
lowing sections, we describe in more detail these translations
which we denote by [-]™™ for the translation to TAMARIN
and [-]*V for the one to PROVERIF (by abuse of notation we
use the same translation function for both the processes and
the security formulas). We suppose that reachability formulas
only contain K (-) facts, as well as facts defined through events
(to avoid clashes with reserved facts added by the translation).
The correctness and the conditions under which the translation
can be applied are stated in the following theorems.

Theorem 1. Let P be a process and ¢ a formula such that P
does not contain conditional branchings with destructors.
PEg e [P E o™
Note that, although the property language for SAPIC™ and
TAMARIN is the same, we need to translate the formula @ as it

encodes additional information. We can now define a similar
correctness theorem for the translation to PROVERIF.

Theorem 2. Let P be a process and ¢ a formula such that

e Pat = Pat,, and P does not contain conditional branch-
ings with variable quantifiers;

* @ is a formula with a single quantifier alternation.

Then P @ < [P]7Y PV [@] V.

Equivalence For equivalence, we can export SAPIC™T to
either the PROVERIF or DEEPSEC tool.

PROVERIF indeed allows to verify a strong process equiva-
lence, that we denote by P =g Q. It was shown in [19] that
= implies observational equivalence, which in turn implies
trace equivalence. Therefore, for extended processes, i.e., non-
stateful processes, and the same hypotheses on processes as
in Theorem 2, we have that

if [P]"Y 22 [Q]FY then P~k Q.

Moreover, on elementary processes, the syntax of SAPIC™T
and DEEPSEC coincide for predicates restricted to equality.
Therefore, we can directly, for free, employ DEEPSEC to ver-
ify trace equivalence on this subclass of processes. Hence, we
will not detail the (straightforward) translation to DEEPSEC
in the following. Note, however, that DEEPSEC only supports
a constructor-destructor term algebra defined by a subterm
convergent rewrite system and no equational theory. As of
now, there is no clear link between process equivalence and
Tamarin’s notion of equivalence between rewrite systems [14].
We thus do not translate equivalence properties to Tamarin.

4 From SAPICT to TAMARIN

We extend the 2014 translation from SAPIC to TAMARIN [40]
with new syntactic features that improve usability (cf. Sec-
tion 4.1.1) or interoperability with PROVERIF (let binders
with pattern matching and destructors). Moreover, we heavily
optimize the number of rules produced and the encoding of
common edge cases for communication and database access.

4.1 SAPICT extensions and updates
4.1.1 New syntactic features

With SAPICT, we make several small syntactic extensions to
SAPIC, importing some useful features from PROVERIF.

Types SAPICT provides some small typing capabilities, that
can be used to sanity check the model. Function symbols can
be declared with a type, and variables can also be bound with

a type:

functions: enc(bitstring,skey):bitstring
ar Y

new sk:skey; in(m:bitstring); out (enc(m,sk)).

A type inference algorithms allows both to sanity check the
models, looking for incompatible typing annotations, and to
ease the export to PROVERIF. Notably, events in PROVERIF
need to be declared with the type of their arguments, that we
can infer from the annotation in the process and the event
usages.

Processes with explicit parameters SAPIC allows to de-
clare sub-processes that can be called inside the main process
with the following syntax.

let P = ...
let 0 = ...

process (new skP; new skQ; !P | !Q)

Such declarations can lead to mistakes in the model. Indeed,
assuming that p should only have access to skp and pk (skQ),
we may use inside it by mistake sko. SAPICT now supports the
declaration of sub-processes with some explicit parameters,
that are binding the sub-variables, improving the readability
of the models.

let P (skP,pkQ)

let Q(skQ,pkP) = ...

process (new skP; new skQ; !P(skP,pk(skQ)) | !Q(skQ, pk
(skP))

3942 31st USENIX Security Symposium

USENIX Association

Explicit pattern matchings SAPIC supports the same pat-
tern matching capabilities as TAMARIN. Thus, one can write
processes of the form new sk; new token; P(sk) | in(enc(<

token, m>,sk)).In big processes, implicit pattern matchings
can make the model difficult to verify and understand. We
thus add the capability to specify which variables correspond
to a pattern match, and which variable are to be bound. We
use the same notation as PROVERIF, adding as a prefix the
= symbol, for instance yielding new sk; P(sk) | in(enc(< =
token, m>,=sk)).

Remark that to avoid modelling mistakes, we recommend
that modellers do not use pattern matchings over function
symbols, but rather rely on let bindings: new sk; P(sk) | in
(cypher); let <=token,m> = dec(cypher,sk) in ...)

4.1.2 New semantical features

Moreover, we introduce two new semantical features in let-
bindings. SAPIC only supports let bindings for a single vari-
able of the form let x = in P. We generalize to pattern match-
ings with a failure branch of the form let s =¢ in P else Q
where s, € T(%.,E,X). In a second step, we allow the
right-hand side ¢ to contain destructor functions, i.e., t €
T(Fe, N X).

The pattern matching permits to concisely extract relevant
segments from incoming messages, e.g.,

let <key,'hs’>=dec(cipher,sk) in [..]

in the running example. The failure branch (else out (c,
"abort’)) allows to react if the incoming message does not
decrypt, a feature that, e.g., AEAD schemes or CCA2-secure
public key encryption schemes posses. As both TAMARIN
and SAPIC do not support destructor functions, we provided
translation for let bindings with destructors where a restriction
encodes the failure conditions.

In [25], we show the correctness of this translation. Notably,
we extend the 40-page proof from [40] in a black box fashion
with the following techniques. For the first step, we exploit
that the SAPIC semantics includes a feature for embedding
MSRs within the process, which we omitted here for the ease
of presentation. We expressed the first step using this feature,
and show that the translation of the let construct into a process
with the embedded MSRs is correct. The correctness of the
translation to MSRs then follows by transitivity. The second
step is expressed as a source-to-source transformation that is
valid due to the correctness of the first step. We thus obtain a
fully modular proof of correctness.

