
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Online Website Fingerprinting: Evaluating Website
Fingerprinting Attacks on Tor in the Real World

Giovanni Cherubin, Alan Turing Institute; Rob Jansen, U.S. Naval
Research Laboratory; Carmela Troncoso, EPFL SPRING Lab

https://www.usenix.org/conference/usenixsecurity22/presentation/cherubin

Online Website Fingerprinting:
Evaluating Website Fingerprinting Attacks on Tor in the Real World

Giovanni Cherubin
Alan Turing Institute

gcherubin@turing.ac.uk

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Carmela Troncoso
EPFL SPRING Lab

carmela.troncoso@epfl.ch

Abstract
Website fingerprinting (WF) attacks on Tor allow an adversary
who can observe the traffic patterns between a victim and the
Tor network to predict the website visited by the victim. Exist-
ing WF attacks yield extremely high accuracy. However, the
conditions under which these attacks are evaluated raises ques-
tions about their effectiveness in the real world. We conduct
the first evaluation of website fingerprinting using genuine
Tor traffic as ground truth and evaluated under a true open
world. We achieve this by adapting the state-of-the-art Triplet
Fingerprinting attack to an online setting and training the WF
models on data safely collected on a Tor exit relay—a setup
an adversary can easily deploy in practice. By studying WF
under realistic conditions, we demonstrate that an adversary
can achieve a WF classification accuracy of above 95% when
monitoring a small set of 5 popular websites, but that accuracy
quickly degrades to less than 80% when monitoring as few
as 25 websites. We conclude that, although WF attacks may
be possible, it is likely infeasible to carry them out in the real
world while monitoring more than a small set of websites.

1 Introduction

Tor [10] is a popular anonymous communication network in
which about 6,500 volunteer-operated relays [45] are used to
enhance the privacy of two [45] to eight [28] million users
daily. Using the Tor browser, users can protect themselves
against online tracking and surveillance, resist traffic finger-
printing, and circumvent censorship [46]. Tor clients route
their internet communication through a circuit of three proxy
relays using a modified form of onion routing [11]. This de-
sign prevents any single observation point on the routing path
from linking the source and destination of the communication.

The most damaging attacks against the Tor network are
those that break unlinkability and enable deanonymization of
users. In a Website Fingerprinting (WF) attack, an adversary
needs only to observe the Tor entry point in order to break the
unlinkability between users and the websites they browse. In

contrast, end-to-end correlation attacks require an adversary
to observe both the Tor entry and exit points [30].

Early WF studies demonstrate increasingly accurate at-
tacks [3, 4, 13–16, 25, 27, 29, 43, 52, 55], but are criti-
cized for making impractical assumptions [19, 35, 37]. Juarez
et al. [19] show that WF attackers experience a significant
loss in accuracy when considering: (i) realistic world sizes;
(ii) diversity of browser versions and configuration choices;
(iii) variation in client browsing behaviors (browsing inner
pages and using multiple tabs at once); (iv) the network loca-
tion of the client; and (v) concept drift (trained models rapidly
become stale over time). In response, researchers considered
data freshness [53], larger and more diverse sets of web-
sites [34, 37], the base rate problem [51], and other issues [23,
31, 36]. Their results, however, still depend on unrealistic
assumptions, which are a consequence of the following limi-
tations in their adversarial model and evaluation methodology:
– Synthetic Traffic Generation: In Tor, a WF adversary po-

sitioned at the entry relay cannot collect ground truth about
the websites that are visited by Tor users. Thus, adversaries
are forced to simulate user behavior by using automated
browsers to crawl popular URL lists [21, 44]. Often, these
lists are singularly composed of website homepages, and
the extent to which home vs. internal pages are visited by
real Tor users is unknown [28]. Automatically crawling
these lists not only inaccurately represents real Tor user be-
havior, but also imposes restrictions on the world sizes that
can be studied [53]. These conditions lead researchers to
significantly overestimate the accuracy of WF attacks [19].

– Concept Drift: Attacks in the literature are evaluated in
a static world using datasets that are collected at a par-
ticular point in time. Attack training and evaluation are
performed offline on data from the same collection period.
This approach cannot capture realistic changes in the traf-
fic patterns that occur naturally over time. Such changes
may significantly deteriorate the predictive abilities of the
trained models and reduce the accuracy of attacks [19, 37].

Due to these limitations, no public study has conclusively
shown that Tor WF attacks can be successful in the real world.

USENIX Association 31st USENIX Security Symposium 753

In this work, we contribute the first evaluation of the true
threat of WF attacks against Tor users in the real world:
– In § 3 we define a new threat model in which the adversary

collects real website traffic samples at an exit relay. This
new model enables the adversary to collect representative
ground truth measurements while inherently accounting for
real world traffic heterogeneity; the adversary will observe
the evolution of the true distribution of (i) the websites and
webpages that Tor users actually visit, and (ii) the traffic
patterns generated by web visits. Our approach enables us
to avoid the limitations of prior evaluations.

– In § 4 and § 5 we describe new methods for safely training
on genuine traffic that is observable by Tor exit relays.

– In § 6 we compare the efficacy of attack models trained on
synthetic and genuine data and find that those incorporating
genuine data perform significantly better in the real world.

– In § 6 we provide a first evaluation of the true threat of
WF against real Tor users. Our evaluation shows that while
attacks can exceed 95% accuracy when monitoring a small
set of 5 popular websites, indiscriminate (non-targeted)
attacks against sets of 25 and 100 websites fail to exceed
an accuracy of 80% and 60%, respectively.

Ethical Considerations: Since our evaluation utilizes data
from the real Tor network, user safety was a primary concern
during our study. When designing our methodology, we have
contacted the Tor Safety Board to discuss the safety precau-
tions we put in place. We provide additional details in § 4.
We also sent early drafts of our work to members of the Tor
Project to provide responsible disclosure of our findings.

2 Background and Motivation

The Tor network consists of a set of relays, i.e., overlay net-
work routers that forward encrypted data on behalf of Tor
clients. A primary use-case of the Tor network is browsing
the web with Tor Browser. A Tor client, which is embedded
in Tor Browser, routes web requests through the Tor network.
The Tor client builds a circuit through typically three relays
called the entry, middle, and exit relays using a telescoping
process. As a user browses the web, the Tor client forwards
web requests to the exit relay through a circuit. The exit for-
wards the requests to the required destination IP addresses
(i.e., web servers), and returns the responses via the circuit.

To hinder traffic analysis, Tor repackages all data sent
through the circuit (in both directions) into constant-sized
cells, which are onion-encrypted once for each relay in the
circuit and padded to limit information leakage. The number
of forwarded cells and their directionality can be observed by
the relays and can be very revealing. We define a collection of
cell sequences corresponding to a series of web requests for
a particular website w as a matrix c where ci j ∈ {+1,−1,0}
indicates the direction of the j-th cell in the i-th web request
for w; conventionally, +1 represents an outgoing cell sent

from a client toward an exit,−1 is an incoming cell sent from
an exit toward the client, and 0 represents padding (to handle
cell sequences of different lengths). Packet sequences are
analogously computed over a series of packets. We refer to
these as traffic traces.

Tor clients are not anonymous w.r.t. their entry relay: an
entry can associate the observed encrypted traffic patterns to
their IPs. Since the traffic is encrypted and the circuit contains
multiple hops, the entry cannot identify the clients’ destina-
tion. Similarly, the exit makes web requests on behalf of the
clients, but it cannot directly observe a client. Therefore, Tor
provides unlinkable communication to its users.

2.1 Traditional Tor Website Fingerprinting

Tor WF attacks enable an adversary that observes the en-
crypted traffic from a user to predict which website this user
is visiting. The adversary is interested in a subset of the web-
sites visited by users, the monitored sites. The remaining sites
are the unmonitored sites. The adversary is free to arbitrar-
ily choose the monitored sites. In a closed world evaluation,
users only visit monitored sites; in an open world evaluation,
users can also visit unmonitored sites.

To conduct a WF attack, the adversary first trains a machine
learning classification model and later deploys this model
against users’ traffic (see Figure 1). During the training phase,
the adversary collects a cell sequence matrix (as defined in the
previous section) for each website in a list of l websites, where
each matrix is labeled with the name of the corresponding
website w. This labeled dataset, which contains only moni-
tored websites, is used as a training set for a classification
model to recognize websites.

During the deployment phase, the adversary collects unla-
beled traffic traces produced by Tor users. For each observed
trace, the adversary queries the trained model to: (i) decide
whether the trace corresponds to a monitored or to an un-
monitored site; and (ii) if the site is classified as monitored,
predict the website w. The adversary classifies the traffic trace
into one of the following labels: {w1, ...,w`,⊥} , where wi
represent the elements of the monitored set, and ⊥ indicates
the website is unmonitored.

2.2 Limitations of Traditional Tor WF

In the traditional WF adversary model, it is assumed that the
adversary can observe a user’s traffic if: (i) it is running a Tor
entry relay that the user selected as its entry into the network;
or (ii) it runs or controls some part of the network path be-
tween the user and its entry relay. This traffic is encrypted, but
the adversary can observe the associated meta-data (packet
sizes, timing, and directionality). If running an entry relay,
the adversary can observe additional meta-data about Tor
protocol-level control and data cells.

754 31st USENIX Security Symposium USENIX Association

(a) Training Phase

(b) Deployment Phase

Figure 1: The traditional WF adversary model. (a) The adversary
uses an automated browser (e.g., Selenium [47]) to collect a series of
traffic traces via the Tor network for each website in the monitored
set, and uses the labeled traces to train a machine learning prediction
model. (b) The adversary observes unlabeled user traffic traces and
uses the trained model to predict the label (i.e., the visited website).
The observations can be made at any point between the client and
entry that the adversary controls (e.g., wifi or cellular access point,
internet routers or exchange points, or the Tor entry relay itself).

Motivated by the assumed position of the adversary, re-
search on WF generally considers an adversary that uses an
entry-side vantage point both for the training and the de-
ployment phases (as in Figure 1). However, the protection
provided by Tor’s encryption and routing prevents researchers
(and, in fact, any adversary in this position) from collecting
ground truth information (website labels) on the encrypted
traffic traces (as in Figure 1b).

