
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Branch History Injection: On the Effectiveness
of Hardware Mitigations Against Cross-Privilege

Spectre-v2 Attacks
Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos,

and Cristiano Giuffrida, Vrije Universiteit Amsterdam
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis

Branch History Injection: On the Effectiveness of Hardware Mitigations
Against Cross-Privilege Spectre-v2 Attacks

Enrico Barberis† Pietro Frigo† Marius Muench Herbert Bos Cristiano Giuffrida

Vrije Universiteit Amsterdam
{e.barberis, p.frigo, m.muench}@vu.nl

{herbertb, giuffrida}@cs.vu.nl

† Equal contribution joint first authors

Abstract
Branch Target Injection (BTI or Spectre v2) is one of the most
dangerous transient execution vulnerabilities, as it allows an
attacker to abuse indirect branch mispredictions to leak sen-
sitive information. Unfortunately, it also has proven difficult
to mitigate, with vendors originally resorting to inefficient
software mitigations like retpoline. Recently, efficient hard-
ware mitigations such as Intel eIBRS and Arm CSV2 have
been deployed as a replacement in production, isolating the
branch target state across privilege domains. The assumption
is that this is sufficient to deter practical BTI exploitation. In
this paper, we challenge this belief and disclose fundamental
design flaws in both Intel and Arm solutions.

We introduce Branch History Injection (BHI or Spectre-
BHB), a new primitive to build cross-privilege BTI attacks on
systems deploying isolation-based hardware defenses. BHI
builds on the observation that, while the branch target state
is now isolated across privilege domains, such isolation is
not extended to other branch predictor elements tracking the
branch history state—ultimately re-enabling cross-privilege
attacks. We further analyze the guarantees of a hypothetical
isolation-based mitigation which also isolates the branch his-
tory and show that, barring a collision-free design, practical
same-predictor-mode attacks are still possible. To instantiate
our approach, we present end-to-end exploits leaking kernel
memory from userland on Intel systems at 160 bytes/s, in spite
of existing or hypothetical isolation-based mitigations. We
conclude software defenses such as retpoline remain the only
practical BTI mitigations in the foreseeable future and the
pursuit for efficient hardware mitigations must continue.

1 Introduction

Of all the transient execution vulnerabilities [8, 20, 34, 35, 37,
39, 40, 43–45, 49, 55–58, 63] discovered since the first disclo-
sure of such issues in 2018 [62], one of the most worrisome
was Branch Target Injection (BTI or Spectre v2 [34]). As
the name suggests, it allows attackers to inject speculative

branch targets into a victim’s context—while also ignoring
the architectural privilege boundaries [9, 34]. That is, an un-
privileged attacker can transiently control the execution of a
more privileged victim (e.g., the kernel or hypervisor).

Given the severity of the issue, vendors have devised
a kaleidoscope of security mitigations. After a first gen-
eration of heavyweight hardware mitigations [4, 27, 51]—
deemed exceedingly inefficient by the community [54]—the
software-based retpoline mitigation reached widespread adop-
tion [21, 28]. While retpoline can eradicate BTI attacks by re-
placing indirect branches with return instructions, it also crip-
ples indirect branch prediction altogether (other than reducing
the efficiency of return address prediction) and still incurs
non-trivial performance overhead [1, 17]. As a replacement,
hardware vendors have recently deployed more efficient hard-
ware mitigations such as Intel eIBRS [26] and Arm CSV2 [4],
which isolate the branch-target-buffer entries across privilege
domains—effectively re-enforcing privilege boundaries in the
transient realm. The current assumption is that this mitiga-
tion strategy is sufficient to deter practical BTI exploitation
without sacrificing indirect prediction benefits.

