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Abstract

Many applications, from the Web to smart contracts, need to
safely execute untrusted code. We observe that WebAssem-
bly (Wasm) is ideally positioned to support such applications,
since it promises safety and performance, while serving as
a compiler target for many high-level languages. However,
Wasm’s safety guarantees are only as strong as the implemen-
tation that enforces them. Hence, we explore two distinct
approaches to producing provably sandboxed Wasm code.
One draws on traditional formal methods to produce mathe-
matical, machine-checked proofs of safety. The second care-
fully embeds Wasm semantics in safe Rust code such that the
Rust compiler can emit safe executable code with good per-
formance. Our implementation and evaluation of these two
techniques indicate that leveraging Wasm gives us provably-
safe multilingual sandboxing with performance comparable
to standard, unsafe approaches.

1 Introduction

Lightweight, safe execution of untrusted code is valuable
in many contexts, including software plugins, third-party li-
braries, or even client-side code run when browsing the Web.
New contexts such as dynamic content delivery networks
(CDNs), edge computing, and smart contracts have created
additional motivation to run untrusted code that could poten-
tially harm its execution environment. Software sandboxing
(via software fault isolation [41]) is a well-studied technique,
with a long and rich history [7,17,21,27,29,30,37,52], to
provide this crucial primitive. Nevertheless, previous efforts
to deploy it in production have failed, due to technical and
marketplace hurdles (Section 2.2).

On the Web, after failed attempts with Java, ActiveX, Flash,
NaCl [52], and Asm.js, a new contender for fast code execu-
tion was born—WebAssembly [11]. With lightweight, safe,
portable, and fast code execution as its goals, WebAssembly
(or Wasm) has rapidly become a popular compilation target for
client-side code execution on the Web. Designed with sand-
boxing in mind, it has clean, succinct, and well-defined se-

mantics, which, along with its portability and speed, has made
it appealing for use in non-Web contexts too [8,9,30,32,42].
With the standardization of the WebAssembly Systems In-
terface (WASI) [42], it even exposes a POSIX-like API for
programs to interact with their environment in a controlled
manner. This makes it an attractive compilation target for both
Web and non-Web contexts, and compilers for most popular
languages, such as C, C++, Rust, Java, Go, C#, PHP, Python,
TypeScript, Zig, and Kotlin, now support it as a target.

As aresult, an implementation of Wasm can provide strong
guarantees about the safe execution of a large variety of lan-
guages on a large number of platforms, making it an attractive
narrow waist for sandboxing (Section 2.3).

However, WebAssembly’s sandboxing guarantees hold
only at the specification level; real Wasm implementations
can, and do, have bugs (Section 2.3). These bugs can com-
pletely compromise all the guarantees provided by the speci-
fication. A plausible explanation for such disastrous sandbox-
compromising bugs, even in code designed with sandboxing
as an explicit focus, is that the correct, let alone secure, im-
plementation of high-performance compilers is difficult and
remains an active area of research, despite decades of work.

In this paper, we review the design space (Section 3) for
executing Wasm code. Within this space, we identify a crucial
gap: Wasm implementations that provide both strong security
and high performance. Hence, we propose and explore two
techniques, with varying performance and development com-
plexity, which guarantee safe sandboxing using provably safe
compilers. Along the way, we demonstrate that one can have
safety without sacrificing execution performance.

We implement the first of our techniques (Section 4) as
a compiler called vWasm, which utilizes formal methods
to mathematically prove that the compiled Wasm code can
only interact with its host environment via an explicitly pro-
vided API, hence ruling out problems where the compiled
code, say, reads/writes to prohibited host-memory locations,
or jumps to prohibited host code. We accomplish this by
writing a machine-checked formal proof about vWasm’s im-
plementation. In particular, the executable code produced
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by the implementation is formally guaranteed to stay within
the confines of the sandbox provided to it. Note that this
differs from traditional compiler correctness (in the vein of
CompCert [24]), which guarantees that the output program
matches the input. Indeed, the two properties are orthogonal,
and thus we focus on provable sandboxing. To our knowl-
edge, vWasm is the first formally verified implementation of
a multi-lingual sandboxing compiler, since it can sandbox
any of the many languages with an existing Wasm backend
(Section 2.3). This complements earlier work [21] that ver-
ifiably sandboxed Cminor, one of CompCert’s intermediate
languages, for CompCert’s three backends.

Our second technique (Section 5), implemented as a com-
piler called rWasm, takes a different approach that targets
the special nature of software sandboxing. By careful opti-
mized lifting of Wasm code to Rust, followed by compilation
down to native code, it provides high-performance execu-
tion of Wasm code while guaranteeing safe sandboxing. By
leveraging Rust’s safety guarantees, rWasm provides safety
without requiring any explicit proofs from the developer. Our
benchmarks (Section 6.1) show that rWasm is competitive
with, or on some benchmarks even beats, other Wasm run-
times, including ones optimized for performance, rather than
safety. By leveraging Rust, rWasm provides the first multi-
lingual, multi-platform sandboxing compiler with provably
safety guarantees and competitive performance.

vWasm, implemented in F* [39], currently compiles Wasm
programs into x86-64 assembly code, although the code and
proofs are designed for portability. To prove its high-level the-
orem, we model a subset of x86-64 semantics and prove that
the produced code satisfies the sandboxing statement given
these semantics. rWasm, on the other hand, is implemented
in Rust, and can compile code to any architecture that is sup-
ported as a target by Rust (which covers all the widely-used
architectures). It also supports the ability to conveniently
customize the output program, e.g., to add inline reference
monitors [7]. Both tools are available as open source.!

Both vWasm and rWasm are competitive in perfor-
mance, with the latter providing similar performance as other
performance-optimized Wasm implementations on various
benchmarks. The former is faster than interpreters, but slower
than unsafe compilers. We compare both implementations
on qualitative aspects in Section 6.2, including development/-
maintenance effort and extensibility.

As with most sandboxing tools, we focus only on protecting
the host environment from the sandboxed code. Hence, we do
not make any claims about the impact of buggy code on itself.
We also assume that the environment is not corrupt or overly
permissive in the APIs exposed to sandboxed code. Finally,
protections from denial of service, speculative execution, and
side-channel attacks are orthogonal and out of scope.

As we discuss in Section 7, an alternative to provably
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Figure 1: SFI-based intra-process sandboxing. In practice,
the Host Process might be a video player, and each sandbox
might contain a different codec or extension.

emitting sandboxed code is to validate that code has been
properly sandboxed (cf. NaCl [52], RockSalt [29], and Veri-
Wasm [17]). However, these approaches require a custom
validator for each targeted platform. NaCl and RockSalt also
rely on a custom compiler toolchain for x86/x64 to make the
emitted code easier to validate. Verifying code that was not
so customized, e.g., with VeriWasm, is tricky to do without
rejecting legitimate programs or suffering soundness issues.
For example, VeriWasm missed CVE-2021-32629, a sandbox-
compromising bug in Wasmtime [46] and Lucet [1], due to
improper modeling of signedness in their specification [31].

Of course, a specification failure is problematic both for
verified compilation and for validation. However, verified
compilation allows greater control over the produced code;
e.g., vWasm only needs to model a small, simple fragment
of x64. In contrast, validation typically handles complex
assembly produced by an independent compiler. The two ap-
proaches are complementary though, and ideally both would
be used.

In summary, this paper makes the following contributions.

1. An exploration of two distinct techniques to achieve
provably safe, performant, multi-lingual sandboxing. We
implement these as open-source tools, and evaluate them
on a collection of quantitative and qualitative metrics.

2. vWasm, the first verified sandboxing compiler for Wasm,
achieved via traditional machine-checked proofs.

3. rWasm, the first provably safe sandboxing compiler with
competitive run-time performance. We achieve this us-
ing non-traditional repurposing of existing tools to pro-
vide provable guarantees without writing formal proofs.

2 Wasm as a Narrow Waist for
Software Sandboxing

We review software-fault isolation (Section 2.1) and Wasm
(Section 2.2), before discussing Wasm’s unique suitability for
multi-lingual, cross-platform sandboxing (Section 2.3).