To overcome this problem, researchers typically generate
synthetic traffic traces for which they know the ground truth
label, and use them for training and evaluation purposes. Re-
searchers synthetically generate traffic traces by crawling
popular webpages through Tor using an automated browser
under their control, and collect these traces in the path be-
tween the client and the entry relay (typically locally on the
client’s machine, as in Figure 1a). Using synthetic traffic seri-
ously limits the attempts of researchers (and adversaries) to
understand the effectiveness of WF attacks against Tor users.
The main problem is that this traffic is significantly less di-
verse than the traffic that would be observed in the wild. The
main reasons for the lack of data diversity include:

Automated Browser: Automated browser crawlers, like
Selenium [47], are generally used with a fixed (or near
fixed) browser configuration (e.g., version, language) and net-
work configuration (e.g., geolocation, provider). Thus, these
crawlers cannot represent the diversity of browser and net-
work configurations that are observed in the real world [19].

Synthetic User Behavior: There exists no realistic model
of Tor user browsing behavior. Most previous work serially
(in a single tab) fetches (only) the homepage of the sites in
their open world list (e.g., google.com). The traffic produced

by this synthetic browsing behavior is unrepresentative of the
real user behavior that an adversary would observe in practice,
which will be significantly more complex and diverse.

Synthetic Destinations: Researchers have a limited under-
standing of the websites that Tor users access and the pages
(and subpages) they visit [28]. As a result, they unrealistically
assume that the open world consists of a limited number of
website homepages that are generally chosen from the Alexa
top sites list [44]. They also assume that users only visit a
subset of these pages. These assumptions simplify the WF
problem to homepage or webpage fingerprinting rather than
true website fingerprinting.

Concept Drift: Researchers collect and label webpages
from a static world, which is not only unrepresentative of the
scale of the real world, but also quickly becomes outdated
as websites are updated. This is known as concept drift: as
websites change over time, a trained classification model will
become increasingly inaccurate in its predictions. Static evalu-
ations that do not consider concept drift may over-estimate the
expected accuracy of WF attacks. To limit the deterioration
of attack accuracy due to concept drift, a realistic adversary
would need to continuously re-fetch the latest pages and re-
train its classification models [19, 53].
These synthetic traffic limitations simplify the learning prob-
lem, and raise doubts about the true effectiveness of WF at-
tacks developed under the traditional adversarial model [19].

3 Online Website Fingerprinting

The primary limitations of the traditional adversary model de-
scribed in § 2 relate to unrealistic user modeling and synthetic
data. Rather than trying to collect larger synthetic data sets or
improve browsing models [34, 37, 53], we consider a new ad-
versarial model that allows us to evaluate the effectiveness of
WF in the real world without needing to model user behavior.

3.1 Adversary Model

Genuine Exit Traffic: We consider an adversary that runs
an exit relay and uses it to collect genuine Tor traffic traces
that are used for a WF attack. We build on the observation
that the adversary is not limited to observe and collect data
on an entry-side link [18]. Collecting genuine data from an
exit relay allows us to overcome all of the synthetic traffic
generation limitations described in § 2.2, and offers several
advantages for deploying and evaluating WF attacks under
realistic conditions.

First, exit relay observations allow the adversary to ac-
curately label encrypted traffic of regular anonymous users
by extracting the destination domain they visit. The domain
being accessed by the user can be observed through DNS
lookups performed by the exit on the circuit before request-
ing server resources. We assume that the connection between

USENIX Association 31st USENIX Security Symposium 755

google.com

Figure 2: Our adversary model replaces the training phase in the
traditional model (Figure 1a) with a new online training phase that
uses observations of genuine Tor traffic collected from an exit relay
(or relays) to continuously update the classification model over time.

the exit and the web server is protected with TLS and there-
fore the exit relay can observe the domain but not the full
webpage URL (i.e., it can observe example.com but not
example.com/page.html). An important consequence of
the use of TLS is that multiple subpages will map to the
same domain, which may complicate the WF learning task
depending on how users interact with sites over time.

Second, an exit relay allows the adversary to collect traf-
fic traces for genuine, user-generated website visits. Even if
the website data is encrypted under TLS, the meta-data re-
quired for WF (packet sizes, timing, and directionality) can
be observed by the exit. Using an exit as an observation point
provides several benefits: (i) exit traffic captures a true open
world where users may visit every webpage accessible in the
real world (include homepages and subpages); (ii) exit traffic
is a representative sample of Tor users because an exit will
eventually be used by every Tor client (Tor’s default path se-
lection algorithm selects a new exit for every circuit); (iii) exit
traffic captures the genuine diversity of user characteristics
such as the properties of users’ networks, versions and con-
figurations of users’ browsers, and users’ browsing behavior
including the use of multiple tabs, the wait time between page
loads, the concurrent loading of pages, the subpage first vis-
ited on a site, the subpage browsing order, etc.; and (iv) exits
can differentiate Tor control traffic from website traffic and
thus traces have less “noise” than the traditional WF model.
Training and Deployment: An adversary that is able to col-
lect and label genuine traffic traces from an exit relay (or a
set of geographically distributed exit relays, e.g., to increase
diversity with respect to caching and localization) can then
use this data to train a WF classification model as shown in
Figure 2. This exit-based training phase replaces the entry-
based training phase from the traditional model (Figure 1a).
The observations from the exit relay are used to continuously
update the WF model the adversary uses to carry out an online
attack during the deployment phase (see § 3.2).

The deployment phase in our adversary model is identi-
cal to that of the traditional model (as shown in Figure 1b).
Under deployment, the adversary controls an entry-side ob-
servation point (a Tor entry relay or network-level vantage
point). This observation point is provided access to the WF
model that is continuously trained from the exit observations.
The adversary uses this model for classification.

Exit relay observations arguably provide the most realistic
source of Tor traffic for a WF attack and enable us to consider-
ably improves upon synthetic evaluation methods. However,
training and deploying in different positions may impact per-
formance. First, if the model is deployed on a network-level
vantage point, the adversary will observe a single TLS con-
nection between the client and the entry relay that multiplexes
traffic for multiple circuits and TCP streams. While previous
work has addressed the problem of splitting TLS traffic into
multiple page loads [53], the adversary can avoid the prob-
lem completely if they run an entry relay to gain access to
Tor circuit meta-data. Second, network effects (e.g., network
latency) may cause a website to produce a different trace on
an entry than on an exit. We evaluate the effect of latency on
traffic traces in § 6.4.

3.2 Online Learning
An adversary that runs exit relays as described in § 3.1 has
access to a continuous stream of labeled traffic traces. This
stream permits the training of a WF classification model while
mitigating the negative effects of concept drift. Continuous
online training must be implemented in such a way that the
model can: (i) quickly adapt to changes in the traffic patterns
of websites over time; and (ii) capture traffic traces for web-
sites that have never before been observed. The model should
also precisely label examples that occur infrequently in order
to mitigate the effects of a low base rate for monitored sites
of interest across Tor users [51].

We consider an adversary that uses Triplet Fingerprint-
ing [40] as it is well-suited to our online learning require-
ments: it was designed to work well on limited training data
and to be accurate when predicting websites that were not orig-
inally observed during training. Since Triplet Fingerprinting
is not a contribution of our work, we provide only a succinct
description. See Appendix A for more details.
Triplet Fingerprinting Background: Triplet Fingerprinting
is composed of two models that are independently trained:
(i) a feature extractor; and (ii) a classification model.

The feature extractor is trained from traffic traces using a
triplet of deep embedded convolutional neural networks [38].
The feature extractor learns to convert traffic traces into fea-
ture vectors such that the cosine distance between positive
examples of the same website is minimized, while the co-
sine distance between the feature vectors of distinct websites
is maximized. Once trained, a feature extractor can remain
effective for long periods of time (e.g., years) [40].

The classification model is trained using labeled feature
vectors from the feature extractor. The training procedure is
based on N-shot learning [24, 49] and computes the Mean
Embedded Vector (MEV) for each website using the most
recently observed N examples of that website [40, § 6.4].
Given a new, unlabeled feature vector, a nearest-neighbor
(k-NN) algorithm is applied that predicts the label of the
website whose MEV is closest to the unlabeled vector.

756 31st USENIX Security Symposium USENIX Association

Adapting to Online Learning: We minimally adapt the N-
training procedure of Sirinam et al. [40] by computing the
MEV over all available website vectors rather than only the
last N examples. This is a safety precaution: our MEV can be
computed and updated without storing vectors for individual
website visits (see § 4). Our adaptation of the WF attack
to online training proceeds as follows: (i) extract a feature
vector from an observed traffic trace using the already trained
feature extractor; (ii) compute the cosine distance from the
extracted feature vector to the stored MEV; and (iii) update the
MEV with the new vector. The recomputed distance is then
used to predict the website label. Websites without any visits
will never be predicted by the model, allowing the adversary
to dynamically update its monitored set without retraining.
Future work may consider an exponentially weighted MEV
or other algorithms [22].

4 Safe and Ethical Data Processing

A primary goal in our work is to evaluate the real world effec-
tiveness of WF without endangering the safety and privacy
of Tor users. Although the adversary model described in § 3
enables us to conduct this evaluation safely, doing so does
involve collecting real world observations from a Tor exit re-
lay. In this section, we describe: (i) how we safely collect and
process Tor relay data; (ii) our risks and benefits analysis; and
(iii) our interaction with the Tor Research Safety Board [48].
We provide concrete details about our safe implementation
and a summary of our safety precautions in Appendix B.
Extracting Relay Observations: To facilitate the processing
of genuine traffic traces, we run entry and exit relays using a
custom version of Tor v0.4.3.5 which we modified (637 LoC
changed) to extract cell traces and website labels for circuits.
Our modifications were developed and tested using simula-
tion [17] to prevent unintentional data leaks.

We use non-reversible pseudonyms (i.e., hashes) as website
labels to avoid leaking information about the actual destina-
tions accessed by Tor users to our WF scripts. The pseudonym
of a website w is a string H(w,k) generated by a determin-
istic pseudonym-producing algorithm H with key k. The
algorithm is such that: (i) for any wi 6= w j the correspond-
ing pseudonyms are different, i.e., H(wi,k) 6= H(w j,k); and
(ii) without knowledge of the key k, it is computationally hard
to recover w given the pseudonym H(w,k). We use the keyed
HMAC based on sha3-256 that is already built into Tor to
generate website pseudonyms.

We also added a new opt-in feature to Tor that facil-
itates private synthetic webpage crawls. After creating an
opt-in circuit through our relays, our crawler sends a special
cell known only to our relays that contains the ground truth
pseudonym for the website accessed by the crawler. This fea-
ture enables our relays to identify which of their observed
circuits were created with clients that we control, and enables
our entry relay to associate our pseudonyms with its circuits.