4.1.3 Updates to avoid pitfalls

We made several changes to the translation of SAPIC when
moving to SAPICT to avoid some pitfalls either when trans-
lating to PROVERIF or when expressing equivalence-based
properties .

rules running time (s)
Case Study (Section 6.2) NC C NC C R
KEMTLS [48] 98 42 1.4k 47 28
KEMTLS-CA [48] 124 57 207k 1.1k 18
KEMTLS-NO-AEAD [48] 94 41 11.7k 222 52
LAKE-EDHOC [49] 121 56 1.5k 265 5
SsH [50] 67 37 53 4 11
SSH-NEST [50] 106 58 3.1k 16 10
Privacy-Pass [22] 44 20 13 10 1.3
AC [12,37] 48 12 2 1 2
AKE [12,37] 35 15 1.3 08 1.5
OTP [36,37] 94 40 17 6 3
NSL [40,43] 59 25 80 18 44

NC: without compression C: with compression ~ R: ratio

Figure 4: Benchmarks for path compression

Notably, the pattern matching inside an input behaves dif-
ferently in PROVERIF and SAPIC. For PROVERIF, in(t, p); P
with pattern p is merely syntactic sugar for in(¢,x); let p =
x in P else 0. Notably, the input is always executable, and
the continuation may fail. The semantics of SAPIC is differ-
ent, as the matching is directly made in the input, and the
input is not always executable. We changed SAPIC™ to follow
PROVERIF’s semantics, as it was important to obtain the same
behaviours for the equivalence semantics of PROVERIF and
DEEPSEC.

Another pitfall is that while TAMARIN supports general
pattern matchings, where the pattern (x,x,y) will for instance
expect twice the same value for x and either bind y if it is
a fresh variable or expect it to match the existing value of
y, PROVERIF supports pattern matchings with an explicit =
to indicate that a variable should not be rebound but match
the current value of the variable. For example, the pattern
(x,x,y) will accept three distinct values, and rebind x to the
second value. (= x,x,y) will expect the first value to be the
previous binding of x, and then bind x to the second value.
We believe that such subtle behaviors may be confusing, and
therefore SAPICT forbids rebinding of variables, and thus mul-
tiple occurrences of the same variable in a pattern matching.
This syntactic restriction avoids confusion about the possi-
ble semantics, and enforces the behavior of PROVERIF and
TAMARIN to coincide.

4.2 Optimizations

The number of rules produced by the translation and the
encodings chosen have decisive impact on the verification
speed, as we will show. This is the reason why handwritten
TAMARIN models are typically faster to verify than translated
models. For non-experts, what constitutes the best encoding

USENIX Association

31st USENIX Security Symposium 3943

is opaque and performing these optimizations is often out
of reach. Here, we show the potential for improvement by
discussing two optimizations, one that applies in general, one
that applies to a frequent edge case.

4.2.1 Path compression

The original SAPIC translation produces at least one
rule per position in the process tree, but often they can
be compressed. Consider the translation of the process
new a; new b; out(c,(a,b)). We obtain three msrs from
the translation, but as only the last step is observable, these
three rules can be compressed into one.

This compression step is not always permissible; hence we
need to define carefully under which circumstances correct-
ness is maintained. For instance, two rules cannot be com-
pressed if the second rule may require the attacker to know
the output of the first. e.g., new a;out(c,a);. .. cannot be com-
pressed with its continuation ...;in(c,x);....

We define this compression as an optimization of the MSRs
which is, in principle, applicable to handwritten TAMARIN
models. We provide in [25] the complete set of conditions
under which rules can be compressed and the corresponding
proof (once again made in a black box fashion).

We find that this optimization is very effective (see Fig-
ure 4). On all examples, the reduction in the number of rules
is significant, and the running time of the verification can be
reduced by a factor of up to 52. We observe that the ratio is
more pronounced on examples where verification is slow to
begin with, possibly indicating that path compression is most
effective during the constraint solving procedure (as opposed
to precomputation).

4.2.2 Alternate secret channel encoding

For private communication, it depends on the knowledge of
the adversary whether or not the sender can proceed after
emitting a message. Naturally, the encoding of channels in
SAPICT reflects that, but typically, private channels remain
trivially secret throughout the protocol run. We optimize the
translation for this frequently occurring special case.

We syntactically check a sufficient condition of secrecy:
a name 7 is a secret channel if there is a single process of
form new n; P and all other occurrences of »n have either the
form in(n,m) or out(n,m) with n not occurring in m. If the
condition is fulfilled, we can remove one out of two rules
produced for each out-processes and one out of three rules in
the translation of in-processes. The rules removed capture the
case where an attacker can deduce the channel name and thus
trigger the asynchronous communication behavior. It both
reduces the number of rules and removes the need for a case
distinction about whether 7 is deducible.

We find significant performance improvements with three
case studies (see Fig. 5, Appendix A). SSH-NEST and OTP will

case study w/ocompr. Ww/compr. ratio

[36,37] OTP 25 8 3
[50] SSH-NEST 594 316 2
U2F-TOY oo 30 o0

Figure 5: Benchmarks for the secret channel optimization
compression: running time (in seconds)

case study state restr. state facts ratio
[12,37] AC 127 1 127
[12,37] AC-F-sid 64 250 1
[12,37] AC-F-counter 266 4 66
[5,40] SD 47 oo 1

Figure 6: Benchmarks for the state facts option: running time
(in seconds)

be detailed in Section 6.2 and have a speed up of two and three,
while U2F-TOY was already in SAPIC’s repository. Note that
on the latter, TAMARIN times out without this optimization.

5 From SAPICT to PROVERIF

The syntax and semantics of PROVERIF are very similar to
SAPICT as both use dialects of the applied 7 calculus for their
input languages. We describe the main differences and how
they are handled bellow. We do not detail the translation for
DEEPSEC, as it is similar to the one of PROVERIF.

5.1 Translating conditionals

Extended processes only differ in the semantics of condi-
tional branching containing destructors. In SAPIC™, if u =
v then P else Q reduces to P when u =g v, which implies that
both u and v reduce to constructor terms. Q is executed when
u #g v, thus when u and v are not equal or u or v is not a
message. In PROVERIF, the semantics for the then branch are
the same; however, Q is only executed when both u and v are
messages and « and v are not equal. The process blocks when
either u or v is not a message. Such if u = v then P else Q
conditional branching is translated in PROVERIF using let
bindings.