2.1 Background: Software Sandboxing

As discussed in Section 1, safe, lightweight execution of
untrusted code is necessary in many contexts. A popular ap-
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proach is Software Fault Isolation (SFI) [41], which limits
the effects of bugs to the buggy code itself. Without requiring
any special hardware, it confines any bug’s impact within a
user-defined boundary, typically within a module or library.
Multiple such boundaries can be introduced within the same
OS-level process, as shown in Figure 1. Inline checks before
any potentially unsafe memory access enforce this boundary.
The cost of these checks is offset by the performance sav-
ings from cheap transitions between the sandboxed code and
the host process. Common techniques to implement these
checks include restricting offsets through bit masks, explicitly
checking bounds, or using hardware quirks like x64’s zero-
extend on 32-bit arithmetic. Ensuring these checks always
run requires some form of Control Flow Integrity.

2.2 Background: WebAssembly

The Web has seen many technologies for client-side code
execution, but all except JavaScript have fallen by the way-
side. JavaScript’s limitations as a compilation target, however,
motivated the design of Wasm.

Wasm introduces a new virtual architecture built from the
ground up with speed, safety, and portability in mind. Its
virtual architecture provides a platform-agnostic solution to
compilation and code execution on the Web. It is a stack-
based architecture with well-defined semantics and a basic
type system. Its semantics are entirely deterministic, except
for floating-point NaNs. It does not have a garbage collector,
and hence gives the developer (or compiler) more control over
run-time performance. Despite being a virtual architecture, it
is designed to be close to modern hardware, making reasoning
about its execution much simpler. These properties make it a
great compilation target.

In more detail, WebAssembly programs are composed of
separate modules, each of which consists of collections of
code, data, and associated connections to the environment (or
other modules). Code lives in simply-typed functions that can
access the module’s memory and global variables. Memory
is a (potentially growable) sequence of bytes, called linear
memory, whose length is a multiple of 64 KiB. This memory
is disjoint from all other parts of the module. Globals consist
of named scalar values (i.e., no arrays). Functions can be
called either directly, or indirectly by picking an offset in an
indirect call table. Control flow within a function consists
of conditionals, blocks, loops, direct jumps (conditional and
unconditional), and indirect jumps. Wasm guarantees that all
control flow is structured by only allowing jumps to labels of
blocks (or loops) that enclose the jump. Indirect jumps are
performed, similar to indirect calls, by picking an offset in
an indirect branch table. All imports to, and exports from,
the module are made explicit, avoiding implicit access to the
environment.

2.3 Motivation: A Narrow Waist

WebAssembly’s careful design enables sandboxed execution
of high-performance code on the Web. However, this same
design can also benefit non-Web applications, since the Wasm
standard explicitly separates the core Wasm language from
the specific API provided to each Wasm module by the run-
time or other modules. For example, instead of offering a
Web-oriented API, (say) for manipulating the DOM, many
runtimes [1,43-46,48,49] offer the WebAssembly System
Interface (WASI) [42] API to run Wasm beyond the Web. Our
compilers vWasm and rWasm are agnostic to the particular
runtime API picked by the host.

Given its popularity, and the large number of compilers
that support compilation fo Wasm”, from languages including
C, C++, Rust, Java, Go, C#, PHP, Python, TypeScript, Zig,
Kotlin, and more, a single compiler from Wasm is sufficient to
immediately support sandboxed code execution for all those
languages. This makes Wasm an attractive narrow waist to
provide high-performance lightweight sandboxing.

Such a compiler from Wasm to (say) x86-64 is simpler in
design than x64-to-x64 SFI rewriting or sandboxing. Wasm’s
stack-based architecture, type system, and well defined seman-
tics all make Wasm easier to reason about than x64. It also has
a drastically smaller architecture, with under 200 instructions,
compared to the ~1500 — 6000 instructions in x64 [13, 15].
Additionally, it has no unexpected, or hardware/platform-
specific behavior. While it does have minor non-determinism,
in the form of computations involving floating-point NaNss,
this is the only source of non-determinism, and thus its behav-
ior is much easier to reason about.

As a narrow waist, then, Wasm seems to immediately pro-
vide high-performance lightweight sandboxing across all plat-
forms, but note that the actual implementation of the compiler
from Wasm is a critical part of the TCB for that guarantee. In
particular, any bug in the compiler could threaten the sand-
boxing protections, and indeed such bugs have been found in
existing runtimes, and would lead to arbitrary code execution
by an adversary. For example, using carefully crafted Wasm
modules, an attacker could achieve a memory-out-of-bounds
read in Safari/WebKit using a logic bug (CVE-2018-4222),
memory corruption in Chrome/V8 using an integer overflow
bug (CVE-2018-6092), arbitrary memory read in Chrome/V8
using a parsing bug (CVE-2017-5088), arbitrary code execu-
tion in Safari/WebKit using an integer overflow bug (CVE-
2021-30734); a sandbox escape in both Lucet and Wasmtime
using an optimization bug (CVE-2021-32629); and many
others. Recall that writing a high-performance compiler is
already hard, and compilers from Wasm need to protect even
against adversarial inputs, which makes it even harder. Indeed,
there appears to be a tension between functionality (especially
performance) and safety. We explore this in the next section.

2 Any library or POSIX-compliant program (except for multi-threading
and longjmp, which Wasm currently lacks) can be compiled to Wasm; our
compilers support all current Wasm constructs.
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Figure 2: The Design Space for a Wasm-based Sandbox

3 The Design Space for Implementing a
Wasm-based Sandbox

We consider the design space for a Wasm-based sandbox
along two major axes— Security and Performance. Figure 2
shows an informal representation of the space, and the loca-
tion of types of Wasm runtimes within it.

Security and Threat Model To describe the security of
various Wasm-based sandboxes, we must first understand the
threat model. For the purposes of software sandboxing, this
is largely standard, but we describe it in particular for sand-
boxing Wasm modules. At a high level, the attacker has some
control over execution of the sandboxed module (through
buggy, or even malicious, attacker-provided module code)
and wishes to “break out” into the environment outside the
sandbox to obtain more control. Under our threat model, the
attacker may start executing code from any of the explicitly
exposed “starting points” within the Wasm module, can ma-
nipulate Wasm’s linear memory at arbitrary points between
Wasm executions, and can pass arbitrary arguments to Wasm
functions when calling them. The attacker, however, does not
arbitrarily control the environment, since if they already have
that level of control, then they need not “break out” of the
sandbox. Additionally, side-channel attacks, speculative exe-
cution attacks, hardware attacks (such as Row Hammer [20]
or power glitching [19]), denial of service, or excessive re-
source usage are out of scope. Confused deputy attacks [12],
where the more privileged host process is tricked into misus-
ing its authority due to a badly designed API, are also out of
scope but addressed in other orthogonal work [30].

Performance Obviously, for critical systems, security is
vital. However, for deployment in production, high perfor-
mance is also important. Different workloads may have differ-
ent performance requirements. Short workloads that run only
once have different requirements from long running ones, or
ones that require multiple runs. To simplify the discussion,
within Figure 2, we focus on workloads that are either long
running or require many runs. Our rough categorization here
is supported by quantitative measurements in Section 6.

Design Space The top-left corner of Figure 2 consists of
high-safety but low-performance implementations. Inter-
preters occupy this space, since (barring a language bug in
the implementation of the interpreter), an attacker cannot es-
cape the interpreter. However, this safety comes at the cost of
run-time performance. Verified interpreters, such as Watt’s
verified Wasm interpreter [47], may provide better/additional
safety properties relative to unverified interpreters.

The bottom-right corner consists of high-performance but
low-safety implementations. Occupied by compilers, this
space is used in many production scenarios, such as browsers.
Since compilers are complex software, they are prone to bugs
and thus can compromise safety (see Section 2.3). Amongst
the two types of compilers, ahead-of-time (AOT) and just-
in-time (JIT), the AOT compilers typically produce faster
execution at run time since they can afford to spend more time
on optimization. In contrast, JIT compilers tend to optimize
the total execution time, including compilation time, and thus
spend less time optimizing.