With our modifications, a relay can export meta-data about
each circuit and cell that it observes through a new control
port event that is emitted when a circuit closes. For each ob-
served exit circuit or opt-in entry circuit, a relay exports
the circuit creation time and the pseudonym of the first do-
main that was resolved on the circuit using a key k that is
known only to the relay. We destroy k as soon as we complete
our measurements (so that the pseudonyms can no longer be
linked to real websites). The relay also exports the timestamp
and directionality of the first n cells that were transferred
on the circuit. Consistent with previous work [40], we use
n = 5,000 in our experiments.
Processing Relay Data: We use stem [42], a Python con-
troller for Tor, to transfer data from our relays through a local
UNIX socket to our WF scripts to avoid persistently storing
the data or transferring it over a network.

Our WF scripts are used to train WF models solely using
exit relay data to which linking Tor users is infeasible (due to
the anonymity protections that Tor provides). As described
in § 5.2, entry relay observations are only used to predict
the website label on opt-in circuits generated by our own
crawler clients, thus ensuring that we are never able to link
traffic traces to users.

Recall from § 3.2 that we use Triplet Fingerprinting [40]
for online learning, which involves feature extraction and clas-
sification models. First, the neural network feature extractor
is trained using statistics about the traffic traces as features.
Second, the k-NN classifier is trained using the mean embed-
ded vectors over all previously extracted vectors, which can
be updated as new traces arrive by storing only the previous
mean and the count. Therefore, we need not (and do not) per-
sistently store any raw traces or individual feature vectors;
they are freed from memory immediately following the online
update process (which takes on the order of a few seconds).
In order to evaluate the performance of the k-NN classifier,
we compute and store for each traffic trace the cosine dis-
tance from its extracted feature vector and the mean vectors.
We train and evaluate the WF models on the same machine
that runs the relays; we never transfer the attack models over
the network, and we destroy the models and distances upon
completion of our evaluation.
Risks & Benefits Analysis: Our safety precautions do not
protect from an attacker that would have access to our machine
while the trained models are stored. Such an attacker could use
the models to perform a WF attack. This risk is an unavoidable
when conducting WF research: the model must be accessible
in order to perform an evaluation. To limit the risk, we secured
the machine running the entry and exit relays following best
practices, and we destroyed all classification models upon
completion. A negative consequence of destroying the models
is that we prevent reproducibility of our results. Eliminating
all data and models that we could share with others will make
it more difficult to build upon our work. Yet, we believe that
this measure reduces some risk to Tor users and websites.

USENIX Association 31st USENIX Security Symposium 757

Another safety precaution with impact in our results is
our self-limitation to only extract entry traffic for opt-in
circuits generated by clients we control, a limitation a real
adversary does not have. Thus, our experiments on entry data
are less realistic than those on exit data. We believe sacrificing
realism in this case is necessary to eliminate any chance
to deanonymize real Tor users. We describe our evaluation
methodology considering this constraint in § 5.2.

Despite these limitations, we believe that our approach
enables us to obtain a reasonable estimate of the true threat
of real world WF attacks, and that our results will help Tor
developers appropriately prioritize their efforts to develop WF
countermeasures. Given that exit relay observation is the only
way to capture the diversity of traffic generated by real users,
we believe that the benefits of our study—which quantifies for
the first time the effectiveness of a realistic WF attack using
real Tor data—outweigh the small risks remaining after our
safety precautions are in place.
Tor Research Safety Board: We contacted the Tor Research
Safety Board [48] prior to measurement, soliciting feedback
on how to make our measurement safer. The reviewers agreed
that “collecting data from the live Tor network, as proposed
in this study, could give novel insights into how effective
Website Fingerprinting is in practice,” that the “risk mitigation
mechanisms look reasonable,” and that the risk is “small” (an
adversary would need to compromise the machine during the
experiment in order to extract models as they are trained).

The reviewers also raised concerns. A primary concern was
that we could learn about sensitive websites that users visit
on Tor. This concern is addressed by our safety precautions
involving non-reversible pseudonyms, which ensure that it is
not possible for us (or anyone) to recover the original domains.
We reiterate that we never record traces nor their features; they
are directly integrated into the WF models.

Another concern involved the collection of genuine cir-
cuit meta-data. Suggestions for further reducing risk were to
extract ground truth labels from a set of volunteers, and to
either combine those labels with the associated traffic traces
or use those labels in a follow-up synthetic experiment. After
discussion with the reviewers we decided not to pursue this
approach because volunteer data would not allow us to suf-
ficiently capture diversity in the main dimensions we aim to
study: Tor user browser behavior, Tor users client diversity,
and organic evolution of websites and webpages over time.

5 Safe Evaluation Methodology

In § 3 we explained that an adversary may collect traces from
an exit relay and use them to train a WF classification attack
model that is deployed on an entry relay. In this section, we
describe how we can safely quantify such a real world WF
threat without actually classifying any real Tor users’ entry
traffic for safety reasons (see § 4),

5.1 Selection of Monitored Sites

Recall from § 2.1 that an adversary is typically interested in
identifying visits to one of a monitored set of websites that it
deems important for political, societal, or other reasons. When
evaluating WF attacks and defenses, researchers generally use
a monitored set that is composed of the homepages of the most
popular internet websites according to the Alexa top sites
list [44]. Although recent work indicates that popular internet
websites also tend to be popular on Tor [28], considering only
homepages and ignoring internal pages fails to capture the
full diversity of Tor traffic and simplifies the WF problem.

We improve the realism in our evaluation relative to prior
work by constructing sets of monitored sites from websites
that are genuinely visited through our exit relay (see Ap-
pendix B for relay details). Doing so ensures that our model
training captures the heterogeneity of traffic in the Tor net-
work, and that our evaluation accounts for the practical effects
of real world traffic diversity on WF performance. In our eval-
uation we use the following three sets of monitored websites:
top-100: Our first set is inspired by previous work that uses
the Alexa top sites list [44]. Let T (x) be the set of the top
100 most frequently visited sites observed by our exit relay
during a 24 hour period starting on day x: on day x we count
the number of visits to each website pseudonym, and we store
the pseudonyms of the 100 sites with the highest counts.

We measure T (0) on 2020-07-03. To understand the sta-
bility of this top-100 set, we repeat this measurement for
14 additional consecutive days (2 weeks). For each day x,
0 < x ≤ 14, we compute the cardinality of the intersection
between the first and x-th day measurements: |T (0)∩T (x)|.
We plot the result in Figure 3a, where each bar is the number
of sites in common with the list on day 0 in subsequent days.
We observe that the top list for each day contains at least
76 of the most visited sites from our initial measurement on
2020-07-03. We conclude that our top-100 set was stable
over the period during which we conduct our evaluation.
sampled-1000: The top-100 sites represent the most pop-
ular sites visited through our relay. Because these sites are
popular, the adversary can collect many traces of visits to
them. However, in practice, the adversary may be interested
in monitoring sites that are much less popular and for which
it will take longer to observe a meaningful number of traces.

To evaluate the classification accuracy when training on
sites of varying popularity, we construct the sampled-1000
sites set as follows. We conduct a 24 hour measurement on
2020-07-11, during which we store the counts for all website
pseudonyms observed by our exit relay. We observe 114,112
pseudonyms, with the visits approximately following a power
law distribution (Figure 3b). During our measurement, 91,468
sites (80%) were visited only once, 10,591 sites (9.3%) were
visited twice, and 3,263 sites (2.9%) were visited ≥10 times.

Let L be a list of the top 100k sites observed on 2020-07-11,
sorted by the observed frequency (i.e., rank). We split L into

758 31st USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Days Since First Measurement

0

25

50

75

100

|T
(0

)
∩
T

(x
) |

(a) Stability of the top 100 most frequently observed sites.

100 101 102 103 104 105

Absolute Rank

100

101

102

103

104

F
re

q
u

en
cy

(b) Frequency distribution of sites observed by our exit.

Figure 3: Measurements from which we construct our monitored
sets. (a) |T (0)∩T (x)| is the cardinality of the intersection of the
top 100 most frequently visited sites observed by our exit during
2020-07-03 and the xth day. Every day we observed ≥76 of the sites
from our initial measurement on 2020-07-03. (b) A log-log plot of
the frequency distribution for all 114,112 genuine sites observed by
our exit on 2020-07-11. 91,468 sites were visited once, 10,591 sites
were visited twice, while 3,263 sites were visited ≥10 times.

k = 1,000 bins of equal size j = 100 and choose a random
element from each bin, i.e., choice({Li· j, . . . ,Li· j+ j}) for i ∈
[0,1000). The resulting set of sites forms our sampled-1000
monitored set, which captures an adversary interested in mon-
itoring websites with varying degrees of popularity.
synthetic: To complete our evaluation we need to be able
to generate synthetic website visits to: (i) safely evaluate the
effectiveness of WF models deployed at an entry relay (see
§ 4), and (ii) compare the effectiveness of WF in our adver-
sary model (§ 3) and the traditional model (§ 2.1). When
generating synthetic visits, we avoid selecting just homepages
to improve diversity. We use a more realistic list of 144,337
internet URLs from previous research that including news
sites, social media posts, video content, and other URLs be-
yond the homepage of the respective sites [34]. We randomly
sample 1,000 URLs from the list and crawl them using our
opt-in circuit feature described in § 4. Our exit observed
1,074 unique domains that were consistently accessed suc-
cessfully during the crawl; this set of pseudonyms composes
our synthetic monitored set.

5.2 Phases of Evaluation

Phase I: Feature Extractor Training (Exit Relay): In the
previous sections we described how to safely extract circuit
observations from our Tor relays. We use these observations
to train the feature extractor models (see § 3.2). We follow
the training process from previous work on Triplet Finger-
printing [40], using the top-100 monitored sites set during

the 24 hour training process (see § 6.1). We use the resulting
trained feature extraction models throughout our evaluation.
Phase II: Synthetic vs. Genuine: Previous work that eval-
uates the effectiveness of WF in the traditional adversary
model (see § 2.1) suggests that WF attacks are highly ef-
fective when trained using synthetic traffic generated from
automated browsers. Although the assumptions considered
in previous work are slightly varied, previous attacks were
exclusively studied using synthetically generated traffic.

To better understand the practical value of training using
real world Tor traffic, we compare the effectiveness of mod-
els trained using both genuine traffic observations from our
exit relay and synthetic traffic generated from an automated
browser. We carry out the evaluation using Triplet Finger-
printing, which has been shown to excel when trained using
synthetic data [40], and the feature extraction models which
are trained as described in § 6.1. We train three website classi-
fication models: (i) one trained exclusively on synthetic traffic
(as in the traditional WF model); (ii) one trained on synthetic
traffic but updated online using genuine exit relay traffic; and
(iii) one trained exclusively on genuine exit relay traffic (as in
our online WF model).