In this paper, we challenge this belief by analyzing the
residual attack surface of the most recent CPU generations.
More specifically, we investigate the security guarantees of
Intel, AMD, and Arm solutions and identify fundamental
design flaws in Intel eIBRS and Arm CSV2 defenses that
allow for cross-privilege BTI attacks. We disclose Branch
History Injection (BHI or Spectre-BHB): a new primitive that
allows attackers to build practical BTI attacks despite the
new isolation-based hardware defenses. At the core of this
conclusion lies the observation that these isolation guarantees
are limited to specific elements of the branch predictor
(i.e., the branch target buffer), while others, such as those
tracking the previous branches’ history, are neglected. Hence,
unprivileged attackers can re-enable cross-privilege BTI
attacks via BHI even on the latest Intel and Arm CPUs, as
they can still control the speculative target of higher-privilege
(i.e., kernel’s or hypervisor’s) indirect branches.

USENIX Association 31st USENIX Security Symposium 971

To demonstrate the practicality of this primitive, we focused
on Intel systems and implemented an end-to-end userland ex-
ploit leaking arbitrary memory from a fully protected Linux
kernel at 160 bytes/s. To the best of our knowledge, this is the
first cross-privilege BTI attack against an unmodified system
with hardware isolation-based mitigations such as eIBRS in
place. We further show that even hypothetical refinements of
such isolation-based mitigations (i.e., which also isolate the
branch history across privilege domains) are still insufficient.
In other words, we show that generic intra-mode BTI attacks
beyond BHI—previously considered unfeasible—are a real-
istic threat. As a concrete demonstration, we expand on the
previous exploit to mount an end-to-end confused-deputy BTI
attack where both the injection and the transient execution of
the disclosure gadget occur entirely during kernel execution.

After exposing the limitations of hardware-based isolation
against BTI attacks, we discuss mitigations and formulate rec-
ommendations for existing production systems. In particular,
we suggest reverting to software defenses such as retpoline,
even on the last-generation systems, and further restricting the
transient execution attack surface by disabling exploitation-
friendly features such as unprivileged eBPF.

Contributions. We make the following contributions.

• We characterize modern mitigations against cross-
privilege BTI attacks and perform a security analysis
of Intel eIBRS and Arm CSV2.

• We disclose issues with Intel and Arm mitigations and
introduce Branch History Injection: a new technique
to enable cross-privilege BTI exploits even on modern
systems (CVE-2022-0001, CVE-2022-23960).

• We showcase the first end-to-end userland exploit against
the kernel leaking arbitrary data from an unprivileged
user at 160 bytes/s on the latest Intel eIBRS-equipped
systems and discuss mitigations.

• We demonstrate that intra-mode BTI exploits beyond
BHI are a realistic threat, evidencing fundamental limi-
tations of isolation-based defenses (CVE-2022-0002).

Additional information about BHI, including our proof-
of-concept exploits and analysis code, is available online at
https://vusec.net/projects/bhi-spectre-bhb.

2 Background

In this section we provide the necessary background on mod-
ern branch prediction and BTI attacks.

2.1 Branch Prediction
The Branch Prediction Unit (BPU) is a fundamental com-
ponent of a modern CPU’s front-end. This unit predicts the

Branch

src dst

BHB

F1

Branch source
address

BTB

=?

F2

Predicted
target

tag target

. . .

Figure 1: A simplified diagram of indirect branch prediction logic.

target of upcoming branches based on previous behavior in
order to fetch and speculatively execute the upcoming instruc-
tions. It typically deploys separate logic for the prediction of
direct and indirect branches. While information on the branch
source address and whether the branch was taken in the past
are usually sufficient for efficient direct branch prediction,
indirect branch prediction is by far more complex.

According to the literature [10,15,16,32,33], to accurately
predict indirect branches with multiple targets, it is necessary
to store some context associated with a given branch. The idea
is that recent execution will likely correlate with the branch
target since it is selected dynamically depending some con-
ditions (e.g. a switch-case to compute the indirect branch
target). Previous work [18, 19, 34, 62, 64] partially reverse
engineered the branch prediction logic for several systems,
and, despite the major microarchitectural differences, they
observed macro-level components common to most modern
BPUs. In Figure 1, we show a simplified diagram of such an
indirect prediction logic. This incorporates a Branch Target
Buffer (BTB) and a Branch History Buffer (BHB).