In the middle, we have traditional formally verified compil-
ers [22,24]. For most languages, traditional compiler correct-
ness is orthogonal to sandboxing safety. The former reasons
about the semantic equivalence of safe input code and its out-
put and makes no guarantees about its compilation results
when given an unsafe input program, e.g., a C program with a
buffer overflow. Sandboxing safety reasons about the output
code independent of the input program (or its safety).

However, Wasm is special since its semantics are (almost)
deterministic. This means that if one formally proves this
determinism, and composes that with traditional compiler
correctness, then sandboxing safety could be proven from
it. Thus, a traditional formally verified compiler, while safer
than unverified compilers, is still imperfectly safe.

Finally, we have the upper-right quadrant of Figure 2,
which shows our goal, where neither safety nor performance
are compromised. We achieve this goal using the traditional
means of formal verification for vWasm, while using a non-
traditional repurposing of existing tools for rWasm. We defer
the discussion of our techniques to Sections 4, 5 and 6.

In Section 6, we consider additional axes, including compi-
lation time, development complexity, portability, and extensi-
bility.

4 vWasm: A Formally Verified
Sandboxing Compiler

Inspired by previous successes in constructing formally veri-
fied compilers for C [24] and ML [22], we construct vWasm
to compile Wasm to provably sandboxed code. Previous
work primarily focused on proving that correct input code is
faithfully compiled to correct output code, whereas vWasm fo-
cuses on proving that all input code (regardless of correctness
or even malice) is compiled to safely sandboxed code.
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Concretely, we implement vWasm in the F* proof assistant
(Section 4.1), following a relatively standard compilation
pipeline (Section 4.2). We formally state and prove vWasm’s
guarantee that all output code will be properly sandboxed
(Section 4.3), relative to a mechanized semantics of a subset
of the x64 ISA. Finally, we summarize some lessons learned
from vWasm’s development (Section 4.4).

4.1 Background: Formal Verification and F*

Formal verification of software consists of writing a formal
statement of the property we wish to prove about the software,
and then writing a formal proof that shows this statement is
true. The proof is machine checked and thus provides the
highest degree of assurance in its correctness. In contrast
to techniques such as software testing, fuzzing, and manual
reviews, formal verification is able to reason about all execu-
tion paths, provided any input. This means that behaviors like
buffer overflows, use-after-frees, etc. are completely ruled
out. We describe vWasm’s top-level property, as well as our
proof strategy, in Section 4.3.

Our verification tool, F* [39], is a general-purpose func-
tional programming language with effects, built for formal
verification. Syntactically, it is closest to languages from the
ML family (such as OCaml, F#, or SML). It has the full ex-
pressive power of dependent types, and has proof automation
backed by Z3 [4], an SMT solver. Code written in F* can
be extracted to multiple languages, and for vWasm, we use
F*’s OCaml extraction. Proofs are written within vWasm
as a combination of pre-/post-conditions, extrinsic lemmas,
and intrinsic dependently-typed values. Also, to aid in proof
management, we regularly use F*’s layered effects [34].

4.2 Compilation Strategy

vWasm is implemented as a compiler from Wasm to x86-64
(abbreviated as x64 henceforth), but it is designed to keep
most of its code and proofs generic with respect to the target
architecture. Here, we describe the process of compiling to
x64, but the techniques generalize in a straightforward way to
other architectures such as ARM. In compiling from Wasm to
x64, there are three important conceptual stages: (i) a frontend
which compiles Wasm to an architecture-parametric IR, (ii) a
sandboxing pass which acts upon the architecture-parametric
IR, and (iii) a printer which outputs the x64 assembly code.
The frontend for the compiler is both untrusted and unveri-
fied. This means that one neither needs to trust its correctness
for the overall theorem statement to be true, nor does one
need to write proofs about it. Note that this is in stark contrast
with traditional compiler verification, where any stage of the
compilation must either be trusted or verified. This means that
we are free to use any compiler technology for the compiler’s
frontend, including arbitrarily complicated optimizations, as
long as it outputs code within our architecture-parametric

IR. This drastically reduces the development cost of such a
compiler, compared to a traditional verified compiler, and it
can also allow for fast code by allowing full usage of com-
piler optimization research. Since compiler optimization is
orthogonal to our primary goal, for vWasm’s frontend, we
implemented only a simple register allocator and a basic peep-
hole optimizer. We leave such optimizations for future work.

On the other end of the compilation pipeline is the x64
assembly printer, which is trusted to be correct. We discuss
vWasm’s overall TCB in Section 4.3, but we note that the
printer is largely a straightforward one-to-one translation of
our IR to strings, making it fairly simple to audit.

Finally, the sandboxing pass, which lies between the above
two, is untrusted but verified to be correct. We define this
formally in the next subsection, but informally, this means
that the sandboxing code has been proven (and the proof
mechanically checked) to produce safely sandboxed code,
given any input. Within the sandboxing pass, all accesses
(reads or writes) into the Wasm module’s linear memory,
indirect function call table, imports, globals, etc. are proven
(sometimes after suitable transformations) to be safe.

In particular, to perform safe sandboxing, we bound ac-
cesses primarily via a bitwise-AND operation whenever pos-
sible, falling back to a check-and-branch-based bound oth-
erwise. Admittedly, this runs counter to the WebAssembly
specification, which dictates that any access outside linear
memory must immediately trap. However, we allow for this
small difference in semantics to support simplified sandbox-
ing. For valid program executions, this does not impact their
execution trace. However, upon an invalid out-of-bounds
access, instead of trapping and exiting, the module may con-
tinue execution while corrupting its own memory space.’ This
transforms a security bug into a correctness (but sandbox-safe)
bug. In some scenarios, this may be undesirable, so vWasm
could be modified to instantly terminate.

To prove sandbox safety, we additionally prove that the
sandboxing pass also guarantees (a restricted form of) Control-
Flow Integrity (CFI) that ensures that any checks performed
for sandboxing cannot be bypassed, and thus must be obeyed.
Due to the convenient explicit split between different types
of accesses in Wasm (e.g., linear memory is disjoint from the
indirect call table and globals), sandbox checks can be safely
elided in most cases except for direct linear memory accesses.
This elision too is proven safe against the x64 machine model.

The sandbox used in vWasm has a fixed compile-time size,
but since many Wasm programs need the ability to grow
memory, we emulate the size accessible to the program, while
using the sandbox size as a constant upper bound”. The loca-

3Despite allowing such corruption, vWasm does not depend on external
assumptions like W™X to prevent code-modification attacks. Explicit checks
force writes to stay within explicitly-provided data-only regions. Our proofs
demonstrate these checks suffice and cannot be bypassed.

4Wasm uses 32-bit addressing; thus Wasm programs cannot refer to
memory beyond 4GiB. vWasm supports setting the limit to this maximum,
so any limitations due to memory-size bounds are due to Wasm itself. Wasm’s
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type operandi =
| OConst : n:int — operandi

| OReg : r:regi — size:rsize — operandi
| OMemRel : offset:maddr — operandi
(-
type ocmp =
| OEq32 : ol:operandi — o2:operandi — ocmp
(-
type ins_t =
| Add32 : dst:operandi — o2:operandi — ins_t

type precode =
| Ins : i:ins_t — next:loc — precode
| Cmp : cond:ocmp — t:loc — f:loc — precode

| Call tgt:target_t — onreturn:loc — precode
..

type code = list precode

type ok _t = | AllOk | MemFailure | AstFailure | ..

type state = {
ok:ok_t; ip:loc; reg_i:int”—=nat64;
mem: heap; stack:stack; ..

}

let eval_step (c:code) (s:state): state = ..

Figure 3: Sample of our machine model for x64 in F*

val sandbox_compile
(a:aux) (c:code) (s:erased state): Err code

(requires (
(s.ok = AllIOk) A
(reasonable_size a.sb_size s.mem) A
(s.ip ‘in_code * c) A ..))