To produce synthetic traffic for this evaluation, we use Tor
Browser Selenium [47] to repeatedly crawl the list of 1,000
URLs that were sampled for the synthetic monitored set
described in § 5.1. We crawl the list 10 times using our private
opt-in circuit feature described in § 4 to help us capture our
synthetically generated traffic at our exit relay. Genuine traffic
is extracted from our exit relay during an online evaluation,
additional details and results for which are provided in § 6.2.
Phase III: Train at Exit, Deploy at Exit: We use the data
collected at the exit relay for both training and testing of a
WF classifier (see § 3.2) that will be used to evaluate the
performance of our online WF model under different condi-
tions. To avoid using traces included in training during the
testing phase, we perform the prediction of the pseudonym
corresponding to an observed traffic trace before this trace is
included in the online training process.

While a real adversary would not use a classifier for web-
site predictions on an exit relay, evaluating this configuration
has two advantages. First, it provides a noise-free scenario for
our evaluation: the test traces do not contain any noise that
could be introduced when deploying the model in a different
circuit position than that in which it was trained. In Phase
IV, we compare the distance between traffic collected at entry
and exit relays and find that the difference is low (see § 6.4).
Second, it allows us to safely evaluate the attack against
genuine Tor traffic, which means that: (i) the traffic may come
from different browsers; (ii) the traffic represents a diversity
of user behaviors; and (iii) websites are visited according
to their natural distribution. We note that Tor users always
remain anonymous to the exit relay, and that our evaluation in
this scenario (in § 6.3) uses information about a destination
that the exit could already directly observe before.

USENIX Association 31st USENIX Security Symposium 759

Phase IV: Train at Exit, Deploy at Entry: In a real world
attack, an adversary would use their WF attack model, which
is continuously updated with the traces collected at the exit,
to analyze traffic captured at an entry-side vantage point. We
are not only unable to deploy an attack model on real users’
traffic at an entry for safety reasons (see § 4), but we also
would be unable to evaluate how well the attack performs
because we do not have access to ground truth.

To evaluate the WF performance of models trained at an
exit but deployed at an entry, we utilize our private opt-in
circuit feature described in § 4 to ensure that we collect at the
entry the meta-data for only those circuits created by a client
under our control. We again crawl the list of 1,000 URLs
that were sampled for the synthetic monitored set using
Tor Browser Selenium [47] as we did in Phase II. The entry
relay classifies website traces generated by our crawler in a
closed-world evaluation described in § 6.4.

The use of a synthetic crawler reduces the realism of this
particular experiment, but it is needed in order to: (i) protect
Tor users; and (ii) have ground truth for the predictions being
made by the entry. We stress that the experiment is carried
out using models that are trained with genuine Tor data from
a different distribution than our synthetic data.

6 Evaluation Results

In this section we present the results we obtained in our eval-
uation phases using the monitored sets described in § 4.

6.1 Phase I: Feature Extractor Training
We train the feature extractor, using the Triplet Fingerprinting
methodology described in § 3.2. Following the indication by
Sirinam et al. that the websites used for feature extraction can
be independent of those monitored in the attack deployment,
we train our feature extractor by using the top-100 moni-
tored set, and use it to evaluate attacks against the top-100,
sampled-1000, and synthetic websites.
Collection and Training: We collected exit traffic traces in
July 2020 for 24 hours, recording in memory the traces belong-
ing to the top-100 monitored websites. With our hardware
resources (see Appendix B), we could not afford to train the
feature model on the entire data. Instead, we trained four fea-
ture extractors, by subsampling 25, 50, 75, and 100 traces per
website. Each extractor required between 12 hours (25 traces
per website) and 2 days (100 traces per website) for training.
Feature Extractors Evaluation: We compare the predictive
power of the trained feature extractors. We employ each fea-
ture extractor as the basis for the attack detailed in § 6.3, and
measure its accuracy over 1 week of traffic. Table 1 sum-
marizes the results. Unsurprisingly, the top-100 feature ex-
tractor performance improves as we increase the number of
traces we have per website. However, the best sampled-1000
feature extractor is obtained when training with 75 traces.

Table 1: Feature Extractor Evaluation Results?

Monitored set 25† 50† 75† 100†

top-100 30.0% 54.1% 57.5% 58.5%
sampled-1000 18.1% 49.2% 54.7% 51.1%

? the accuracy of an attacker using the respective extractors’ features
† the number of example traces per website used to train the extractor

We suspect this could be a local minimum, and that better
performance can be achieved with a larger number of traces.

Throughout the rest of our experiments, we use the feature
extractor trained on 100 traces per website for the attacks
against the top-100 websites, and the one trained on 75 traces
per websites for attacks against the sampled-1000 websites.

6.2 Phase II: Synthetic vs. Genuine

To understand the value of genuine data for WF, we compare
the effectiveness of WF classifiers trained on traffic traces
that result from synthetically crawling a list of webpages (as
is done in the traditional adversary model) and classifiers
trained on genuine traffic traces observed at an exit relay (as
in our adversary model). For this evaluation, we used the
top-100 feature extractor that was trained as described in
§ 6.1, and evaluate the ability of the classifiers to predict the
pseudonyms of the websites in the synthetic monitored set.

We evaluate three website classifiers by: (i) training one
model only on synthetic traffic (the Triplet Fingerprinting
strategy [40]); (ii) training one model on synthetic traffic
but update online using genuine exit relay traffic (a hybrid
strategy); and (iii) training one model only on genuine exit
relay traffic (our online strategy).

We deployed the classifiers on our exit relay during 1 week
in April 2021 in a combined online training and evaluation
experiment. The online evaluation emulates a real-world de-
ployment in which the adversary would predict at the entry
relay with a classifier that is continuously updated at the exit.
During the experiment, we first predict the label of a trace (as
the adversary would do at the entry), and then use the ground
truth to improve the classifier model (as the adversary would
do at the exit). During the 1 week measurement we observed
1,178,862 total traffic traces, among which we observed only
183 of the 1,074 domains in the synthetic set.

In this evaluation, we consider a “monitored vs. unmoni-
tored” setting where the attacker tries to predict if an observed
trace belongs to the monitored set or not. We consider small
monitored sets of 5 webpages with at least 100 visits, an ad-
vantageous scenario for the adversary as we explain in § 6.3.
Training on Synthetic vs. Genuine Traces: Figure 4a shows
precision-recall curves for the three classifiers when evaluated
against genuine traffic traces. Here, we consider as the moni-
tored set the 5-site set for which the classifiers yield the best
average precision (see the next paragraph). We observe that

760 31st USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on Real (AP: 0.52)

Synthetic + Real (AP: 0.52)

Synthetic (AP: 0.03)

(a) Comparison of classifiers

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.52

0.42

0.41

0.11

0.05

0.02

(b) Variance across monitored sets

Figure 4: Precision-recall curves for the attack models; curves are
obtained by varying the classifier’s threshold determining whether a
traces is monitored or unmonitored (binary classification setting). (a)
Compares a model trained on synthetic data (traditional approach),
a model that learns only from real data (our approach), and a model
trained on synthetic that is updated on real data. (b) Compares the
performance of our classifier trained online on real data on various
monitored sets of the same size; the high variance indicates that
monitored sites selection is crucial for successful WF.

Triplet Fingerprinting trained on synthetic data (green line)
performs poorly, achieving an average precision of only 0.03;
this is a significant difference with respect to the performance
measured by the authors on synthetic data [40], for a much
larger monitored set. However, by training the attack on real
data (blue line), the performance improves substantially. In-
terestingly, training the attack on synthetic traffic and then up-
dating it on real traffic (orange line) greatly improves the per-
formance with respect to the traditional synthetically-trained
model. Yet, it does not improve over training exclusively with
real data, thus supporting our hypothesis that synthetic data
does not reflect the real traffic’s heterogeneity: the classifier’s
performance against real traffic will be poor unless real traffic
is used to inform the model.
On the Feasibility of Real World WF: We consider the ef-
fect of the monitored set on the performance of our attack.
We evaluate our attack against ten monitored sets of five sites
each, where the sites are chosen uniformly at random among
those observed. Figure 4b shows the results for the six mon-
itored sets exhibiting the highest average precision. We see
a very large variance in performance, that can range from
0.02 to 0.52 average precision. We conclude that one of the
main factors influencing WF’s performance is the choice of
monitored websites: some websites are easier to fingerprint
than others. This indicates that WF may be a concern in the
real world, but only: (i) for certain websites; and (ii) assuming
the adversary is only interested in a small subset of them. This
finding is further corroborated by our evaluation in § 6.3.

In these experiments, we used a feature model trained on
top-100 because Sirinam et al. [40] argued that the perfor-
mance of Triplet Fingerprinting does not depend substantially
on the extractor’s training set. In Appendix D, we repeat
this analysis for a feature model targeted specifically at the

synthetic monitored set. We observe a slight improvement
in performance, but our conclusions remain the same.
Takeaways: These experiments demonstrate three important
aspects. First, there is a substantial difference between evalu-
ating a model on synthetically generated traffic and deploy-
ing it on genuine, open world, and heterogeneous data. The
state-of-the-art Triplet Fingerprinting attack achieved a high
precision-recall in a fully synthetic evaluation [40] but per-
forms poorly against real data. Second, training a model on
genuine traffic leads to far better performance than training on
synthetically generated traffic (i.e., the traditional approach).
Third, WF is a concern but only for certain websites; it is
therefore possible that simpler WF defenses may work in real
world settings, contrary to common belief.

6.3 Phase III: Train at Exit, Deploy at Exit
Because we cannot obtain ground truth for traffic collected at
an entry relay, we perform the bulk of our evaluation on the
exit relay. In § 6.4, we study the extent to which the results
from this evaluation can be extrapolated to the case in which
the adversary can observe entry relay traffic.

We train classifiers using the top-100 and sampled-1000
monitored sets exclusively using traffic traces from an exit re-
lay; training on genuine traffic is the best performing strategy
as shown in § 6.2. We evaluate the attack in an online manner:
when a new trace is observed, we first use the classifier to
make a prediction; and then update the classification model
based on the trace and its true label. We run this measurement
for 1 week in July 2020, during which we observed 3.9M
traces from 671,149 unique websites.
Performance across Websites: We first measure the aver-
age performance of the attack across all of the websites. The
attacker can either guess one of the monitored websites or pre-
dict “unmonitored” if the adversary believes that the observed
trace does not correspond to any of the monitored websites.
Note that this is a more difficult problem than the “monitored
vs. unmonitored” setting that we considered in § 6.2.