While this may seem anecdotal, verification results can
change if a part of the process becomes non-executable.
PROVERIF or DEEPSEC users may not even be aware of
this discrepancy, which illustrates the risks of working with
different tools. There are many other pitfalls in manually trans-
lating models between PROVERIF, TAMARIN or DEEPSEC,
concerning, among others, bindings inside pattern matchings,
destructor inside conditionals and how pairs are encoded. We
detail those differences in [25].

3944 31st USENIX Security Symposium

USENIX Association

5.2 Translating states

PROVERIF has no direct syntax for stateful processes and
requires an encoding that relies on internal communication on
private channels. Although semantically correct, PROVERIF
struggles to prove security properties relying on this encoding.
In practice, it leads to false attacks. The recent GSVERIF
front end [24] addresses many false attacks related to stateful
protocols. However, GSVERIF’s transformations easily lead
to nontermination issues and are sometimes too restrictive to
handle general stateful processes. We therefore updated the
GSVERIF tool (available in [1, 2]) to lift these restrictions
and better exploit the most recent features of PROVERIF (e.g.,
lemmas, axioms) leading to more efficient verification and
favoring termination.

Although the applied & calculus lacks explicit constructs
for stateful processes, private memory cells are classically
encoded by reading and writing on private channels. For a
private channel ce11, reading the cell is achieved by in (cell
,x); P, and writing by out (cell,t) |p. Note that for writing,
the output is put in parallel as communication over private
channels is synchronous. With this encoding, as long as an
output on cell is not available, the cell is in fact locked.

States in SAPIC™ behave similarly to this encoding when
a lookup is directly preceded by a lock, or an insert directly
followed by an unlock. We call such a state pure. They can
be translated through replacement of

lock t;lookup tasxin_else0 by in(n,x);_ and
insert £,¢;unlock ¢;_ by out(n,t); _
where n € ALy is a fresh private name. We give a precise
definition of pure states and show the correctness of this
encoding in [25].

This transformation also provides an alternate encoding
when translating to TAMARIN. Interestingly, it does not al-
ways improve performance, although it describes a natu-
ral way to write cells in TAMARIN. E.g., on the AC proto-
col [12,37], the verification time shrinks from 127 seconds to
1 but on the SD protocol [5,40], the encoding seems to lead to
nontermination (see Figure 6, Appendix A). Using SAPICT,
we can easily switch between both encodings.

This translation of states is efficient and sufficient for most
of our cases studies. However, it does not cover all the SApICT
processes. For the remaining cases that do not match our
syntactic conditions (i.e., not all states are pure), we exploit
PROVERIF’s table construct. Tables define a form of global
memory that processes can insert element to and look up el-
ements from. However, unlike SAPIC™’s store and locking
table, PROVERIF’s tables are append-only: once inserted, an
element cannot be removed nor replaced. We use these tables
to associate states with a secret channel name as in the pure
case, but now we have to take care that the secret channel is
created on first access only. This is difficult: as the store is
global, the first access is not bound to a particular position
in the process. Thus we must make sure those operations

are atomic through a dedicated locking channel. The trans-
lations for lock/unlock and insert/lookup follow this pattern,
but differ in when the placement of the private channel com-
munication, as the former lock construct is blocking, while
insert is not. See [25] for the translation and its proof of
correctness.

5.3 Translating queries

PROVERIF translates security properties of various kinds (e.g.
authentication, secrecy, non-interference, real-or-random se-
crecy) into either reachability queries (called correspondence
queries in PROVERIF’s manual) or equivalence queries. For
reachability properties, we know that the state transforma-
tion preserves the set of traces. However, not all Sarict
queries can be translated into PROVERIF reachability queries,
as PROVERIF permits only one quantifier alternation. Further-
more, the translation of special facts about communication
or adversarial knowledge requires great care due to some
semantic pitfalls we will explain as we go along. Note that
GSVERIF supports only reachability queries, hence support
for equivalence queries is limited to protocols without state.

Reachability properties In the latest PROVERIF release,
reachability properties can be described through a sorted first-
order logic formula over atomic trace formulas as defined in
Section 3.3.1, similarly to SAPICT and TAMARIN. There are,
however, some differences in the facts and the fragment of
the logic that prevent the translation of all SAPICT queries to
PROVERIF queries and vice versa.

The first difference is that PROVERIF only considers
queries with at most one quantifier alternation. More specifi-
cally, a query must be of the form Fi @iy A...AF, @i, = ¢
where ¢ is a quantifier-free trace formula and its disjunctive
normal form (DNF) does not contain negations of facts F @i.
All variables in F1 @i A ...\ F, @i, are quantified universally
and remaining variables in ¢ are quantified existentially. For
example, the following query in PROVERIF syntax

query x,y:my_type, z:bitstring, i,j,k:time; event (A(x))@1
&& event (B(y))@j = event (C(x,y,z))0k && k < j

quantifies variables x,y, i, j universally and z, k existentially.
In SAPIC™’s syntax, this query is expressed as

x y #1i #3. A(x)Q@i & B(y)@j
- z #k. C(x,v,2)@k & k < J

The second difference is the set of allowed facts and their
semantics. Facts in PROVERIF include events, as illustrated
by the previous example, message facts of the form mess (c
,t) that hold when a term ¢ has been sent on channel ¢, and
attacker facts of the form attacker(t) that hold when the
attacker can deduce the term ¢.

Though message and attacker facts may seem very similar
to the K fact, their semantics are incomparable. Like for the K
fact, an attacker can trigger mess (c, t) provided it can deduce

USENIX Association

31st USENIX Security Symposium 3945

c and t. However, mess (c, t) is also triggered when the output
and input rules on private channels are executed.