The BTB is a cache that stores the most recent target ad-
dresses for different branches and branch contexts. This cache
is addressed with a tag computed from the branch source ad-
dress and the branch context (F2). To create the context, the
branch predictor takes both the source address and the history
of previously executed branches into account, stored as a hash
inside the BHB [15, 34, 64]. This hash is constructed over
the source and destination address of previous branches, as
well as the current state of the BHB. The number of branches
tracked this way and the hash function F1 applied to the
addresses depend on the microarchitecture. Prior reverse engi-
neering efforts revealed that for older Intel microarchitectures,
the BHB is implemented as a shift register which gets up-
dated by XORing its rightmost bits with the folded source
and destination address of a taken branch [34, 64].

Even if the indirect branch predictor internals and naming
widely change among different microarchitectures, the major-
ity of them use a context-based approach [10, 15, 23, 34, 64].
For simplicity, we refer to BHB as a generic predictor struc-
ture that holds such context.

972 31st USENIX Security Symposium USENIX Association

https://vusec.net/projects/bhi-spectre-bhb

2.2 Branch Target Injection
With the disclosure of Spectre in 2018 [34, 62], researchers
discovered the possibility of exploiting the branch predictor
in numerous ways to read data outside of sandboxed environ-
ments [34, 43], across privilege boundaries [34, 37, 55], and
even outside of secure enclaves [11, 55]. Among all the dif-
ferent variants, our work focuses on Branch Target Injection
(BTI)—also known as Spectre v2 or Spectre-BTB [9].

BTI is an intrinsic vulnerability of the indirect branch pre-
dictor described in Section 2.1. Since the target address of
indirect branches is available only at runtime, modern proces-
sors try to predict the branch target and speculatively fetch
and execute the instructions at the predicted location. In BTI,
an attacker abuses this behavior to mistrain a victim indirect
branch and predict a target address containing a gadget to
leak sensitive data [34,61,62]. While for conditional branches
only the taken or not-taken paths can be transiently executed,
BTI has the flexibility to transiently hijack the control flow
and execute arbitrary code in the victim’s context.

One can derive different BTI variants [9], depending on
whether the speculatively executed gadget resides at the same
privilege level of the victim branch (intra-mode) or at a differ-
ent privilege level (inter-mode), and whether the mistraining
and the misprediction happens at the same branch (in-place)
or using a different aliased branch (out-of-place).

3 Overview

Since the introduction of mitigations meant to reinforce hard-
ware privilege boundaries against BTI [34], the common as-
sumption is that such transient privilege escalation attacks
are impractical, if not infeasible. In this paper, we challenge
this assumption by answering the following questions:

1. What is the current status of Spectre-v2 defenses? In
Section 4, we outline the fragmented landscape of kernel
defenses against BTI. We examine the guarantees of
these solutions, their use on current systems, and the
challenges they lay out for an attacker.

2. Can we still poison the target of kernel indirect branches
from userland? After characterizing the defenses, we an-
alyze the state-of-the-art hardware implementations (i.e.,
Intel eIBRS and Arm CSV2) in detail in Section 5 and
disclose Branch History Injection (BHI): a new primitive
that allows an unprivileged attacker to control mispecu-
lation of higher-privilege (i.e., kernel’s or hypervisor’s)
indirect branches by manipulating non-isolated parts of
the branch context.

3. Are such attacks still practical? To demonstrate the sever-
ity of our findings, Section 6.2 leverages BHI to build
an end-to-end BTI exploit against an unmodified kernel
running on an eIBRS-enabled system. Furthermore, in

Section 6.3, we showcase an intra-mode (i.e., kernel-
to-kernel) exploit to demonstrate that isolation-based
defenses, even when they consider the entirety of the
indirect branch prediction state, still allow for practical
same-predictor-mode attacks.