To measure the evolution of the model’s performance over
time, we use instant accuracy as a metric. We define instant
accuracy as the accuracy over a sliding window, i.e., the num-
ber of correct guesses in a window divided by the number of
total guesses in that window. We define the window in terms
of number of websites added to the model because the evolu-
tion of the model depends on the amount of websites that are
observed and not on the amount of time that passes. In our
experiments, we empirically chose a sliding window of 10K
traces as it reduces the variance of the accuracy measurement.

Figure 5 shows the results of this experiment. Since the
classification task becomes harder as more websites are ob-
served and added to the monitored set, we include a reference
baseline denoting the probability of guessing a webpage by
predicting uniformly at random among the set of websites that
have appeared so far in the training data. The decrease in base-

USENIX Association 31st USENIX Security Symposium 761

0 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Network traces ×106

top-100

Attack accuracy

Baseline

0 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Network traces ×106

sampled-1000

Attack accuracy

Baseline

Figure 5: Instant accuracy for top-100 and sampled-1000 mon-
itored sets. For reference, we report the likelihood of guessing a
website uniformly at random among the monitored websites that
have been observed up to a certain point (dashed line). The plots on
the left are zoomed-in representations of the first 1k traces.

line accuracy is pronounced in the beginning, but it stabilizes
near zero after a few thousands websites are observed.

We observe the opposite effect in our attack. In the begin-
ning, when the models have incorporated few samples per
website and the adversary mostly observes new labels, their
error is large. This error decreases rapidly as the adversary
gathers enough samples for the monitored websites. Once the
models have incorporated enough traces and become stable,
the instant accuracies are consistently around 60%.
Per-website Performance: Average accuracy provides a first
degree of intuition about the protection that websites enjoy
overall. However, it is not representative of the protection for
individual websites [33]. We quantify this protection for each
website w as the number of traces from w that the adversary
misclassifies; we obtain a false negative rate (FNR) for w by
normalizing this count by the number of times w is observed.

The histogram in Figure 6 represents the distribution of
FNR across individual websites. For the top-100 dataset, the
adversary has an FNR of less than 25% for 45 websites. Yet,
for 6 out of the 100 websites the FNR is very large: >90%.
This confirms the results by Overdorf et al. that some websites
are more at risk than others [33], and reinforces the belief
that defenses should treat websites differently (e.g., adding
different amounts of padding to each [8]).

We observe substantially different results when considering
the sampled-1000 monitored set. In this case, the attacker
incorrectly predicts most of the websites (the FNR is greater

0.00 0.25 0.50 0.75 1.00

FNR

0

10

20

30

40

50

N
um

b
er

of
W

eb
si

te
s

45

29

10 11

top-100

0.00 0.25 0.50 0.75 1.00

FNR

0

50

100

150

200

250

N
um

b
er

of
W

eb
si

te
s

12 18 15

262
sampled-1000

Figure 6: The histograms represent the number of websites for which
a certain level of FNR is attained; websites are limited to the ones we
observed in our evaluation from the top-100 and sampled-1000
sets (total count: 95 and 307 respectively).

0 25000 50000 75000

Number of traces

0.0

0.2

0.4

0.6

0.8

1.0

F
N

R

top-100

0 5000 10000 15000

Number of traces

0.0

0.2

0.4

0.6

0.8

1.0

F
N

R

sampled-1000

Figure 7: Influence of number of traces (x-axis) on FNR (y-axis).
While having a significant number of samples results on better perfor-
mance, the adversary can obtain good results even with few traces.

than 75% for 262 websites). This may seem to contradict
the good average accuracy results shown in Figure 5, and
reinforce the need for individual web performance analysis
when evaluating WF attacks. The discrepancy is due to a few
websites that are both (i) very frequently visited, and (ii) easy
for the attacker to predict; these websites largely inflate the
accuracy on average. We discuss other performance metrics
that avoid this bias in the results in Appendix C.
Dependence on the Number of Training Traces: We now
study whether the success rate of our attack against a website
is determined by the frequency with which traces of that
website are observed.

Figure 7 plots the FNR per website according to the number
of available traces of the site. Unsurprisingly, having a large
number of samples for a website results in less error (lower
FNR). However, even when the attacker has few traces, they
can achieve a low FNR for certain websites. This is consistent
with the evaluation by Sirinam et al. [40], which showed that
the Triplet model learns with few examples.

The results in Figure 7 also confirm our hypothesis for
the perceived discrepancy between average accuracy and the
adversary’s error distribution for the sampled-1000 dataset.
We observe an outlier pertaining to sampled-1000: there is
one website which has more than 15k traces and for which
we observe an almost perfect success (0% FPR). This outlier

762 31st USENIX Security Symposium USENIX Association

0 500 1000

0.6

0.7

0.8

0.9

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Network traces ×106

top-100

1

5

25

50

75

95

0 500 1000

0.5

0.6

0.7

0.8

0.9

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Network traces ×106

sampled-1000

1

5

25

50

75

307

Figure 8: Instant accuracy for the top-100 and sampled-1000 mon-
itored sites, shown for different sizes of the monitored set. Set sizes
range between 1 and the number of individual websites observed in
our experiments for top-100 and sampled-1000.

by itself boosts the average accuracy. We suspect this website
is related to periodic Tor Browser update checks, but we are
unable to confirm due to our safety precautions (see § 4).
Dependence on Monitored Set Size: The previous analysis
shows that the choice of the websites to monitor strongly
affects the attack’s performance. We now investigate how the
attack’s performance is influenced by the monitored sets’ size.

We evaluate the attack for various sizes of monitored set by
subsampling websites uniformly at random from the original
sets (top-100 or sampled-1000); we measure the perfor-
mance considering the selected websites as monitored and
the remaining ones as unmonitored.

We show the results in Figure 8. As expected, the attack’s
performance is heavily impacted by the size of the monitored
set. When the set is small, the adversary has great perfor-
mance, up to 80% for a monitored set of 25 websites and
almost perfect when the adversary is only interested in 1-5
websites. We conjecture that this is because when the set is
small, the chance that other websites in the open world would
look similar decreases. As the monitored set grows and be-
comes heterogeneous, the probability that unmonitored traces
look like one of the monitored websites increases, resulting
in a higher error rate.
Monitored vs. Unmonitored: So far we have considered a
setting where the attacker is interested in predicting which
monitored website a trace belongs to among the traces clas-
sified as monitored. However, the attacker may only be in-
terested in whether a network trace represents a monitored

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

top-100

1 (0.571)

5 (0.669)

25 (0.649)

50 (0.627)

75 (0.683)

95 (0.642)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

sampled-1000

1 (AP: 0.007)

5 (AP: 0.000)

25 (AP: 0.003)

50 (AP: 0.103)

75 (AP: 0.044)

307 (AP: 0.025)

Figure 9: Precision-recall curves for both the top-100 and the
sampled-1000 monitored sites, in a monitored vs. unmonitored
scenario. We vary the size of the monitored set, making sure that
smaller sets are subsets of the larger ones.

site or not. As we did in Phase II (§ 6.2), we adapt the attack
to the monitored vs. unmonitored setting; this attack predicts
“monitored” every time a website from the monitored set is
predicted, and “unmonitored” otherwise.

We evaluate the attack’s performance with respect to var-
ious monitored set sizes. To avoid penalizing the measure-
ments done for some monitored set, we create nested subsets
of monitored sets; for example, the monitored set of size 5 is
a subset of the monitored set of size 25, which is a subset of
the monitored set of size 50, and so on.

Figure 9 shows the precision-recall curves for the attack.
We observe that the attack is reasonably effective against the
top-100 set; for example, the average precision reaches 0.83
for 1 monitored website and 0.82 for a set of 5 monitored
sites. However, it quickly drops for larger monitored sets. In-
terestingly, we observe that the attack’s performance does
not decrease monotonically w.r.t. the number of monitored
websites. The reason is that if a highly fingerprintable website
is added to the list, then it will help improve the performance.
When repeating this analysis for various same-sized mon-
itored sets in preliminary experiments, we also observed a
great variability; we therefore suspect, as we observed in § 6.2,
that the choice of the websites to monitor is the determining
factor in WF attacks.

When we consider the sampled-1000 set, the results again
change significantly: the attack barely achieves a 0.1 av-
erage precision and would be largely uninformative to an
adversary. As explained in the previous sections, the main
reason of discrepancy of performance against top-100 and
sampled-1000 may be the fingerprintability of the web-
sites in sampled-1000; indeed, it was shown that some
websites are more fingerprintable than others [33], which
may be the root cause of good/poor performance of any at-
tack. Another partial explanation may be that we used a fea-
ture model trained on top-100, even for the attack against
sampled-1000; in Appendix D, we show that this may have
a marginal impact on the attack’s performance.
Takeaways: Our evaluation results confirm that WF may
not be practical for large monitored sets (e.g., >5 websites),

USENIX Association 31st USENIX Security Symposium 763

0 200 400 600 800

Crawled Domain

0

200

400

600

800

M
ea

n
L

ev
en

sh
te

in
D

is
ta

n
ce

.

Exit to Exit

Entry to Exit

Figure 10: The distance between two traces of the same website
from the same exit is similar to the distance between the same web-
site trace observed at the exit and entry. The shaded area represents
the standard deviation.

even in a monitored vs. unmonitored setting. Our results
further indicate a strong dependency between WF success and
fingerprintability of websites: some websites are inherently
easier to fingerprint than others.

Note that due to the privacy requirements in our experi-
mental design, we cannot study which characteristics make a
website more or less fingerprintable; previous work covered
some of them [33], and we encourage future work to run a
comprehensive analysis of website fingerprintability aspects
within our threat model.

6.4 Phase IV: Train at Exit, Deploy at Entry
Because of the lack of ground truth, our previous experiments
considered an attacker who both trains and predicts using
traces observed at an exit relay. In this section, we quantify
the extent to which the results of our previous evaluation on
the exit relay can be extrapolated to our threat model in which
a real-world attacker trains their classification model at an
exit relay and then deploys it at an entry (see § 3.1).