Unfortunately, the attacker fact does not correspond to a
K fact either: k() ¢i holds when the attacker did deduce + at
timestamp i (e.g., to execute an input on a public channel);
whereas attacker (t)ei holds if t is deducible at the times-
tamp i. This difference in semantics has important ramifica-
tions. First, two K facts cannot hold at the same timestamp but
two attacker facts can. Second, and more importantly, it makes
the translation of queries impossible when a K fact occurs in
the conclusion of the query. Consider the process new a; new

b; out(c, (a,b)); event A and the following queries.

query 1i,j:time; event (A)@i = attacker(a)(]
#1. AL = #j. K(a)@j

The first (PROVERIF) query holds whereas the second
(SAPICT) does not. The semantic issue of the k(t)ei fact
versus the attacker fact only occurs when it is existentially
quantified. When the fact is universally quantified, however,
we can safely translate K(¢) @i to attacker (t)¢i, and we
therefore only allow universally quantified K facts in queries.
For example, the following lemma will correctly be translated
in the given query.
x y #1 #3. A(x)ei & K(y)e] = z #k. C(x,y,z)@k

query Xx,y,z:bitstring, 1i,7j,k:time; event (A(x))0Ei &&
attacker(y)@j = event (C(x,y,z))Qk

PROVERIF also allows for injective events that express a
correspondence query where the occurrence of some event can
be injectively associated to another event. For example, in3-
event (A) = inj-event (B) ensures that there are at least as
many B events as there are a events. Such properties cannot be
expressed in SAPIC™’s first-order logic, but SAPIC™ allows
users to export a PROVERIF query in the input file if injective
queries are needed (avoiding a separate file).

6 Practical evaluation and case studies

6.1 The implementation

We integrated our translation procedures as a separate pack-
age that is distributed with and integrated into TAMARIN, in
contrast to SAPIC’s original compiler [40], which is a sepa-
rate program. The benefits are threefold: we benefitted from
TAMARIN’s libraries for manipulating and parsing terms, we
could integrate our translation into TAMARIN’s graphical user
interface and, finally, SAPIC™ will instantly support future
extensions to TAMARIN’s term algebra. The package is open
source and compatible with MacOS and Linux. We provide a
docker image robertkuennemann/sapicplusplatform[1]
that allows to run all the tools easily and reproduce our case
studies (detailed instructions in [25]).

The code uses a common parsing infrastructure and shares
code for typing and annotating code (e.g., to identify matching
lock and unlocks). The translation code is highly modular and

exploits template mechanisms for easily adjustable output to
PROVERIF,GS VERIF and DEEPSEC. We added about 5500
lines of code for the exports and the optimizations. Once the
PROVERIF export and the modular interface were done, the
DEEPSEC export required around 200 lines of code.

The user provides an input file in TAMARIN’s spthy-
format, which can include a process, and can choose to either
translate into the target language of choice, or use TAMARIN’S
internal constraint solver.

6.2 The new workflow in action

We provide below several complex case studies of real-life
protocols, some of which constitute their first formal analysis.
We also provide some case studies that were adapted either
from existing SAPIC™ or TAMARIN models. As a whole, our
set of case studies illustrate:

 how SAPICT allows leveraging PROVERIF’s high level
of automation when TAMARIN’s automation is insuffi-
cient;

» how SAPICT allows using TAMARIN to prove lemmas
that cannot be proved by PROVERIF so they can be used
as axioms inside PROVERIF;

e how DEEPSEC can be used when PROVERIF cannot
prove equivalence;

e and finally that the TAMARIN models produced by
SAPICT can be analyzed as efficiently as dedicated and
fine-tuned TAMARIN models.

We note that there are cases where a direct encoding is
preferable to a translation from SAPICT. One instance are
protocols with complex state machines, which are more easily
expressed in TAMARIN. Fig. 7 summarizes the running times
of some of our case studies on a 2019 13"-MacBook Pro with
16GB RAM.

6.2.1 Novel case studies

KEMTLS Many post-quantum secure alternatives to cur-
rently deployed key-exchange protocols are starting to appear.
In the coming years, formal verification tools are likely to
play an essential role in their standardization process. We
present here an analysis of KEMTLS [48], a recently proposed
alternative for the core key exchange of TLS.

The protocol relies on two main ingredients: a signature
scheme for the server certificate and a Key Encapsulation
Mechanism (KEM). Intuitively, a KEM is an asymmetric
encryption scheme that uses the parties’ long-term public
keys to encrypt an ephemeral secret, which can be used to
derive a shared key.' KEMTLS derives a secret shared key with

!n the symbolic model, we assume that keys generated by a KEM are
uniformly sampled.

3946 31st USENIX Security Symposium

USENIX Association

Case Study PROVERIF TAMARIN Property
5G-AKA [13] 78 95 Auth
KEMTLS [48] 1 24 Auth., PFS
KEMTLS-NO-AEAD 1 108 Auth., PFS
KEMTLS-CA 1 247 MA, Unlink.
LAKE-EDHOC [49] 3 96 MA, PFS, KCI
SSH [50] 1 3 MA, Sec.
SSH-NEST 2 147 MA, Sec.
SSH-NEST (X) 7 x3X-1 oo MA, Sec.
Privacy-Pass [22] 1 2 Unforg., Unlink.
NSL [40,43] 1 3 MA, Sec.
DEEPSEC
KEMTLS-CA [48] 955 Unlink. (3 sess.)
NSL [40,43] 362 Strong Sec. (3 sess.)

PFS: Perfect Forward Secrecy KCI: Key Compromise Impersonation
Auth.: Authentication ~MA: Mutual Authentication Sec.: Secrecy
Unforg. : Unforgeability ~ Unlink. : Unlinkability

Figure 7: Running time (seconds) of the case studies

authentication of the server after ten messages and six inter-
mediate keys. We used SAPIC™ to verify the protocol over
three models:

* A first, basic KEMTLS model, for which we verify server
authentication and Perfect Forward Secrecy (PFS) of the
final key. PROVERIF proves these properties in a few
seconds, TAMARIN in around a minute.

e The KEMTLS-NO-AEAD model sanity checks the security
claims. Indeed, in KEMTLS, most messages are encrypted
using authenticated encryption, but in its security proof,
nothing is assumed about this primitive. We thus mod-
eled a version of KEMTLS without any encryption, and
proved that the same security properties hold.