4 Spectre-v2 Defenses

In this section, we describe all the software and hardware
Spectre-v2 defenses that have been deployed across different
generations of Intel, AMD, and Arm processors [4,27,28,51].
We focus on the newer in-silicon solutions protecting against
cross-privilege attacks to better understand the residual attack
surface available after their adoption.

4.1 Software Defenses
Among software Spectre-v2 defenses we find the following:

• Generic retpoline. Grown into the standard software de-
fense against BTI, retpoline is a special code sequence that
converts an indirect branch to a ret instruction to ensure
that the Return Stack Buffer (RSB) is used rather then the
BTB. Retpoline “traps” into an infinite loop any possi-
ble mispeculation until the actual address is resolved and
popped from the stack [21]. As a result, no indirect branch
prediction is performed. While retpoline is documented to
work for most Intel and AMD processors [27, 52], it is not
effective on Arm [5].

• AMD retpoline. AMD proposed an alternative retpoline
defense [52], where every indirect branch is turned into a
lfence/jmp sequence. The lfence ensures that the load
for the indirect branch target is retired before the jump, mak-
ing the residual transient window small enough to hinder
exploitation [52]. This solution is tailored to AMD proces-
sors [60] and performs better than generic retpoline [41].

• Arm defenses. For older microarchitectures not supporting
hardware mitigations, Arm suggests the invalidation of the
branch predictor entries on mode switch by either execut-
ing the BPIALL instruction, or by disabling and re-enabling
the MMU [12]. Arm implemented a Secure Monitor Call
named SMCCC_ARCH_WORKAROUND_1 to execute the appro-
priate defense depending on the affected processor.

4.2 Hardware Defenses
In this section, we discuss the hardware defenses proposed by
Intel, AMD, and Arm. We expand on the more relevant ones
for cross-privilege BTI attacks.

• Intel/AMD - IBPB. Indirect Branch Prediction Barrier is a
strong barrier to ensure that the execution of previous indi-
rect branches cannot influence the prediction of subsequent
branches executed after the barrier [27, 51].

USENIX Association 31st USENIX Security Symposium 973

Supervisor

SMM

Hypervisor

UserEL0

EL1

EL2

EL3

Supervisor

Guest Host

User User

Supervisor

x86 ARM

Figure 2: Predictor modes on x86-64 and Arm. The arrows show
the possible transitions between lower-level to higher-level predictor
modes and ✗ indicates which branch target injection attack vectors
should be prevented by the respective cross-privilege hardware miti-
gations (i.e., eIBRS, CSV2).

• Intel/AMD - STIBP. Single Thread Indirect Branch Pre-
dictors restricts the sharing of the branch prediction state
among hyperthreads on the same physical core [27, 51].

• Intel/AMD - (e)IBRS. Intel and AMD propose Indirect
Branch Restricted Speculation (IBRS) to stop cross-
privilege Spectre-v2 attacks [27, 51]. This solution intends
to ensure that indirect branch prediction cannot be con-
trolled by software that is executed in a lower-privilege
predictor mode. There are 4 relevant predictor modes on
x86-64: host-supervisor, host-user, guest-supervisor, and
guest-user [27, 51]. As shown in Figure 2, predictor modes
define different privilege level pairs. IBRS aims to pre-
vent the lower-privilege parts from influencing the indirect
branch prediction of the more privileged layers.

The support for IBRS was added with a micro-code
update and the defense is enabled by writing to the
IA32_SPEC_CTRL.IBRS register on every mode switch to
signal the predictor mode switch—inducing a substantial
performance overhead [54]. To remediate this performance
impact, both Intel and AMD document more efficient IBRS
variants for their newer microarchitectures [26,51]—Intel’s
variant is known as Enhanced-IBRS (eIBRS) whereas
AMD’s variant is known as “always-on” IBRS. These vari-
ants seek to provide the same security guarantees of IBRS,
but require writing to the IA32_SPEC_CTRL.IBRS register
only once at boot time.