As described in § 5.2, we crawl the pages in the synthetic
monitored set 10 times each (pinning our entry and exit relays
as the first and last circuit hops). Our crawl results in 922
websites for which we have ≥10 observed traces. For each
website, we record the resulting traces observed by our entry
and exit relays. We use the recorded traces to train website
classifiers, and consider an attack using the feature extractor
trained at our exit relay on the top-100 monitored set traces.
Trace Distortion from Entry to Exit: To ensure that the re-
sults in the previous section hold when the attack is deployed
at the entry, the traces at the exit and the entry should have the
same characteristics. In other words, distortion of the traffic
traces when traversing the Tor network should be minimal.
This way a page load observed at the entry relay would not
differ substantially from the same load observed at the exit.

To capture this distortion, we measure the distance between
traces collected at the entry and at the exit relay. We expect
that most of the distortion will be the result of queuing at
different Tor relays that would cause a relative reordering

5 20 40

n

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k’

s
ac

cu
ra

cy

Exit-Exit

Entry-Entry

Entry-Exit

Exit-Entry

5 200 400 600 800

Size of monitored set

Figure 11: Performance comparison of the attack trained at exit and
deployed at exit (Exit-Exit), trained at exit and deployed at entry
(Exit-Entry), trained and deployed at entry (Entry-Entry), and trained
at entry and deployed at exit (Entry-Exit).

of the traffic sequences observed by the relays. Thus, we
choose the Levenshtein distance to measure the distortion
between traces after truncating them to have the same length.
This distance metric measures the minimum number of edits
required to change one trace into the other, and thus can
capture cell re-ordering. For each website, we measure: (i) the
distance between a trace seen at the entry and the one seen at
the exit relay, and (ii) the distance between traces belonging
to the same website as seen at the exit relay. Ideally, we would
like the former distance to be smaller than the latter; that is,
we want that traveling through the network changes traces
less than their natural variability across multiple downloads
of the same website. The results in Figure 10 show that the
trace distortion between entry and exit is small.
Attack Deployment: While distortion is small, it may be that
the distance is enough to reduce the accuracy of the attack
from the Exit-Exit attacker that we evaluate in § 6.3 to the
Exit-Entry attacker that would operate in the real world. As we
are only interested in the difference in accuracy, we consider
the simple case: a closed world batch classification setting in
which the model is trained on 50% of the traces we collected,
and is evaluated on the remaining 50%.

Figure 11 shows the accuracy achieved by the Exit-Exit and
Exit-Entry attackers, measured for a varying number of mon-
itored websites. For a small monitored set, the performance
of the attacks is relatively similar; e.g., with 50 monitored
websites the performance degrades from 76.2% (Exit-Exit)
to 65.1% (Exit-Entry), and with 5 websites it decreases from
91.2% to 86.4%. As the monitored set size increases, the dis-
crepancy becomes larger but the difference seems to stabilize
after the monitored set size reaches 600. With 750 monitored
sites the accuracy decreases from 52.2% to 34.1%, providing
further evidence that real-world attackers are limited in the
number of websites they can monitor effectively.

We also show in Figure 11 the effectiveness of a hypotheti-
cal attacker who trains and deploys at an entry relay (Entry-
Entry) using synthetic traffic traces. While the Exit-Exit at-
tacker is strictly better than Entry-Entry attacker, the latter
has better performance than an adversary who trains at an exit

764 31st USENIX Security Symposium USENIX Association

and deploys at an entry (as in our adversary model). This ex-
periment, however, offers ideal conditions for the Entry-Entry
adversary, as the synthetic traffic is not as heterogenous as
genuine traffic would be. In § 6.2 we conduct an experiment
on real traffic whose results indicate that training at an entry
relay using synthetic traffic is not advantageous since it does
not capture the heterogeneity of genuine traffic.
Takeaways: Our analysis shows that network effects may
distort traces from the exit to the entry. Thus, there can be a
loss in accuracy when deploying on the entry a model that was
trained using traffic collected at an exit. These results indicate
that training at an exit and deploying at an entry is a good
adversarial strategy, especially given the advantages it brings:
accounting for diversity and concept drift. We also note that
we did not tune our attack to reduce distortion. Future work
may be able to reduce or eliminate the effects of distortion on
WF attacks by incorporating information about the differences
between entries and exits.

Overall, our experiments throughout § 6 confirm that the
practicality of WF attacks depends on the choice and number
of monitored sites. A primary conclusion is that an attacker
wishing to monitor more than a few websites (5 to 25, accord-
ing to our results) is unlikely to succeed.

7 Related Work

Related Attacks: Following the critiques of the unrealistic
methodologies used in early WF work [19, 35], WF attack
papers have attempted to improve evaluation methods: over-
coming data staleness [53], using large-scale datasets with
varied URLs [34], or increasing the monitored set size [37].

Previous work applied deep learning to WF to increase the
accuracy [1, 2, 32, 37, 39]. The practicality of these methods
in an online environment is unclear, as they require a lot of
training data that must be updated regularly [39]. Triplet Fin-
gerprinting reduced the data needed for training [40], which
is why we used it as the basis for our online attack.

Our online attack using real data operates under a new
adversary model. All previous WF attacks were evaluated
under the traditional WF adversary model that we describe in
§ 2.1 and are evaluated using synthetic datasets. Therefore, a
direct comparison between our results and the results from
previous work would not be meaningful.

Recent work brings new insights on the applicability of
WF in the real world. Wang argued that WF attacks should be
optimized for precision and should incorporate the base rate
into the precision metric to avoid success overestimation [51].
Pulls and Dahlberg explored the concept of a website oracle
that could inform the adversary whether or not a website was
visited at a specific time [36]. They found this is possible to
achieve in Tor due to the DNS lookups that are performed by
exit relays, which we also take advantage of in our work. Our
work is the first to apply WF to regular sites in a true open
world and the first to use genuine Tor traffic as ground truth.

Countermeasures: There exist numerous defenses against
WF in the literature [5, 6, 12, 20, 26, 54]. However, given
our adversary model and evaluation using real Tor traffic and
online learning, it is infeasible for us to test those defenses.
Defenses should already be deployed in Tor for us to be able
to collect the data. Any attempt at deploying the defenses on
our own clients would be subject to the same synthetic traffic
limitations described in § 2.2.

Another challenge in realistically evaluating WF defenses
is that, in the traditional adversary model, researchers do not
have access to ground truth unless they produce the traces
themselves. In our work, we considered an alternative to the
traditional adversary model that provides us with ground truth
in a true open world data source; this could be further used as
a building block for evaluating WF defenses in the future.

Although it is currently infeasible for us to evaluate de-
fenses in the real world, some form of padding between the
client and middle relay [20] could be an effective defense
strategy against the adversary model we present in § 3.1. In
particular, incorporating padding between a client and middle
relay would cause confusion in models that are trained on one
side of a circuit (exit) and deployed on the other (entry). How-
ever, such defenses come with increased bandwidth cost [5, 6]
and possibly degraded network performance for Tor users, so
they will have to be considered carefully [7, 8, 12, 26].

8 Conclusion

An open question in the WF literature is whether WF results
evaluated in a lab setting are realistic. We argue that this ques-
tion need not be answered by demonstrating the effectiveness
of realistic WF attacks in the real world. We present a new WF
adversary model and online attack that enables us to directly
study adversarial conditions in the wild by using genuine traf-
fic from Tor relays, and hence capturing real traffic variability
across webpages, users, and over time.

We introduced a novel measurement and evaluation
methodology that enabled us to safely use Tor traffic in the
first real-world WF evaluation in the open world. Our compar-
ison between static and online models show that there is an
advantage in training on heterogenous, dynamic traffic when
the goal is to fingerprint websites in the wild.

The results of our real-world evaluation demonstrate that
WF attacks can only be successful in the wild if the adversary
aims to identify websites within a small set. In other words,
untargetted adversaries that aim to generally monitor users’
website visits will fail, but focused adversaries that target one
particular client configuration and website may succeed.

We find that the website classifier that we trained online
yields stable classification performance across a 1 week eval-
uation period, indicating that the classifier models are able
to dynamically adapt to the changes in website traffic distri-
butions over time. While we did not evaluate periods longer
than 1 week, we remark that it is feasible for an adversary

USENIX Association 31st USENIX Security Symposium 765

to retrain both the feature extractor and the website classi-
fier on a weekly basis. Therefore, we conclude that online
learning on genuine traffic mitigates the negative impacts on
classification performance due to concept drift.
Limitations and Future Work: In our work we focused
on Tor exit traffic. This brings two implications. First, our
study does not cover .onion sites, but our conclusions are
aligned with existing studies on the fingerprintability of onion
sites [33]. Second, we can only use domains as labels (as sub-
page paths are usually encrypted under TLS). Thus, we cannot
target individual webpages as previous work does. Our results,
however, are aligned with webpage-focused works [34] and
confirm that WF in the true open world is very challenging.

Our attack works on the circuit level; if several domains are
visited over the same circuit, we would only make a prediction
for the first one (§ 3.1). Tor Browser already separates visits
to unique top-level domains displayed in the browser URL
bar onto different circuits, and we do not solve the problem
of further splitting traffic by stream. However, the splitting
problem should be considered (i) if distinguishing between
multiple streams on the same circuit is desirable, and (ii) by a
network-level adversary without access to the entry relay used
by their victim (meaning all Tor traffic must be split into sepa-
rate visits). Although our work could be extended to consider
this network traffic splitting problem [9, 53], we believe that
splitting will reduce performance (due to inaccurate splits)
and thus it should not affect our general conclusions about
the infeasibility of WF in the real world.

Our research was restricted by our commitment to keep
users safe during our experiments. In practice, an adversary
would not have the same limitations and therefore could do
more to optimize the accuracy of their online attack. For
example, the adversary may store the complete traffic traces
for a longer period of time. Access to such an archive would
enable the use of additional machine learning approaches that
were not possible in our study. The development of privacy-
preserving real world WF analysis systems could be helpful
to tackle this problem without endangering users.

Future work should also consider methods that reduce the
loss in accuracy that results from training a classification
model on an exit relay and deploying on the entry-side. Train-
ing classifiers using data from geographically diverse exit
relays could help to build more robust models. Emerging tech-
niques such as conformal prediction [50] could also help to
produce more informative models that further increase WF
accuracy in an online setting.
Acknowledgments: We thank Martin Fontanet, Jamie Hayes,
Eric Jollès, Bogdan Kulynych, Rebekah Overdorf, Ryan
Wails, and the anonymous reviewers for their valuable feed-
back. This work was partially supported by the Office of Naval
Research (ONR), the Defense Advanced Research Projects
Agency (DARPA), and the Swiss National Science Founda-
tion (grant 200021-188824). Giovanni Cherubin’s work was
partially funded by an EcoCloud Post-Doctoral Fellowship.