(ensures (fun ¢’ —
forall n. (eval_steps n ¢’ s).ok = AllOk))

Figure 4: Simplified theorem statement in F* for provably
safe sandboxing in vWasm.

tion of the sandbox in memory itself is not fixed at compile
time, but instead is chosen at run time, allowing for extra
mitigations, such as Address Space Layout Randomization.

4.3 Provably Safe Sandboxing

Reasoning about sandboxing code involves first defining
a machine model, and then defining what sandbox safety is
within this model. Our machine model covers the subset of
x64 targeted by the compiler. A simplified version of this
model, written in F*, is in Figure 3. The complete model can
be found in our open-sourced code. Note that these semantics
for x64 are defined as small-step semantics, allowing for rea-
soning about even potentially infinitely running code. Within
the definition of the x64 state, the ok field is crucial for

real-world usage suggests this is not very limiting in practice.

defining safe sandboxing. This field is set to the value 2110k
if and only if, until that point in execution, nothing invalid has
occurred. Crucially, this also means that no accesses outside
the memory allocated to the module have occurred.

Sandboxing is safe if and only if, informally, starting
from any initial A110k state, executing the sandboxed code
for any number of steps leads to an A110k state. Figure 4
shows the overall statement of this theorem for the sand-
boxing pass, more formally written in F*. This statement,
written as pre- and post-conditions for the sandboxing pass
sandbox_compile, shows that any code output by the sand-
boxer is formally guaranteed via the machine-checked proof
to be safe. The pass takes two arguments a (auxiliary data)
and c (the input program), and a computationally-irrelevant
argument s (the initial state of the program, which is used
for reasoning in our proofs, but that is erased when running
the compiler), and returns output code ¢’ under the custom
effect Err (which allows the compiler to quit early upon er-
ror, for example if it finds a call to a non-existent function).
The statement guarantees that as long as the pre-conditions in
the requires clause are satisfied, the post-condition in the
ensures clause provably holds on the produced output code.
The conditions say that the initial state must be safe, have a
reasonable sandbox size, and start from a valid location in the
code; if these conditions are met, the output code ¢’ will be
safe when executed for any number of steps n.

The safety of the code means that it cannot access memory
outside the allowed boundary. In particular, this means that
any invalid (or even malicious) code provided to the sandboxer
is made safe, and thus issues such as buffer overflows can
only corrupt the module’s internal state and nothing outside it.
This property is distinct from traditional compiler correctness,
which is predicated upon the input code being safe.

To better understand this guarantee, we must understand the
Trusted Computing Base (TCB) under which it holds, which
then explains potential limitations. Since this proof is written
in F*, our TCB includes all that comes with it, specifically,
F*, Z3 (its SMT backend), and OCaml (which is what we
extract the F* code to, in order to execute). Additionally,
our TCB includes the x64 machine model, the full theorem
statement from Figure 4, and the trusted x64 assembly printer,
as well as the assembler that converts the printed assembly
into machine code. Note that all of these portions of the
TCB would be required even for the implementation of a
traditional verified compiler, but crucially, we do not have the
semantics of the input language in our TCB, while traditional
compiler correctness would necessarily need it in order to
state its semantic equivalence (or simulation) theorem.

Our proof strategy consists of multiple parts. First, we
use small-step semantics, which allow for more fine-grained
reasoning about code execution. Next, we combine some
instructions into groups of instructions. A group of instruc-
tions can be any positive number of instructions executed in a
straight-line fashion. We then show a CFI property that this
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grouping cannot be escaped from; i.e., a group can only be
entered at its start, and only exited at its end, thereby behav-
ing similar to a (subset of a) basic block. For normal control
flow (such as straight-line code, or for conditional/uncondi-
tional direct jumps) this is straightforward, but more effort
is required for indirect control flow (indirect function calls,
indirect jumps, lookup/jump tables, and function returns).
Next, we show that each group maintains the A110k invariant;
i.e., no invalid memory accesses or any other transition to an
invalid state has occurred yet. By ensuring that all potentially
unsafe accesses are correctly checked within a group, this
invariant follows as a result. Finally, we prove that this invari-
ant suffices to show that executing any number of steps in the
program maintains A110k.

4.4 Useful Insights

In the process of implementing and verifying vWasm, we
uncovered some useful insights, which are likely to generalize
to any formally verified sandboxing compiler. The first of
these is that proving sandboxing is far more convenient with
small-step semantics than it is to do it with big-step semantics
along with a full execution trace. We initially started with
the latter, but found that the proofs were convoluted and were
simplified significantly by switching to the former. This is
because small-step semantics allowed us to more naturally
state and work with the invariant along groups of instructions.
At its core, each group of instructions behaved like a single
“medium step” formed from a finite collection of small steps,
and this property is more naturally expressed as combining
small steps on an unchanged program, rather than as a big
step on the restricted program consisting of only the group.
Next, we found, to our surprise, that an unstructured IR was
more convenient to work with to prove sandboxing. Wasm
is carefully designed as a structured virtual architecture, not
allowing for arbitrary gotos, and such structure generally sim-
plifies proofs. However, Wasm introduces multiple distinct
control-flow constructs consisting of loops, blocks, condition-
als, branches, conditional branches, indirect branches, and
direct/indirect calls. Each of these contribute non-trivial com-
plexity to the proof, and hence we found that making the IR
unstructured quite early in the compiler simplifies the overall
implementation and associated proofs. In particular, vWasm
quickly moves to an IR based on an unstructured Control Flow
Graph (CFG) and maintains this right down to emitting x64
assembly at the printer. This means that all the control flow
constructs are unified and do not require special handling.
Another useful property we noticed is that most of the
proofs for the sandboxing are architecture independent. While
we have implemented our compiler to only emit x64, very
few proofs depend on x64-specific behavior. Instead, most
of them rely more abstractly upon whether an instruction
may access a certain region of memory or not. Thus, we
believe that the compiler and its proofs are almost architecture

independent. Specifically, with some more proof engineering,
location modeling could be made more abstract, similar to
that done by Bosamiya et al. [2], at which point the proofs
would be practically architecture independent. We leave this
for future work.

Finally, to implement a convenient-to-reason-about CFG-
based semantics, a list of instructions with jumps indexing
into it is useful. However, this makes for a very slow compiler,
since updates to a functional list are expensive in languages
like OCaml that use immutable linked lists. In order to bal-
ance proof complexity and implementation performance, we
implemented a new functional data structure which we call an
Append Optimized List (AOL). An AOL contains all the oper-
ations that one might require from a functional list, and each
of these operations are proven to correspond to the equiv-
alent operation on the simulated functional list. However,
these operations are optimized for performance by imple-
menting AOL as a tree that allows for delaying operations.
For example, appending two functional lists is a linear time
operation (in the length of the first list), but appending two
AOLs is a constant-time operation, since it only requires the
creation of a single node that points to both. Other operations
which are faster on AOLs than on functional lists include:
length, zip, unzip, repeat, split, get_at_index, and
update_at_index. Since these operations are proven to
match the functional specification, proofs written with lists in
mind work directly with no changes required; however, the
overall performance of the compiler is improved by an order
of magnitude (Section 6.1.2).

5 rWasm: High-Performance
Informally-Proven-Safe Sandboxing

rWasm leverages the insight that Rust (Section 5.1) can pro-
vide both safety (Section 5.3) and good performance, if we
employ a suitable compilation strategy (Section 5.2) that plays
to the strengths of Rust’s optimization strategies (Section 5.4).
rWasm’s approach also makes it surprisingly simple to instru-
ment the produced code with reference monitors (Section 5.5).

5.1 Background: Rust

Rust [26,40] is a systems programming language with a
strong focus on performance, reliability, and safety. Devel-
oped originally for use in Firefox, it has since gained use in the
industry for security- and safety-critical software components.
Amongst other goals, Rust aims to eliminate memory safety
errors entirely, and it does so through a memory-ownership
discipline. This provides safety without garbage collection,
which practically all popular memory-safe languages previ-
ously required. Rust allows a developer to write high-level
code, with low-level control when needed. However, as a sys-
tems programming language, there might be certain scenarios
(e.g., writing an OS) where one might need more control than
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directly allowed by the language, like directly accessing an
arbitrary location in memory. Rust provides an explicit escape
hatch for this via the keyword unsafe.