¢ The XKEMTLS-CA model, where we model the client au-
thentication option. This option was proposed in Ap-
pendix C of [48] to match the existing option of TLS,
but was provided without a security proof. It allows a
user to authenticate to a server with a long-term cer-
tificate. We proved using PROVERIF (1 second) and
TAMARIN (20 minutes) mutual authentication for this
extension. We were also able to prove unlinkability of
clients, modelled as strong unlinkability in terms of trace
equivalence as defined e.g. in [10, 35], for three sessions
using DEEPSEC, and an unbounded number of sessions
with PROVERIF.

LAKE-EDHOC Lightweight Authenticated Key Exchange
(LAKE-EDHOC) is a recently standardized key exchange pro-
tocol designed for resource-constrained devices. It is a DH

based key exchange, where authentication can either rely on
a signature scheme and long-term public keys, or on a long-
term DH share and its public group element. With SAPICT,
we could develop correct models of this protocol quickly. We
debugged and proved them with PROVERIF’s approximate
version of the equational theory, before strengthening the
guarantees using the same model but with TAMARIN’s more
complete theory.

Our models include both authentication modes, the client
being able to chose between them dynamically. In the
LAKE-EDHOC model, we proved mutual authentication, KCI
and PFS of the exchanged key.

In concurrent work [45], a different version of the
LAKE-EDHOC IETF draft was also analyzed with TAMARIN.
While they consider more properties than us, we consider a
model supporting two different authentication modes.

SSH It is a widely deployed protocol that notably allows
logging in on a remote server, relying on a user’s long-term
signature key. In its basic version, it has been analyzed pre-
viously using computer-aided verification tools, both sym-
bolic [42] and computational [21]. The protocol supports an
additional agent-forwarding feature, allowing SSH connec-
tions to be nested. Analyzing this feature is complex: a secure
channel established using a long-term signature key is used to
forward a signature request for the same long-term key. The
protocol with a single depth nesting was analyzed with an
interactive prover in the computational model [9], but it relies
on an external composition result.

The SSH model verifies authentication and secrecy. Inter-
estingly, a previous TAMARIN model [42] required 26 seconds
while our SAPIC T model is verified in three seconds.” SAPICT
can thus compile models that are verified in the same order
of magnitude as a handmade TAMARIN model.

The SSH-NEST model contains one nested connection. This
model is verified very efficiently using PROVERIF, and takes
around 5 minutes in TAMARIN with the more precise DH
modeling. The SSH-NEST (X) model supports an arbitrary
depth nesting, but with checks to manually bound the depth to
X . Without a fixed bound, we were unable to make PROV ERIF
terminate. We ran PROVERIF with a bound up to 5: verifi-
cation takes 7 seconds for depth X = 1, and each increment
in depth approximately triples the running time, up to a run-
ning time of 6 minutes for depth 5. We were unable to make
TAMARIN terminate.”’

Privacy-Pass The Privacy-Pass protocol, proposed
in [31] and under standardization [22], is a token-based au-
thorization of clients to servers that aims to preserve client
anonymity. A server issues tokens upon client requests and

2Timing obtained by running the SSH model of [42] on the same laptop
with the same version of TAMARIN.
3The model leads to over a thousand partial deconstructions.

USENIX Association

31st USENIX Security Symposium 3947

tokens can be spent only once. It is based on a complex cryp-
tographic primitive, a Verifiable Oblivious Pseudo-Random
Function (VOPRF), whose equational theory is not supported
by DEEPSEC. With the Privacy-Pass model, we verified
token unforgeability, using PROVERIF and TAMARIN, and
unlinkability (as defined in [10, 35]) of the clients using
PROVERIF.

6.2.2 Existing Models

We used the export feature on some existing SAPIC protocol
models to illustrate its ease of use, where with only minor
modifications, all models were executable in PROVERIF. In
addition, we also ported an existing TAMARIN model.

5G-AKA A previous case study of the 5G-AKA authenti-
cation standard was performed recently in TAMARIN [13],
leading to one of the most complex TAMARIN analysis to
date. On this model and with on a complicated handwritten
oracle to guide the tool, they were able to verify 4 sanity
check lemmas, 3 security properties and find 7 attack traces.

To illustrate the usability and interest of SAPIC™, we have
reimplemented their main model using the platform. We were
able to design a model such that after adapting their hand-
written oracle, TAMARIN was able to prove the 3 security
properties in around a minute on the model produced by
SAPICT. In comparison, the original TAMARIN model took 3
times longer to verify those 3 properties. This example thus
give evidence that SAPIC™ can even on complex case studies
produce models that are as fast, or even faster to verify than
TAMARIN fine-tuned ones.

Moreover, by manually adding a simple parameter to guide
the resolution, PROVERIF finds 6 of the 7 attack traces auto-
matically, in contrast to the original model, which required a
complex oracle to find these attack traces. The last attack can
also be found by PROVERIF, but requires editing the process
to help the trace reconstruction terminate.

SGX report models With SAPIC™, the modeling of the
SGX report capability from [37] carries over to PROVERIF
for free. On the models of AC, AKE and OTP, PROVERIF always
answered in a second and TAMARIN in a few seconds. Some
interesting results were that on the SOC protocol, PROVERIF
does not terminate, but TAMARIN answered in seconds. On
a flawed model of AC, the AC-F-sid model, PROVERIF re-
ports ’cannot be proved’, while TAMARIN successfully recon-
structed the attack trace. Nevertheless, with minor modifica-
tions to the generated PROVERIF model*, we could ensure
termination and attack reconstruction.

Others Finally, we imported the Scytl e-voting proto-
col [28] from the GS VERIF benchmark [24], and the secure

4 Additonal lemmas and nounif instructions.

device (SD) [5,40] and NSL models [40] from SAPIC’s reposi-
tory. We verify the strong secrecy of the key in NSL for one
session with DEEPSEC, where PROVERIF reports ‘cannot
be proved’. On the Scytl protocol, PROVERIF answers in
a second and TAMARIN in a minute, but PROVERIF reports
‘cannot be proved’ on the single vote property (without further
expert input) while TAMARIN proves it.