References

[1] K. Abe and S. Goto. Fingerprinting attack on Tor anonymity
using deep learning. Proceedings of the Asia-Pacific Advanced
Network, 42:15–20, 2016.

[2] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A data-
efficient website fingerprinting attack based on deep learning.
Proceedings on Privacy Enhancing Technologies (PoPETs),
2019(4), 2019.

[3] G. D. Bissias and M. Liberatore. Privacy Vulnerabilities in
Encrypted HTTP Streams. In Privacy Enhancing Technologies
Symposium (PETS), 2006.

[4] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from
a Distance: Website Fingerprinting Attacks and Defenses. In
ACM Conference on Computer and Communications Security
(CCS), 2012.

[5] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A conges-
tion sensitive website fingerprinting defense. In ACM Work-
shop on Privacy in the Electronic Society (WPES), 2014.

[6] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg.
A systematic approach to developing and evaluating website
fingerprinting defenses. In ACM Conference on Computer and
Communications Security (CCS), 2014.

[7] G. Cherubin. Bayes, not naïve: Security bounds on website
fingerprinting defenses. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2017(4), 2017.

[8] G. Cherubin, J. Hayes, and M. Juarez. Website fingerprinting
defenses at the application layer. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2017(2):186–203, 2017.

[9] W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-
Tin. Revisiting assumptions for website fingerprinting attacks.
In ACM Asia Conference on Computer and Communications
Security (AsiaCCS), 2019.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security Sympo-
sium, 2004.

[11] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding
routing information. In Proceedings of the First International
Workshop on Information Hiding, 1996.

[12] J. Gong and T. Wang. Zero-delay lightweight defenses against
website fingerprinting. In USENIX Security Symposium, 2020.

[13] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scal-
able Website Fingerprinting Technique. In USENIX Security
Symposium, 2016.

[14] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma. A novel active
website fingerprinting attack against tor anonymous system.
In IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2014.

[15] D. Herrmann, R. Wendolsky, and H. Federrath. Website Finger-
printing: Attacking Popular Privacy Enhancing Technologies
with the Multinomial Naïve-Bayes Classifier. In Workshop on
Cloud Computing Security, 2009.

[16] A. Hintz. Fingerprinting Websites Using Traffic Analysis. In
Privacy Enhancing Technologies Symposium (PETS), 2003.

766 31st USENIX Security Symposium USENIX Association

[17] R. Jansen and N. Hopper. Shadow: Running Tor in a box
for accurate and efficient experimentation. In Network and
Distributed System Security Symposium (NDSS), 2012. See
also: https://shadow.github.io.

[18] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz. Inside
Job: Applying traffic analysis to measure Tor from within. In
Network and Distributed System Security Symposium (NDSS),
2018.

[19] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
critical evaluation of website fingerprinting attacks. In ACM
Conference on Computer and Communications Security (CCS),
2014.

[20] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. To-
ward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS),
2016.

[21] C. Lab and Others. Url testing lists intended for discovering
website censorship, 2014. URL https://github.com/citizenlab/
test-lists. https://github.com/citizenlab/test-lists.

[22] Y.-N. Law and C. Zaniolo. An adaptive nearest neighbor clas-
sification algorithm for data streams. In European Conference
on Principles of Data Mining and Knowledge Discovery, 2005.

[23] S. Li, H. Guo, and N. Hopper. Measuring information leak-
age in website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS),
2018.

[24] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(4):594–611, 2006.

[25] M. Liberatore and B. N. Levine. Inferring the Source of En-
crypted HTTP Connections. In ACM Conference on Computer
and Communications Security (CCS), 2006.

[26] D. Lu, S. Bhat, A. Kwon, and S. Devadas. Dynaflow: An
efficient website fingerprinting defense based on dynamically-
adjusting flows. In ACM Workshop on Privacy in the Electronic
Society (WPES), 2018.

[27] L. Lu, E. Chang, and M. Chan. Website Fingerprinting and
Identification Using Ordered Feature Sequences. In European
Symposium on Research in Computer Security (ESORICS),
2010.

[28] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and
M. Sherr. Understanding Tor Usage with Privacy-Preserving
Measurement. In ACM SIGCOMM Conference on Inter-
net Measurement (IMC), 2018. See also https://torusage-
imc2018.github.io.

[29] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar. I know
why you went to the clinic: Risks and realization of https traf-
fic analysis. In Privacy Enhancing Technologies Symposium
(PETS), 2014.

[30] M. Nasr, A. Bahramali, and A. Houmansadr. Deepcorr: Strong
flow correlation attacks on Tor using deep learning. In ACM
Conference on Computer and Communications Security (CCS),
2018.

[31] S. E. Oh, S. Li, and N. Hopper. Fingerprinting past the front
page: Identifying keywords in search engine queries over tor.

Proceedings on Privacy Enhancing Technologies (PoPETs),
2017(4), 2017.

[32] S. E. Oh, S. Sunkam, and N. Hopper. p-FP: Extraction, clas-
sification, and prediction of website fingerprints with deep
learning. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2019(3), 2019.

[33] R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz.
How unique is your .onion? an analysis of the fingerprintability
of tor onion services. In ACM Conference on Computer and
Communications Security (CCS), 2017.

[34] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel. Website Fingerprinting at Internet
Scale. In Network and Distributed System Security Symposium
(NDSS), 2016.

[35] M. Perry. A Critique of Website Traffic Fingerprinting Attacks.
Tor project Blog. "https://blog.torproject.org/blog/critique-
website-traffic-fingerprinting-attacks", 2013. (accessed: De-
cember 15, 2013).

[36] T. Pulls and R. Dahlberg. Website fingerprinting with website
oracles. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2020(1), 2020.

[37] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and
W. Joosen. Automated website fingerprinting through deep
learning. In Network and Distributed System Security Sympo-
sium (NDSS), 2018.

[38] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2015.

[39] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep finger-
printing: Undermining website fingerprinting defenses with
deep learning. In ACM Conference on Computer and Commu-
nications Security (CCS), 2018.

[40] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright. Triplet
fingerprinting: More practical and portable website fingerprint-
ing with n-shot learning. In ACM Conference on Computer
and Communications Security (CCS), 2019.

[41] M. Sokolova and G. Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information process-
ing & management, 45(4):427–437, 2009.

[42] Stem: a Python controller library for Tor. https://stem.
torproject.org, December 2019.

[43] Q. Sun, D. R. Simon, and Y. M. Wang. Statistical Identification
of Encrypted Web Browsing Traffic. In IEEE Symposium on
Security and Privacy (S&P), 2002.

[44] The top 500 sites on the web. http://www.alexa.com/topsites,
2020.

[45] The Tor Project. Tor Metrics Portal. https://metrics.torproject.
org, July 2020.

[46] The Tor Project. https://www.torproject.org, July 2020.

[47] Tor Browser Selenium. https://github.com/webfp/tor-browser-
selenium, July 2020.

[48] Tor Research Safety Board. https://research.torproject.org/
safetyboard, 2020.

USENIX Association 31st USENIX Security Symposium 767

https://shadow.github.io
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists
https://torusage-imc2018.github.io
https://torusage-imc2018.github.io
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://stem.torproject.org
https://stem.torproject.org
http://www.alexa.com/topsites
https://metrics.torproject.org
https://metrics.torproject.org
https://www.torproject.org
https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium
https://research.torproject.org/safetyboard
https://research.torproject.org/safetyboard

[49] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Match-
ing networks for one shot learning. Advances in Neural Infor-
mation Processing Systems, 29:3630–3638, 2016.

[50] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning
in a random world. Springer Science & Business Media, 2005.

[51] T. Wang. High precision open-world website fingerprinting.
In IEEE Symposium on Security and Privacy (S&P), 2020.

[52] T. Wang and I. Goldberg. Improved Website Fingerprinting on
Tor. In ACM Workshop on Privacy in the Electronic Society
(WPES), 2013.

[53] T. Wang and I. Goldberg. On realistically attacking tor with
website fingerprinting. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2016(4):21–36, 2016.

[54] T. Wang and I. Goldberg. Walkie-talkie: An efficient defense
against passive website fingerprinting attacks. In USENIX
Security Symposium, 2017.

[55] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg.
Effective Attacks and Provable Defenses for Website Finger-
printing. In USENIX Security Symposium, 2014.

A Triplet Fingerprinting Background

We build our evaluation upon the foundations set out in pre-
vious work on Triplet Fingerprinting [40], which describes a
WF attack based on N-shot learning [24, 49]. Previous work
has shown that such models trained and tested with data col-
lected multiple years apart and on different networks still
yield an attack accuracy of 85% [40], which make N-shot
learning-based models good candidates for inclusion in an
online attack.
Feature Extractor: When trained for WF, a triplet finger-
printing [40] model will learn how to distinguish different
websites from one another (i.e., it will learn the features that
are the easiest to distinguish) independent of the particular
websites used to train it. Therefore, the model is called a fea-
ture extractor, and it is used to generate a feature vector from
a given packet sequence.

The feature extractor is trained with a triplet of deep em-
bedded convolutional neural networks [38]: the anchor, the
positive, and the negative network (Figure 12a). Using an
anchor network, the training process seeks to minimize the
distance between positive examples of the same website, and
maximize the distance between positive examples of a web-
site and negative examples of other websites. The output of
the training process is a neural network that can produce dis-
tinguishable feature vectors from traffic traces and which will
be used in subsequent online training and classification tasks.
This feature extractor need not be continuously retrained as it
will remain effective for long periods of time (e.g., years) [40].
Online Training: A trained feature extractor will produce
feature vectors from traffic traces, but will not predict website
labels. In order to be able to conduct website classification,
we train an online attack model as shown in Figure 12b. In

(a) We train a feature extractor model using triplet networks to recognize
the features that are best able to distinguish traffic patterns from different
websites, following an approach from previous work [40].

(b) We use the trained feature extractor to produce a feature vector from
an observed traffic sequence, and use the observed website label to train
an online attack model that keeps as embedded vectors the mean feature
vector over the vectors of each website.

(c) In an entry relay deployment, we extract a feature vector from an
unlabeled packet sequence, and use a nearest neighbor procedure to
predict the domain label with the closest associated embedded vector to
the unlabeled feature vector.