However, Rust guarantees that correctly typed code without
unsafe (ensured by the declaration #! [forbid (unsafe)])
will always be memory safe. The Rust community takes this
guarantee extremely seriously, and considers any unsoundness
in its type system to be immediately security critical (even if
it may not actually be exploitable), assigns a CVE to it, and
then works to fix the unsoundness [51]. Given the prevalence
of Rust in industry, and how seriously the Rust team takes un-
soundness bugs, safe Rust is thus battle-tested to be memory
safe, even if not (yet) proven to be so. Early efforts towards
formalization of Rust and its security guarantees have already
begun, such as with the RustBelt [ 18] project and Oxide [50].

5.2 Compilation Strategy

rWasm compiles WebAssembly code to safe Rust. It consists
of (i) a frontend that parses the Wasm binary into an internal
intermediate representation, (ii) a stack and dead code ana-
lyzer, and (iii) a backend printer, that prints the intermediate
representation into Rust code. This Rust code is then fed into
the Rust compiler (rustc) to produce machine code.

We implement all stages of rtWasm in safe Rust, and no
stage of the compiler needs to be verified or trusted. This
means we do not need to depend upon the safety or correctness
of any part of rWasm for the safety of the produced executable
machine code. Instead, the safety of the produced code simply
comes from the lack of any unsafe in the generated Rust
code. We discuss this further in Section 5.3. The compiler
itself is thus free to generate code however it likes, but not all
approaches produce efficient code. We discuss techniques to
produce efficient code, amongst other details in Section 5.4.

5.3 Provably Safe Sandboxing

Our key insight for rWasm is that emulation of low-level
code can be done by lifting it to a high-level language, which
provides the guarantees of the high-level language to the low-
level code under emulation. The high-level property that
we want for provably safe sandboxing is essentially memory
safety, meaning that the sandboxed code cannot access any
memory that is not explicitly allocated to it by the runtime
in the host process. Thus, compiling Wasm to any type-safe
language (e.g., OCaml or Haskell) would provide provably-
safe sandboxing through guaranteed object integrity, lack of
type confusion, lack of out-of-bound memory accesses, etc.
without trusting the generated type-safe code. Contrast this
with wasm2c [43], which requires trusting the compiler, or its
generated C code, since C does not guarantee memory safety.

The usual side effect of such lifting is that it leads to either
unpredictable or bad performance. We recognize, however,

that Rust presents us with a new opportunity to provide high-
level guarantees without necessarily suffering this side effect.
We have to be careful to actually eliminate it, but due to Rust’s
focus on performance, and lack of a garbage collector, it is
feasible to obtain good and predictable performance by lifting
code to Rust.

Since safe Rust’s type-safety guarantees memory safety,
we can thus informally prove memory safety by ensur-
ing that there is no usage of unsafe in the produced
code. We can achieve this simply through the use of a
#! [forbid (unsafe) ] declaration. The TCB in this scenario
then is only the Rust compiler. More explicitly, neither rWasm
nor its generated code needs to be trusted for memory safety.
While the Rust compiler itself is large, the Rust team takes
type- and memory-safety extremely seriously, and thus this
provides (informally) provably safe sandboxing.

Astute readers will note that sandbox safety in any type-
safe language also depends on the language’s runtime li-
braries. Fortunately, rWasm imports nothing, uses only
allocation-related features (for Vec), and even eliminates de-
pendency on the Rust standard library via the #! [no_std]
directive. As with any sandbox, care is required when ex-
posing an API to sandboxed code [30] (e.g., to avoid APIs
enabling sandbox bypasses directly or via confused-deputies),
but such concerns are orthogonal to sandbox construction.

5.4 Useful Insights

Here, we describe an optimization-friendly collection of
techniques to preserve WebAssembly semantics in Rust. Fig-
ure 5 illustrates the net effect of these techniques when com-
piling an example Wasm function that takes a 32-bit integer
argument and computes the sum of positive integers up to
that number. Note that the simple Wasm code becomes seem-
ingly complex Rust code. However, the Rust code is written
to be optimization friendly, and thus the Rust compiler is
able to optimize it nearly all away, even recognizing that this
convoluted looking code can be optimized via the mathemat-
ical closed form Y} (i = w We briefly summarize key
design decisions below.

The first challenge for any Wasm compiler is mapping
Wasm’s stack-based virtual machine to finite-register hard-
ware. Rather than write our own register allocator for rWasm,
our stack analysis pass emulates the stack-based machine via
an infinite-register machine, where Rust variables are used to
represent the “infinite” registers (notice in Figure 5a that the
Wasm code only uses two stack slots, which correspond to
Rust variables s1ot0 and slotl in Figure 5b). We represent
Wasm’s non-stack locals and function arguments as scalar-
typed Rust variables (see local0 and locall in Figure 5b).
This allows us to piggy-back on rustc’s excellent register
allocation routines to obtain good performance.

To further simplify rWasm’s implementation, we observe
that Rust is adept at eliminating the repeated wrapping and
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fn func_0 (¢émut self, a:
let mut locall = a;
let mut slot0: TV;

132) — Option<i32> {

let mut locall = 0i32;
let mut slotl: TV;

’1p10: loop {
(func (param i32) (result i32) slot0 = tv(local0); func_O:
(local i32) slotl = tv(11i32); test esi, esi
loop (result i32) :: |[] slot0 = tv((slot0.vi32()?2) < jle A
local . get 0 1o [a] (slotl.vi32()?)); .
i32.const 1 0 la, 1] "1bl1: loop { lea eax, [rsf - 1]
i32.1t_s i [a<1?] if slot0.vi32()? != 0 lea ecx, [rsi — 2]
if (result i32) :: [] slot0 = tv(locall); imul rcx, rax
local . get 1 ;3 [s], return } else { mov edx, eax
else slot0 = tv(local0); imul edx, eax
local.get O [a] slotl = tv(locall); shr rex
local . get 1 [a, s] slot0 = tv(slot0.vi32()? + ; .
i32.add o [ats] slotl.vi32()?); add edx, esi
local .set 1 :: []. s+ a + s locall = slot0.vi32()?; sub edx, ecx
local.get O [a] slot0 = tv(local0); mov eax, 1
i32.const 1 i la, 1] slotl = tv(1i32); ret
i32.sub io la—1] slot0 = tv(slot0.vi32()? - A:
local.set 0 0[], a<+ a — slotl.vi32()?); U
br 1 ;; continue local0 = slot0.vi32()?; xor edx, edx
end continue ’1b10; mov eax, 1
end) } break; ret
} break; .
(a) WebAssembly code. The status of the stack (c) Compiled to x64

after each instruction’s execution is shown as
comments, where the stack grows towards the }
right.

}
Some (slot0.vi32()?)

(b) Simplified Rust Output from rWasm

Figure 5: Compilation via rtWasm of a program to find the sum of the first a positive integers.

unwrapping of tagged unions (i.e., sum types) without any
performance penalty. Hence, we implement a custom tagged
enum in Rust that can hold any of the native Wasm types. As
shown in Figure 5b, tv wraps and tags values of any scalar
type into the TV tagged enum; the original values can then be
extracted back to a scalar type, say 132, while checking the
tag using vi32 () 2. Using a tagged enum means that all Rust
variables have the same type, so rWasm’s stack analysis only
needs to track the overall stack size, not the types of the values
on the stack at any given moment during program execution.
For example, given the Wasm code, i32.const 5, drop,
£64.const 3.14, rWasm can reuse the same Rust variable,
even though the stack slot has different types during execution.
Furthermore, this approach makes the polymorphic Wasm
instructions select (which picks one of the elements of the
stack based upon the top element) and drop (which drops the
top element of the stack) trivial to implement.