6.2.3 TAMARIN proofs of PROVERIF axioms

Since its recent update [20] PROVERIF allows specifying
axioms that can be used to prove a protocol by adding an
extra assumption that may hold but that PROVERIF cannot
prove. An example of such a case is given in Example 6
of [20], where an axiom is used to specify that an action can
only occur once. Consider the following subprocess

new stamp; in(c,xr); event S(stamp,xr); new r;
out (c,sign(aenc(vote, (r,xr),pk (sk e),sk))

On such a process, PROVERIF cannot prove that the event
S can only occur once with a given timestamp, due to its
abstraction. As this fact is required to prove the expected
security properties, the following axiom is needed:

stamp xr xr2 #i #i2. S(stamp,xr)@i & S(stamp,xr2)@i2
= 1=12 & x=xr2

While PROVERIF cannot prove this, this is the sort of formula
that TAMARIN typically handles well. We thus ported this ex-
ample to SAPIC™, successfully using TAMARIN to prove the
axiom, and PROVERIF to prove with the axiom the expected
security property, both being formally combined.

Axioms are also typically how GSVERIF [24] functions: its
adds axioms about states, axioms that were proven correct by
hand. Once again using SAPIC™, we proved for the previous
5G example that the axiom generated by GSVERIF did hold
thanks to TAMARIN.

Conclusion

We introduced SAPICT, a protocol verification platform that
allows to transparently use three major verification tools,
PROVERIF, TAMARIN and DEEPSEC, to efficiently verify
protocols from a single protocol model. The translations are
carefully optimized and proven correct, and we developed
novel case studies of real life protocols. For ease-of-use, we
made the entire tool chain available on Docker Hub [1].

We plan to generalize some of our encodings (notably per-
mitting destructors to occur anywhere in the process) and
to devise new optimizations, in particular when exporting
stateful protocols to PROVERIF. We see potential in helping
ProVerif terminate by deriving lemmas from a static analysis
of the process.

3948 31st USENIX Security Symposium

USENIX Association

Acknowledgments.

We thank Ioana Boureanu and the

anonymous reviewers for their helpful comments and sug-
gestions. This work has been partly supported by the ANR
Research and teaching chair in Al ASAP, ANR TECAP (de-
cision number ANR-17-CE39-0004-03), and the the ERC
Synergy Grant “imPACT” (No. 610150).

References

(1]

(2]

(3]

[4

—_

(5]

[6

—_

(7]

(8]

Sapic+ tool chain. https://hub.docker.com/r/
robertkuennemann/sapicplusplatform.

Tamarin (develop). https://github.com/
tamarin-prover/tamarin-prover.

Martin Abadi, Bruno Blanchet, and Cédric Fournet. The
applied pi calculus: Mobile values, new names, and se-
cure communication. J. ACM, 65(1):1:1-1:41, 2018.

Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark
Ryan. Analysing unlinkability and anonymity using the
applied pi calculus. In Proceedings of the 23rd IEEE
Computer Security Foundations Symposium (CSF 2010),
pages 107-121. IEEE Computer Society, 2010.

Myrto Arapinis, Joshua Phillips, Eike Ritter, and
Mark Dermot Ryan. Statverif: Verification of stateful
processes. J. Comput. Secur., 22(5):743-821, 2014.

Alessandro Armando, Wihem Arsac, Tigran Avanesov,
Michele Barletta, Alberto Calvi, Alessandro Cappai,
Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, et al. The AVANTSSAR platform for
the automated validation of trust and security of service-
oriented architectures. In 8th International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2012), volume 7214 of Lecture
Notes in Computer Science, pages 267-282. Springer,
2012.

Alessandro Armando, David A. Basin, Yohan Boichut,
Yannick Chevalier, Luca Compagna, Jorge Cuéllar,
Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, Sebastian Moder-
sheim, David von Oheimb, Michaél Rusinowitch, Jud-
son Santiago, Mathieu Turuani, Luca Vigano, and Lau-
rent Vigneron. The AVISPA tool for the automated val-
idation of internet security protocols and applications.
In Computer Aided Verification, 17th International Con-
ference (CAV 2005), volume 3576 of Lecture Notes in
Computer Science, pages 281-285. Springer, 2005.

Michael Backes, Jannik Dreier, Steve Kremer, and
Robert Kiinnemann. A novel approach for reasoning
about liveness in cryptographic protocols and its ap-
plication to fair exchange. In 2017 IEEE European

[9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

Symposium on Security and Privacy (EuroS&P 2017),
pages 76-91. IEEE, 2017.

David Baelde, Stéphanie Delaune, Charlie Jacomme,
Adrien Koutsos, and Soléene Moreau. An interactive
prover for protocol verification in the computational
model. In 42nd IEEE Symposium on Security and Pri-
vacy (SP 2021), pages 537-554. IEEE, 2021.

David Baelde, Stéphanie Delaune, and Soléne Moreau.
A method for proving unlinkability of stateful protocols.
In 33rd IEEE Computer Security Foundations Sympo-
sium (CSF 2020), pages 169—183. IEEE, 2020.

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. Sok: Computer-aided cryptography. In 42nd
IEEE Symposium on Security and Privacy (SP 2021),
pages 777-795. IEEE, May 2021.

Manuel Barbosa, Bernardo Portela, Guillaume Scerri,
and Bogdan Warinschi. Foundations of hardware-based
attested computation and application to SGX. In IEEE
European Symposium on Security and Privacy (Eu-
roS&P 2016), pages 245-260. IEEE, 2016.

David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A formal
analysis of 5g authentication. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 2018), pages 1383—1396.
ACM, 2018.

David A. Basin, Jannik Dreier, and Ralf Sasse. Auto-
mated symbolic proofs of observational equivalence. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS 2015),
pages 1144-1155. ACM, 2015.