Figure 12: Our online WF attack involves: (a) online training of
a feature extractor model; (b) online training of a classification
model to learn a website label from traffic features; and (c) online
deployment of the trained classification model to predict websites.

our online model, each monitored website is represented by
the average of the feature vectors extracted by the feature
extractor over all traffic traces previously observed for the
website; we refer to this average vector as the embedded
vector. As we observe additional labeled traffic traces for
monitored websites, we used the trained feature extractor to
extract a new feature vector and then update the embedded
vector associated with the website label by recomputing the
mean. (Note that recomputing the mean requires only the
previous mean and the count of traces observed so far.)

Online Classification: Deployment on an entry relay is
shown in Figure 12c. Under deployment, the adversary will
not have access to the website label and will query the trained
attack model to predict it. When a new unlabeled packet
sequence is observed, the feature extractor is first used to ex-

768 31st USENIX Security Symposium USENIX Association

tract a feature vector. Then, a website label is predicted via a
nearest neighbor procedure by choosing the website whose
embedded vector is the closest to the unlabeled feature vector.
If the distance to the closest vector is larger than a certain
threshold, the model classifies the website as “unmonitored”.

To make best use of the available data, the adversary contin-
uously runs some number of exit relays that feed observations
into the online training process (i.e., Figure 12b). Addition-
ally, the entry-side observation point that is deploying the
classifier (i.e., Figure 12c) is given direct access to the model
being trained by the exit observations so that every prediction
that is made uses the most recent model available.
Tuning: Our experiments utilize the Triplet Fingerprinting
code, which is implemented using Keras as the front-end
and Tensorflow as the back-end and released on GitHub by
the Triplet Fingerprinting authors.1 The hyperparameters for
the triplet networks (feature extractors) that we use in our
evaluation are tuned according to experiments conducted in
previous work [40, Table 3 and Appendix D]. In particular, a
convolutional neural network (CNN) based on the deep finger-
printing model [39] is used as the triplet sub-network. Cosine
distance is used as a similarity metric to determine the dis-
tance between website examples in the positive, negative, and
anchor networks, since it has meaningful semantics that relate
to finding bursts of traffic. The Semi-Hard-Negative mining
strategy is used as the best strategy to identify triplets to use
to train the feature extractor, consistent with prior work [38].
The margin used for the learning process (the radius around
the embedded vector) is set to 0.1, while SGD is the chosen
optimizer used to measure and update the weights w.r.t. the
loss model. Finally, the embedded vector size in the last dense
layer in each sub-network of the triplet networks is set to 64
to limit the training time without losing model accuracy.

B Measurement Details

Measurement Infrastructure: We run relays in the real Tor
network in order to facilitate our WF evaluation. Because we
run our evaluation during two distinct periods, we set up two
separate pairs of Tor relays.

We start the first entry2 and exit3 relays on 2020-06-26 and
run them for two months. These relays run on a dedicated
server rented from Hetzner, an internet hosting company and
data center operator located in Germany. Hetzner advertised
our dedicated server as offering 1 Gbit/s of bandwidth; the
server also had 64 GiB of RAM, a 4-core Intel Core i7-7700
CPU (8 hyper-threads) running at 3.60 GHz, and an nVidia
GeForce GTX 1080 graphics card with 8 GiB of memory and
2,560 CUDA cores. These relays were used for the top-100
and sampled-1000 measurements in § 5.1, and for the evalu-
ation conducted in § 6.1, § 6.3, and § 6.4.

1https://github.com/triplet-fingerprinting/tf
2Entry1 fingerprint: 84A1941BD03ADD7BFD6F8E6CA5B5AD4FF00E83C9.
3Exit1 fingerprint: 015B7DCBD1F7F84342F5E9E6EB3CA8FBEFCB440E.

We start the second entry4 and exit5 relays on 2021-04-08
and run them for two months. These relays run on a dedicated
server from The Calyx Institute, a research organization lo-
cated in the United States. Calyx advertised our dedicated
server as offering 1 Gbit/s of bandwidth; the server also had
128 GiB of RAM, 2×12-core Intel Xeon e5-2695 CPUs (48
hyper-threads) running at 2.40 GHz, and an nVidia Tesla K80
graphics card with 24 GiB of memory and 4,992 CUDA cores.
These relays were used for the synthetic measurements in
§ 5.1, for the evaluation conducted in § 6.2.

All synthetic webpage crawling using Tor Browser Sele-
nium [47] was conducted from a machine hosted in the US
with 32 GiB of RAM and a 6-core (12 hyper-thread) Intel Core
i7-5820K CPU (3.30GHz). This machine was used for crawl-
ing webpage lists as described in § 5.1 (for the synthetic
measurements), § 6.2, and § 6.4.
Safety Precautions: § 4 describes how we safely imple-
mented our data processing framework. Here we summarize
the safety precautions that we implemented to minimize data
collection and retention:
– We never store website labels. Instead, we use non-

reversible pseudonyms when labeling our ground truth (see
§ 4). We destroy the key used to create the pseudonyms
as soon as we completed our measurements (so that the
pseudonyms can no longer be linked to real websites).

– We use an online learning classifier, which can be updated
on new traces without having to store the old ones. Hence,
we do not store circuit information longer than an exit relay
normally would (circuits last for 10 minutes by default).

– We use triplet fingerprinting [40] as basis for our classifier.
As this classifier uses statistics about the traces as features,
we do not store the traces for training.

– We run our entry and exit relays on the same machine to
never transfer attack models over the network.

– Whenever we are in a position to observe the user (i.e.,
when we observe circuits in the entry position) we never
perform website predictions on real users’ traffic. From the
entry position, we only predict the website label on circuits
that we created with clients that we control.

– We only store aggregated evaluation results and nothing
about individual circuits. We destroy all classification mod-
els once we have completed our evaluation.

– We use simulation [17] during the development and test-
ing of the modifications we made to Tor to support our
measurement (which is described in § 4).

C Generalized Precision and Recall

In our evaluation (§ 6) we considered two scenarios: (i) a
monitored vs unmonitored (MvU) scenario, where the attacker

4Entry2 fingerprint: 5DD563CF69A9EF1DBC8345F125331660FA49F626.
5Exit2 fingerprint: 8DC0DA5D0023B913A5A77EF91F0993AF229D45A4.

USENIX Association 31st USENIX Security Symposium 769

https://github.com/triplet-fingerprinting/tf

0 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0

Network traces ×106

top-100

Generalized recall

Generalized precision

0 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

In
st

an
t

ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Network traces ×106

sampled-1000

Generalized recall

Generalized precision

Figure 13: Generalized precision and recall for the setting consid-
ered in subsection 6.3. Compare with Figure 5.

answers the binary question “was this trace generated by a
monitored website?”; and (ii) a multiclass (MC) scenario,
where the attacker tries to guess which monitored page the
user is visiting or guesses unmonitored.

The well-established metrics for evaluating an MvU attack
are precision and recall. For an MC attack, however, the stan-
dard metric is the attack’s average accuracy. However, it is
well known that this metric can overestimate performance in
unbalanced scenarios where the negative samples are domi-
nant (see § 6).

We propose two alternative metrics to measure the success
of an MC attacker: generalized precision and recall. Consider
a set of network traces ti associated with their respective web-
site label, T = {(ti,wi)}n

i=1; we use wi = ⊥ to indicate an
unmonitored page. We denote as A(t) the attacker’s predic-
tion upon observing trace t.
Generalized Precision (GP): measures the accuracy of the
attacker on the traces that the attack classifies as monitored:

|{A(t) = w | (t,w) ∈ T ,A(t) 6=⊥}|
|{(t,w) ∈ T ,A(t) 6=⊥}| .

GP captures how reliable the adversary’s prediction is when
it identifies a page as monitored.
Generalized Recall (GR): measures the accuracy of the at-
tacker on the monitored traces:

|{A(t) = w | (t,w) ∈ T ,w 6=⊥}|
|{(t,w) ∈ T ,w 6=⊥}| .

GR captures the coverage of the adversary’s correct predic-
tions with respect to monitored pages.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.52

0.42

0.41

0.11

0.05

0.02

(a) top-100

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

0.63

0.50

0.41

0.11

0.07

0.07

(b) synthetic

Figure 14: Precision-recall curves for the models deployed in the
open world.

These metrics enable us to measure the attack success
without the bias associated with having a large majority of un-
monitored traces in the dataset. They can be seen as instances
of precision and recall for a subclass in a hierarchical classi-
fication problem, as discussed by Sokolova et al. [41, Table
5]. GP and GR are designed for settings where the monitored
set contains more than one page; if the monitored set only
contains one page, they correspond to precision and recall.
Evaluation: Figure 13 reports GP and GR for the evalua-
tion conducted in § 6.3 (Figure 5). As discussed throughout
our analysis, we observe relatively good performance for the
top-100 monitored set; in particular, the attack is quite accu-
rate when classifying monitored traces (> 70% GR) and it has
50% GP. However, for sampled-1000, we observe very poor
GP; this indicates that the attack is not reliable when it outputs
a label belonging to the monitored set. The accuracy measure-
ments (Figure 5) did not provide the same insights; indeed,
according to accuracy the attack success was comparable to
that obtained on the monitored set.

D Is the feature model important in TFP?

Sirinam et al. [40] argue that the feature model should be
independent of the monitored set: if the feature model is
trained on a different set of labels than the ones an attacker
targets, they should only pay a small performance price.

In parallel to our experiments in subsection 6.2, we eval-
uated the same models by using the feature set based on the
top-100 list. Figure 14 compares the performance of the
attack trained only on real data, (a) top-100-based features.
(b) synthetic-based features. (The former is identical to
Figure 4, brought here to facilitate comparison.) Note that
the two are compared on the same monitored sets and on the
same observed traces.

We observe that the feature model does affect the model’s
performance: in general, it is always better to train the feature
model on the monitored websites. However, as observed by
Sirinam et al. [40], this discrepancy is not substantial.

770 31st USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Traditional Tor Website Fingerprinting
	Limitations of Traditional Tor WF

	Online Website Fingerprinting
	Adversary Model
	Online Learning

	Safe and Ethical Data Processing
	Safe Evaluation Methodology
	Selection of Monitored Sites
	Phases of Evaluation

	Evaluation Results
	Phase I: Feature Extractor Training
	Phase II: Synthetic vs. Genuine
	Phase III: Train at Exit, Deploy at Exit
	Phase IV: Train at Exit, Deploy at Entry

	Related Work
	Conclusion
	Triplet Fingerprinting Background
	Measurement Details
	Generalized Precision and Recall
	Is the feature model important in TFP?