To handle WebAssembly’s wide range of control flow con-
structs, we need to compile them down to those supported
by Rust. While Rust does not support unstructured gotos, it
does have the ability to break/continue to any outer loop
(the labels " 1b10 and ' 1b11 in Figure 5b correspond to the
respective block structure in Figure 5a). We use this, along
with conditionals and match expressions to implement and
emulate all the intra-function control flow constructs in Wasm.
Direct function calls translate trivially to direct calls in Rust,
but indirect function calls have multiple design choices, such
as inlining a dispatch routine, or having multiple type-disjoint
dispatch routines, or calling out to a single common dispatch
routine (requiring serialization of arguments on the stack and

a type check and deserialization at the dispatch routine). In
practice, we found the single dispatch routine to work best,
for both compile-time and run-time performance.

For WebAssembly’s linear memory, there are multiple de-
sign choices both for how to implement it, as well as how to
access it. The first decision is whether to implement it as an
overcommitted allocation with memory-size emulation (sim-
ilar to that in vWasm) or to simply utilize a heap-allocated
resizable array of bytes (i.e., Vec<u8>). The second decision
is a choice between check-and-panic vs wrapping memory
access. Each of these choices involves a trade-off between
compile-time and run-time performance. Based on our mi-
crobenchmarks (Section 6.1), we chose check-and-panic with
a resizable Vec<u8> as our default. While this introduces
explicit checks at each access, rustc optimizes many of them
by eliminating repeated or unnecessary checks statically.

Wasm’s mutable global variables might initially seem diffi-
cult to implement in Rust, since Rust requires unsafe to read
or write mutable globals (or static mut in Rust parlance).
However, this has a simple fix familiar to most functional
programmers: the state monad. In fact, rWasm even handles
Wasm’s linear memory this way. In particular, we represent
the emulated Wasm module as a Rust struct whose associ-
ated methods emulate the Wasm module’s functions. This
means that the module’s state is passed into each function
(via ¢mut self), and the globals and linear memory can be
stored safely within the Rust struct.

Finally, rWasm models integer overflow semantics to ex-
plicitly match WebAssembly semantics. By default in Rust,
integer overflows cause panics in debug builds, and wrap in
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release builds. Since Wasm’s integer overflow semantics are
to always wrap, we explicitly perform wrapping arithmetic
in Rust. This ensures that we always match WebAssembly
semantics, even in debug builds. We omit this in Figure 5b
due to space constraints.

5.5 Extensions

Implementing a low-level (virtual) architecture emulator via
lifting to a high-level language, as we do in rWasm, comes
with some extra benefits. One such benefit is that it is easy to
build code tracers and Inline Reference Monitors (IRMs) in
the spirit of SASI [7] (which describes how to instrument Java
and x86 byte code to enforce security policies expressed as
security automata). Another benefit is that the Rust compiler
is able to jointly optimize the IRM and Wasm module’s code,
since both are part of the same generated Rust source. In fact,
one could even consider the sandboxing access checks to be
a special case of such IRMs. Within rWasm, we currently
have multiple tracers that can be enabled if the user chooses,
including function-level tracing, instruction-level tracing, and
memory-access tracing, taking 75, 10, and 70 lines of code
respectively to implement. Anecdotally, we found it easy to
debug rWasm and its output during development due to IRMs.
It would not be difficult to extend rWasm with other IRMs,
even with very high precision, such as byte-level granularity
run-time taint analyzers. Such extensions could potentially
allow one to implement various sanitizers, such as Address-
Sanitizer (ASan) [38], without introducing much overhead,
or indeed even needing source (which compiling with ASan
requires). We leave such extensions for future work.

6 Evaluation

We evaluate vWasm and rWasm against multiple popular
Wasm runtimes. These include interpreters (wasm3 [44] and
WAMR [49] in interpreter mode), JIT compilers (Wasmer [45]
and wasmtime [46]), and AOT compilers (wasm2c [43],
WAMR [49] in AOT compilation mode, WAVM [48]). We
choose these runtimes for comparison as they are both popu-
lar, as per GitHub stars, and also support the WebAssembly
System Interface (WASI) [42], allowing for direct compar-
isons. We also investigated Lucet [1], which uses Wasm for
sandboxing, although without any guarantees.’ Unfortunately,
despite extensive efforts with multiple versions, we were un-
able to get Lucet to execute any of our 30 benchmarks, and
thus we exclude it from comparison.

We evaluate these Wasm runtimes on both quantitative
(Section 6.1) and qualitative (Section 6.2) metrics. All bench-
marks run on a system with an AMD Ryzen 3700x processor
and 64 GB of memory. We compile benchmarks to WASI-

SIndeed, one of the developers remarked, “We’re just constantly fixing
bugs with it” [28].

compliant Wasm binaries using Clang [3] with the -03 op-
timization level. In addition, for comparison against native
(non-sandboxed) execution, we compile directly to native x64
code also using Clang with -03.

6.1 Quantitative Benchmarks
6.1.1 Execution Time

As discussed in Section 3, run-time performance is critical for
practical adoption in most applications. Hence, we measure
execution time for our compilers and our various baselines
using the PolyBench-C benchmark [33] suite, consisting of
thirty programs, which has been a standard benchmark suite
for Wasm since its inception [11].

Figure 6 summarizes our results, showing the normalized
execution time of the benchmarks on the Wasm runtimes.
Each point in the chart is the ratio of the mean time taken to
execute the benchmark with the particular runtime vs. the
mean time taken to execute by compiling the C code directly
to non-sandboxed x64. We run each benchmark between
10 and 1000 times, based upon the time taken to run the
particular benchmark. The mean of the different normalized
execution time, and the 25% and 75% quartiles are shown for
each runtime. Appendix A shows a detailed breakdown and
further analysis.

The results indicate that, unsurprisingly, compilation
strictly dominates interpretation for run-time performance.
Note that, as seen in the original Wasm paper [11], we too find
some benchmarks execute faster when compiled via Wasm
than when compiled directly to native code.

With respect to our compilers, we see that rWasm is compet-
itive even with the compilers which are optimized for speed,
and not necessarily safety, only slower by 3% to 26% on av-
erage than the first three of the four faster runtimes on the
list (wasm2c, WAMR in AOT compilation mode, and wasm-
time respectively). The fastest, WAVM, is almost twice as
fast as rWasm on average, but on some of the longer run-
ning PolyBench-C benchmarks (such as 2mm, 3mm, and gemm),
rWasm is more than twice as fast than WAVM, and thus we
see that relative performance can vary drastically based upon
workload. vWasm consistently outperforms the interpreters
on all benchmarks (by 30% on benchmarks like reg_detect
and fdtd-apml to 600% on benchmarks like cholesky and
ludcmp). However, while on average it is 2x to 3x faster
than the interpreters, it is slower than the other compilers
by 3.5x to 7.5x. However, Figure 6 also shows the execu-
tion time for vWasm with the sandboxing pass disabled. We
find that the run time is marginally affected (by only 0.2%).
This indicates that almost all of the slowdown, compared to
other compilers, is due to the unverified portion of the com-
piler, which can be improved without needing to write any
new proofs or even impacting existing proofs. In particular,
replacing the simple register allocator and introducing stan-
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Figure 7: Mean compilation time for the PolyBench-C bench-
marks across the Wasm AOT compilers.

dard optimizations (e.g., common subexpression elimination)
should improve the performance of code compiled by vWasm
significantly, without any proof effort.