David A. Basin, Michel Keller, Sasa Radomirovic, and
Ralf Sasse. Alice and bob meet equational theories. In
Logic, Rewriting, and Concurrency - Essays dedicated
to José Meseguer on the Occasion of His 65th Birthday,
volume 9200 of Lecture Notes in Computer Science,
pages 160-180. Springer, 2015.

David A. Basin, Sasa Radomirovic, and Lara Schmid.
Modeling human errors in security protocols. In IEEE
29th Computer Security Foundations Symposium (CSF
2016), pages 325-340. IEEE Computer Society, 2016.

Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implementa-
tions for the TLS 1.3 standard candidate. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 483-502. IEEE Com-
puter Society, 2017.

USENIX Association

31st USENIX Security Symposium 3949

https://hub.docker.com/r/robertkuennemann/sapicplusplatform
https://hub.docker.com/r/robertkuennemann/sapicplusplatform
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Bruno Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In /4th IEEE Computer
Security Foundations Workshop (CSFW-14 2001), pages
82-96. IEEE Computer Society, 2001.

Bruno Blanchet, Martin Abadi, and Cédric Fournet. Au-
tomated verification of selected equivalences for secu-
rity protocols. J. Log. Algebraic Methods Program.,
75(1):3-51, 2008.

Bruno Blanchet, Vincent Cheval, and Cortier Véronique.
Proverif with lemmas, induction, fast subsumption, and
much more. In Proceedings of the 43th IEEE Sympo-
sium on Security and Privacy (S&P’22). IEEE Com-
puter Society Press, May 2022.

David Cadé and Bruno Blanchet. From computationally-
proved protocol specifications to implementations and
application to SSH. J. Wirel. Mob. Networks Ubiquitous
Comput. Dependable Appl., 4(1):4-31, 2013.

Sofia Celi, Alex Davidson, and Armando Faz-
Hernandez. Privacy Pass Protocol Specification.
Internet-Draft draft-ietf-privacypass-protocol-01,
Internet Engineering Task Force, February 2021. Work
in Progress.

Vincent Cheval, Véronique Cortier, and Stéphanie De-
laune. Deciding equivalence-based properties using con-
straint solving. Theor. Comput. Sci., 492:1-39, 2013.

Vincent Cheval, Véronique Cortier, and Mathieu Turu-
ani. A little more conversation, a little less action, a
lot more satisfaction: Global states in proverif. In 31st
IEEE Computer Security Foundations Symposium (CSF
2018), pages 344-358. IEEE Computer Society, 2018.

Vincent Cheval, Charlie Jacomme, Steve Kremer, and
Robert Kiinnemann. Sapic+: protocol verifiers of the

world, unite! Technical report. https://hal.inria.

fr/hal-03693843vl.

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina.
DEEPSEC: deciding equivalence properties in security
protocols theory and practice. In 2018 IEEE Sympo-
sium on Security and Privacy (SP 2018), pages 529-546.
IEEE Computer Society, 2018.

Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the signal messaging protocol. J. Cryprol.,
33(4):1914-1983, 2020.

Véronique Cortier, David Galindo, and Mathieu Turuani.
A formal analysis of the neuchatel e-voting protocol.
In 2018 IEEE European Symposium on Security and
Privacy (EuroS&P 2018), pages 430—442. IEEE, 2018.

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS 2017), pages 1773-1788. ACM,
2017.

Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
formal analysis of IEEE 802.11’s WPA2: countering
the kracks caused by cracking the counters. In 29th
USENIX Security Symposium (USENIX Security 2020),
pages 1-17. USENIX Association, 2020.

Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164-180, 2018.

Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf
Sasse. Beyond subterm-convergent equational theories
in automated verification of stateful protocols. In Princi-
ples of Security and Trust - 6th International Conference
(POST 2017), volume 10204 of Lecture Notes in Com-
puter Science, pages 117-140. Springer, 2017.

PKI Task Force. PKI for machine readable travel docu-
ments offering ICC read-only access. Technical report,
International Civil Aviation Organization, 2004.

Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis
Jackson, Cas Cremers, and David A. Basin. A spectral
analysis of noise: A comprehensive, automated, formal
analysis of diffie-hellman protocols. In 29th USENIX
Security Symposium (USENIX Security 2020), pages
1857-1874. USENIX Association, 2020.

Lucca Hirschi, David Baelde, and Stéphanie Delaune.
A method for unbounded verification of privacy-type
properties. J. Comput. Secur., 27(3):277-342, 2019.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,
Vinay Phegade, and Juan del Cuvillo. Using innova-
tive instructions to create trustworthy software solutions.
In Ruby B. Lee and Weidong Shi, editors, The Sec-
ond Workshop on Hardware and Architectural Support
for Security and Privacy (HASP 2013), page 11. ACM,
2013.

Charlie Jacomme, Steve Kremer, and Guillaume Scerri.
Symbolic models for isolated execution environments.
In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P 2017), pages 530-545. IEEE, 2017.

Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and

3950 31st USENIX Security Symposium

USENIX Association

https://hal.inria.fr/hal-03693843v1
https://hal.inria.fr/hal-03693843v1

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

computational approach. In 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P 2017), pages
435-450. IEEE, 2017.

Nadim Kobeissi, Georgio Nicolas, and Karthikeyan
Bhargavan. Noise explorer: Fully automated model-
ing and verification for arbitrary noise protocols. In
IEEE European Symposium on Security and Privacy
(EuroS&P 2019), pages 356-370. IEEE, 2019.

Steve Kremer and Robert Kiinnemann. Automated anal-
ysis of security protocols with global state. J. Comput.
Secur., 24(5):583-616, 2016.

Robert Kiinnemann, Ilkan Esiyok, and Michael Backes.
Automated verification of accountability in security pro-
tocols. In 32nd IEEE Computer Security Foundations
Symposium (CSF 2019), pages 397-413. IEEE, 2019.

Pascal Lafourcade and Maxime Puys. Performance
evaluations of cryptographic protocols verification tools
dealing with algebraic properties. In Foundations and
Practice of Security - 8th International Symposium,
(FPS 2015), volume 9482 of Lecture Notes in Computer
Science, pages 137-155. Springer, 2015.