Microbenchmark: Sandboxing Memory Accesses There
are multiple design choices for how memory accesses are im-
plemented (Section 5.4). We compare these in Figure 8, both
on our regular AMD-based test bench, and on a system with an
Intel 19-9900K with 128GB of RAM. These violin plots show
the time taken to read a single 64-bit integer from memory,
using different methods to confirm the read’s memory safety.
We represent the three approaches, namely No Sandbox (&),
Check-and-Bound (C), and Wrapping with Bitwise AND (B),
as rows/violins in the plot. N is shown only as an unsafe

CPU = AMD Ryzen 3700x CPU = Intel i9-9900k

Memory
I Resizable

No Sandbox l
’ I Fixed

Check-and- l
Bound '
Wrapping w/ l L
Bitwise AND ' l'
1 2 3 1.0 1.2
Time (ns) Time (ns)

Figure 8: Design choices for sandboxing memory accesses.

baseline to compare the safely sandboxing C and B. In each
violin, the top half shows the probability density of time taken
(collected from ~2 x 10° samples for each configuration) to
perform a single read from resizable memory (via Vec<u8>),
while the bottom half shows the same from a fixed-size array.
On both CPUs, for fixed-sized arrays, the difference between
C and B is negligible. However, on resizable memory, we find
that C is three times faster than B on the AMD CPU, while on
the Intel, B is only marginally faster than C. Thus, we find a
significant difference in picking the better approach on mod-
ern Intel and AMD CPUs. More surprisingly, C either almost
meets, or significantly beats the performance B, contrary to
conventional SFI wisdom.

6.1.2 Compilation Time

For some scenarios (e.g., Web apps), compilation time mat-
ters, since it sits on the critical path for an impatient user.
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Table 1: Development Effort. The first two components of
vWasm are its primary TCB.

For other scenarios (e.g., installing dynamic client code at a
CDN), compilation time happens off the critical path.

For completeness, Figure 7 shows the mean compilation
time needed for each of the Wasm compilers. For our com-
pilers, we also show the split between time spent within our
implementation, and time spent in the tool that runs after.

For vWasm, approximately 17% of the 16 seconds is spent
within the compiler, and the rest is spent in the assembler.
For rWasm, 1.5% of the 137 seconds is spent within our com-
piler, and the rest is spent within the Rust compiler, which
is known for slow performance. We note however, that any
improvements in the rustc’s compilation time will automati-
cally improve our overall compilation time without requiring
any changes to rWasm.

Faster Compilation with Append Optimized Lists As
discussed in Section 4.4, we introduce an efficient implemen-
tation for functional lists with operations proven functionally
equivalent to standard functional lists. When measured on
the compilation times for PolyBench-C, they reduce compile
times from 25+ seconds to 2.5s, which is an order of mag-
nitude improvement. The impact on verification time and
effort (apart from proving the AOL functionally correct) is
negligible, since AOLs provably meet the specification for
standard functional lists, meaning that they behave as a “free”
drop-in replacement.

6.1.3 Development Effort

Next, we quantify the development effort needed to imple-
ment both vWasm and rWasm. The former took approxi-
mately two person-years to develop, including both code and
proofs, while the latter took one person-month. This stark

vWasm Component Lines of Code Verif. Time (s) Property vWasm rWasm
x64 Semantics 2068 114 Safety Guarantee Theoretically Provable w/
Printer 1458 45 stronger non-standard TCB
Parser 558 19 Initial Impl. Less efficient More efficient
Frontend 2747 57 Maintenance Less efficient More efficient
Register Allocator 1822 87 Static Properties More extensible Less extensible
Optimizer 185 8 Run-Time IRMs Less extensible More extensible
Sandboxing 3607 450
AOL 737 9 Table 2: Summary of the Qualitative Comparisons
Layered Effects 443 8
Misc 1160 22
contrast is a testament to the daunting amount of work formal
rWasm Component Lines of Code verification requires, even with modern, automated tools like
AST +IR 384 F*. It also illustrates the significant benefit of rWasm’s care-
Parser ; ' 888 fully leveraging Rust’s investment in safety. We describe the
Stack Analysis + Printer 2157 development effort qualitatively in Section 6.2.
IRMs 155 o . .
Misc 109 As another quantitative measure, we include lines of code

for both tools in Table 1, split by high-level components,
along with total time taken for F* to verify the components
of vWasm. We note however, that this only shows overall
time taken to verify; it is not indicative of the interactive
verification cycle, which is what comprises the majority of
vWasm’s development time. To keep the interactive proof
engineering cycle tolerable, most proofs in our code base take
under ten seconds to verify, and even the most time consuming
proofs are checked in under two minutes.

6.2 Qualitative Evaluation

Here, we qualitatively compare vWasm and rWasm against
one another, as two important points in the design space
(Section 3). We summarize the comparison in Table 2.

Safety The level of assurance provided by both vWasm
and rWasm is extremely high, since both provide provable
safety. However, only the former is formally verified and
reasons directly about the generated assembly code. Thus,
one might argue that it is theoretically safer. From a more
practical view, we need to consider their respective TCBs to
understand safety. The TCB for vWasm is standard in many
verification papers, in that it includes the verification tool (and
its dependencies) as well as the model we are verifying against
(here, the x64 machine model). For rWasm, the TCB is non-
standard since it includes trusting the compiler of a language
that is only a decade old, but is usually not part of verification.
However, Rust is committed to memory safety, and is trusted
for many security-critical applications in the industry, and
thus may be considered safe enough. The decision for which
to pick, purely based upon safety, thus relies on which TCB
one considers more trustworthy, since the two are practically
disjoint, and thus not directly comparable.

As a sanity check, we also confirm that exploit attempts
are caught. Specifically, we implement an end-to-end im-
age conversion scenario using netpbm 10.26 (vulnerable to
CVE-2008-0554) and libjpeg-turbo 2.1.1. We compile them
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to separate Wasm modules, and use them to convert GIFs to
JPEGsS via a trusted driver program that hosts them as sepa-
rately sandboxed libraries in the same process. On an example
input, the rWasm-compiled and vWasm-compiled versions
show a mean slowdown of 1.301x and 3.825x across 100
executions respectively, compared to the equivalent native
program without Wasm-based compilation and sandboxing.
We also test the proof-of-concept for CVE-2008-0554 on
all three versions. This causes the native version to a crash
with attacker-controlled state (potentially leading to arbitrary
code execution). In contrast, unsurprisingly, both vWasm-
and rWasm-compiled versions are able to successfully detect
the buffer overflow and terminate the module’s execution,
returning back safely into the driver program.

Development Effort: Initial Implementation As noted in
Section 6.1, vWasm took much longer to implement than
rWasm. The reasons for this are many fold: (i) developing
verified software continues to be significantly more difficult
than unverified software; (ii) a full compiler down to assem-
bly is more complicated than one to a high-level language,
due to low-level architectural details; (iii) a compiler to a
high-level language supports conveniently introducing tracers
(Section 5.5), aiding in the debug cycle.

While our focus is on safety, we also took steps to ensure
the correctness of our tools. Indeed, to aid in debugging
vWasm during development, we implemented a semantics
fuzzer, included in our open source release, which randomly
generates valid Wasm programs that check their own results
during execution, in order to help identify potentially flawed
semantics. The core idea of this fuzzer is to generate code
of the form “if 2 + 3 is not 5, exit with failure”. This fuzzer
helped us identify and fix over 15 distinct semantic correctness
issues in vWasm (none of which threatened sandbox safety,
but which could lead to incorrect computation results). No
issues were found by the fuzzer in rWasm. Both vWasm and
rWasm have now been fuzzed extensively, and they both pass
all correctness and consistency checks for the benchmarks.

Overall, we conclude that the initial development effort for
rWasm is significantly better than vWasm.

Development Effort: Maintenance Of course, the devel-
opment effort for any software used in practice cannot be
understood purely from its initial implementation effort but
must also consider ongoing maintenance costs. This can be
quite subtle for both vWasm and rWasm, and also somewhat
speculative. For the former, there is no further maintenance
effort needed if one simply wants to use it on x64 processors,
since the architecture, while likely to change, will largely only
introduce new instructions while keeping the existing instruc-
tions the same. However, improving the performance of code
generated by vWasm would require quite some effort. Since
the stages before the sandboxing pass are unverified, the effort
is comparable to any other maintenance for a compiler. Wasm,

as a standard, is not yet completely finished and new propos-
als will continue to improve upon it, adding new instructions
and potentially new control-flow constructs; these should only
require a small amount of effort to introduce. However, if
Wasm introduces a new way to access memory, this could take
a larger amount of effort to introduce into vWasm, since it
might impact the sandboxing pass. Finally, despite our efforts
to keep our proofs as general as possible, adding support for
a new architecture (such as ARM) would be a straightforward
but non-trivial amount of effort, given the inherent difficulty
of writing formal proofs. In contrast, rWasm automatically
supports all architectures supported by the Rust compiler;
thus, support for new architectures comes to rWasm “for free”
from the broader Rust community. Similarly, performance
of the overall compiler automatically improves as rustc’s
performance is improved, without any changes needed to
rWasm’s code itself. Additionally, new domain-specific op-
timizations, new Wasm instructions, control flow constructs,
ways to access memory, etc. could be added to rtWasm with
little effort, as seen by the ease of the initial implementation.