Gavin Lowe. Breaking and fixing the needham-
schroeder public-key protocol using FDR. Softw. Con-
cepts Tools, 17(3):93-102, 1996.

Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Distance-Bounding Protocols:
Verification without Time and Location. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceed-
ings, 21-23 May 2018, San Francisco, California, USA,
pages 549-566. IEEE Computer Society, 2018.

Karl Norrman, Vaishnavi Sundararajan, and Alessandro
Bruni. Formal analysis of EDHOC key establishment
for constrained iot devices. In Proceedings of the 18th
International Conference on Security and Cryptography
(SECRYPT 2021), pages 210-221. SCITEPRESS, 2021.

Gabriel Pedroza, Ludovic Apvrille, and Daniel Knor-
reck. AVATAR: A sysml environment for the formal
verification of safety and security properties. In 1/th
Annual International Conference on New Technologies
of Distributed Systems (NOTERE 2011), pages 1-10.
IEEE, 2011.

Benedikt Schmidt, Simon Meier, Cas Cremers, and
David A. Basin. Automated analysis of diffie-hellman
protocols and advanced security properties. In 25th
IEEE Computer Security Foundations Symposium (CSF
2012), pages 78-94. IEEE Computer Society, 2012.

PROVERIF TAMARIN

Protocol language applied © MSR
Automation ranking strong medium
Interactive proofs X v
Complex State Machine v
Equational theory support:

finite variant 4 v

linear equations 4 X

AC operator,XOR X v

Integer support v

DH theory (without addition

in exponents) v

v/t natively supported X: not supported

: requires some expertise and/or may greatly reduce automation
: supported through approximations

Figure 8: Some high-level differences between PROVERIF
and TAMARIN

(48]

[49]

(50]

A

Peter Schwabe, Douglas Stebila, and Thom Wiggers.
Post-quantum TLS without handshake signatures. In
2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS 20), pages 1461-1480.
ACM, 2020.

Goran Selander, John Preuf3 Mattsson, and Francesca
Palombini. Ephemeral Diffie-Hellman Over COSE (ED-
HOCQ). Internet-Draft draft-ietf-lake-edhoc-07, Internet
Engineering Task Force, May 2021. Work in Progress.

Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH)
Transport Layer Protocol. https://tools.ietf.org/
html/rfc4253.

Appendix

In Figure 8, we provide an overview over the respective
strengths and weaknesses of PROVERIF and TAMARIN and
in Figure 9, the operational semantics of SAPIC™.

USENIX Association

31st USENIX Security Symposium 3951

https://tools.ietf.org/html/rfc4253
https://tools.ietf.org/html/rfc4253

Standard operations:

(‘£>57TU# {0}7G7L) —
(£753?U# {P|Q}767L) —
(E,8,PU*{IP},5,L) —
(E,8,PU* {vn;P},G, L) —
(£,5,2,0,L) X0,

Out(R).K (1)

(E.8,2U*{out(t),1): P},0, L)

(E,S,EPU# {in(¢,x); P},0,L)

(Z,S,‘PU# {out(t1,);P,in(t,x); 0},0,L) —
(E,8,PU{if ¢ then P else 0},0, L) —
(E,S,PU{if ¢ then Pelse Q},0,L) —

(£,5,PU{event(F); P},5, L) LN
(E,8,PU* {let p=rinPelse 0},0,L) —
(E,8,PU*{let p=tinPelse 0},0,L) —

Operations on global state:

(£,8,PU" {insert t1,10; P},5, L)
(E,S,PU* {delete t; P},0, L)
(E,8,PU* {lookup t as x in Pelse Q },G, L)

(£,8,PU" {lookup t as xin Pelse Q },5, L)

(E,8,PU* {lock t; P},5, L)
(£,8,PU* {unlock t; P},G, L)

In(R.R'),K({1,R'G))
—_—

(E,5,P,06,L)

(£,8,PU*{P,Q},5,L)

(E,8,PU*{IP,P},5,L)

(Eu{n'}, S, PU* {P{n—n'}},0,L)
if n € Npyiy is fresh

(£7~575P767L)
if t =g Ro for some R € T(F, Npup, AX)

(E,8,PU*{P},cU{att, 12}, L)
if fj =g Ro for some R € T (F , Apup, AX)
Msg(f2) and n = |o| + 1

(E,8,PU* {P{x— R'c}},0,L)
if 1 =g Ro,Msg(R'c) for some R,R' € T (F, Noyp, AX)

(E,8,PU{P.Q{x—1}},0,L)
ifr; =g t and Msg(1,)

(E,8,2U{P},0,L)

if ¢ holds
(£,5,PU{0},0,L)

if ¢ does not hold
(E,5,PU{P},0,L)
(E,8,PU*{P1},6,1)

if pT =g t and 71 is grounding for p
(£,5,2U%{0},0,L1)

if for all T, pt #g t

(E,8[t; — 1], PU* {P},0,L)
(E,8[t— L],PU*{P},5,L)
(E,8,PU* {P{u/x}},0,L)

if S(¢') =f uis defined and t =f ¢/
(£,8,PU"{0},6,L)

if S(¢') is undefined for all /' = ¢
(E,8,PU*{P},0,LU{t}) iftdgL
(E,.8, Ut {P},0, L\{/' | =g 1})

Ll

Figure 9: Operational semantics

3952 31st USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Modeling messages as terms
	The Tamarin prover
	ProVerif
	DeepSec
	Sapic

	The Sapic+ language
	Overview
	Protocols
	Syntax
	Semantics

	Security properties
	Reachability properties
	Equivalence properties

	Overview of translations and results

	From Sapic+ to Tamarin
	Sapic+ extensions and updates
	New syntactic features
	New semantical features
	Updates to avoid pitfalls

	Optimizations
	Path compression
	Alternate secret channel encoding

	From Sapic+ to ProVerif
	Translating conditionals
	Translating states
	Translating queries

	Practical evaluation and case studies
	The implementation
	The new workflow in action
	Novel case studies
	Existing Models
	Tamarin proofs of ProVerif axioms

	Appendix