Static Property Extensibility Provable safety is an impor-
tant property of a verified sandboxing compiler, but one might
wish to prove other properties, such as traditional compiler
correctness. Here, vWasm has the upper hand, as this is fea-
sible to do in F*, and we have even structured the compiler
to make such proofs possible. In contrast, proving correct-
ness for rWasm would be a challenging task, since one would
need to formally model the Rust language, show that rWasm
preserves Wasm semantics in compiling to Rust, and then
implement a semantics-preserving Rust compiler (or prove
rustc as semantics-preserving). The nature of the provable
sandboxing property is what puts it into the sweet spot where
we obtain it “for free” when compiling to Rust, and we be-
lieve there may be other such properties where one can obtain
provable guarantees in a similar fashion. However, all these
properties are a strict subset of what might be proven for an
implementation like vWasm, which is built in a full-blown
verification-oriented language.

Run-Time Extensibility As discussed in Section 5.5,
rWasm supports conveniently adding runtime tracers, or In-
line Reference Monitors (IRMs). It does so by leveraging its
emulation of Wasm in a high-level language (Rust) to suc-
cinctly inspect and modify the program’s state. In contrast,
implementing these for vWasm would require a significant
re-architecture of the compiler, which follows a traditional
compiler pipeline oriented towards progressively lowering
Wasm towards machine code. Thus, run-time behavior of
a Wasm module can be better observed, analyzed, and con-
trolled when compiled via rWasm.
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7 Related Work

Virtualization-based Isolation Hypervisors and VMMs
can provide strong sandboxing, such as with the Hypervisor-
Protected Code Integrity (HVCI) [14] option for drivers on
Windows. However, this is heavyweight and usually requires
hardware support. Lighter weight than this, most operating
systems guarantee strong isolation between processes, and
some even provide OS-level virtualization, used by container
frameworks such as Docker [6] and LXC [25]. This can
still be too expensive due to the overhead of IPC, multiple
privilege-level crossings, cache flushes, etc. Instead, SFI
provides sandboxing that is intra-process, costing little more
than a function call. To use a sandboxed module, a developer
simply links against it, easing deployment.

Language-based Isolation Some programming languages
have VMs that can provide isolation guarantees (e.g., V8
for JavaScript, JVM for Java, and CLR for .NET). However,
these must trust the complex implementation of the language’s
VM, and they restrict usage to their particular language. In
contrast, by using Wasm as a narrow waist (Section 2), we
support sandboxing for nearly all popular languages.

Validator-based SFI Software Fault Isolation (SFI) [41]
is a popular technique for providing language-agnostic,
lightweight, and safe software sandboxing. Traditionally, SFI
solutions have an untrusted component that introduces the
checks, and a trusted validator that confirms that the checks
are sufficient before execution. On the Web, NaCl [52] uses
this approach, and RockSalt [29] even provides a formally
verified validator. They rely, however, on a custom com-
piler toolchain to make the emitted code easier to validate.
In contrast, VeriWasm [17] is a formally verified validator
that confirms checks produced by an uncustomized compiler,
Lucet [1], which further optimizes code after inserting SFI
checks. To do this without false positives, VeriWasm uses
features of Wasm, as well as implementation choices specific
to Lucet. This is quite challenging to do without rejecting
legitimate programs or suffering soundness issues (e.g., CVE-
2021-32629), due to Rice’s theorem [36]. Instead, our ap-
proaches guarantee sandbox safety by construction. Addition-
ally, while validator-based approaches like NaCl, RockSalt
and VeriWasm are necessarily architecture dependent, rWasm
provides architecture-agnostic provable sandboxing. Finally,
while most previous SFI solutions use a fixed-size sandbox for
performance, rWasm attains high performance without reserv-
ing a large, fixed-sized chunk of memory (see Section 5.4),
making it feasible to use even in embedded environments.

Compilation-based SFI Kroll et al. [21] present a tech-
nique for Portable SFI (PSFI) that is architecture-agnostic,
with performance comparable to GCC [10] with no optimiza-

tions enabled. PSFI works on Cminor, an intermediate lan-
guage of CompCert [24] (which compiles from C), and works
by composing a program transformer with the verified back-
end of CompCert. Our compilers instead are multi-lingual
since they support any language that can be compiled to Wasm
(Section 2.3). In theory, PSFI could also be extended to of-
fer multi-lingual support by writing translators from other
languages to Cminor.

Additionally, rWasm obtains competitive performance
with unverified performance-optimized implementations (Sec-
tion 6.1). Due to Rust’s collection of supported target archi-
tectures, rWasm can also target more architectures with no
additional effort.

WebAssembly Multiple compelling use cases have been
shown for using Wasm as a sandboxing primitive.
RLBox [30] provides a framework for retrofitting isolation
of third-party libraries in complex pre-existing software like
Firefox; eWASM [32] provides a framework for SFI using
Wasm on embedded systems with resource constraints; and
Sledge [9] enables low-latency serverless compute on the
edge via Wasm. Employing our techniques for provably-safe
sandboxing within these framework would provide greater
assurance of their safety.

Given Wasm’s growing prevalence, it is important to iden-
tify its performance bottlenecks compared to running purely
native code. Jangda et al. [16] perform a large-scale evalua-
tion of browser Wasm runtimes, which helps identify causes
for these bottlenecks, some inherent to Wasm, and others due
to implementation deficiencies. These highlight opportunities
that vWasm could take to improve performance.

Recent work by Lehmann et al. [23] shows that classic
vulnerabilities such as simple stack buffer overflows, unex-
ploitable in native binaries due to common mitigations, be-
come exploitable again inside Wasm modules. This however
does not impact sandboxing runtimes for Wasm such as ours,
as any exploit will only corrupt the program state within the
sandbox. The environment is left unaffected, modulo calls
via the trusted interface offered explicitly by the environment.

Proposed extensions to Wasm, such as MS-Wasm [5] (for
memory safety), can help capture critical high-level informa-
tion about the program being compiled Wasm. Other exten-
sions like CT-Wasm [35] (for constant-time cryptography)
help capture high-level invariants that one wishes to maintain.
These extensions are orthogonal to the goals of sandboxing,
and can help provide even stronger guarantees of safety and
correctness to the native code execution.

8 Conclusions

In this work, we have explored two concrete points in the
design space for implementing a sandboxing execution en-
vironment, with a focus on WebAssembly. We proposed
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designs for these two points, implemented them as open-
source tools, vWasm and rWasm, and evaluated them on a
collection of both quantitative and qualitative metrics. We
show that run-time performance and provable safety are not
in conflict, and indeed rWasm is the first Wasm runtime that
is both provably-sandboxed and fast.
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Figure 9: Per-benchmark breakdown of the mean execution time of PolyBench-C benchmarks across the WebAssembly runtimes, normalized to pure native execution.
Interpreters have square brackets; JIT compilers have braces; the rest are AOT compilers. vWasm* disables sandboxing. All benchmarks are compiled with
PolyBench-C’s own internal execution time reporting (i.e., -DPOLYBENCH_TIME), rather than relying on less accurate external measurements using time (1) or
similar. Note how, for example, all interpreters and compilers on 1u/symm perform strictly worse/better than native. Such differences have been seen in the past [11],
and seem connected to how well compilation to Wasm goes, as well as the memory access patterns of each benchmark.
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