The documentation states that it is not necessary to enable
Single Thread Indirect Branch Predictor (STIBP) when
IBRS is enabled [27], suggesting that IBRS performs tag-
ging based on both predictor mode and hyperthread ID.
In addition, AMD specifies an “IbrsSameMode” bit in its
documentation [53] to protect against same-predictor-mode
mispredictions. This effectively provides similar guarantees
to those of IBPB.

• Arm - FEAT_CSV2. Arm’s newer microarchitectures
also introduce an eIBRS-like hardware solution protect-
ing against cross-privilege BTI: FEAT_CSV2 [6]. Since
Armv8.5, the ID_AA64PFR0_EL1 register specifies in the

CSV2 field which new hardware mitigations against cross-
privilege BTI are implemented. Currently, this field indi-
cates support for two solutions: (i) one that should prevent
the speculative control of indirect branch targets from dif-
ferent hardware contexts (when CSV2=1); and (ii) one that
should enforce the same guarantees also for different soft-
ware contexts defined by the SCXTNUM_ELx register (when
CSV2=2) [7].

• Intel - CET-IBT. Intel also released Indirect Branch Track-
ing (IBT) as part of its new Control-Flow Enforcement Tech-
nology (CET) in its Tiger Lake microarchitecture. CET-IBT
prevents the execution—both speculative and architectural—
of all the indirect branch targets that do not start with the
ENDBR32/64 instruction [29]. While it does not prevent
speculation altogether, it seeks to reduce the number of
available gadgets and hinder exploitation.

4.3 A Complex Adoption

While plenty of defenses against BTI are available, it is still
unclear when each of these solutions is effectively deployed.
In this section, we examine the adoption of defenses against
cross-privilege BTI attacks. In particular, we consider their
adoption in the Linux kernel across architectures (both x86-
64 and Arm). We then expand to other hardware-software
configurations and discuss their impact on exploitation.

Software defenses. Older-generation CPUs lacking in-
silicon solutions need to rely on software defenses. We show
their adoption in the Linux kernel in Table 1. We detect their
use on: old Intel microarchitectures (e.g., Coffee-Lake R),
where Linux simply relies on retpoline; and on old Arm Cor-
tex designs (e.g., Cortex-A76), where it invalidates the branch
predictor from software. Interestingly, even in the presence
of hardware defenses, their software counterparts are some-
times preferred by the OS due to the performance impact of
the former [51, 54]. For instance, we observe this behavior
for the Intel Core i9-9900K, where Linux resorts to retpoline
despite the support of IBRS, and for all AMD CPUs where
it follows the vendor’s recommendations to employ AMD
retpoline [51].

Hardware defenses. For modern Intel and Arm microar-
chitectures, the Linux Kernel relies on the new hardware mit-
igations (as of version 5.14). For instance, for modern Intel
CPUs (from Cascade Lake onward) it simply relies on eIBRS
instead of deploying retpoline. The same applies to modern
Arm CPUs, where the Android kernel avoids invalidating the
branch predictor entries when CSV2 is set. Curiously, we
identified two revisions (with and without support for CSV2)
of the Arm Cortex-A76 microarchitecture, showing the frag-
mentation of the Arm ecosystems.

974 31st USENIX Security Symposium USENIX Association

Table 1: Linux Spectre-v2 defenses on the Linux kernel version 5.14 (Intel & AMD), version 5.10 (Google), and 4.14 (Qualcomm). Please note
that IBRS is available only with updated microcode.

Vendor Model µArch Software Defenses Hardware Defenses

x86 Defenses Retpoline AMD retpoline IBRS eIBRS
Core i9-9900K Coffee-Lake R #† # —
Core i7-10700K Comet-Lake # #† #
Core i7-11700 Rocket-Lake # #† #
Core i7-11800H Tiger-Lake # #† #
Xeon Silver 4214 Cascade-Lake # #† #

Intel

Xeon Silver 4310 Ice-Lake # #† #

Ryzen 5 5600X Zen 3 # # —AMD Epyc 7662 Zen 2 # # —

Arm Defenses Retpoline Workaround_1 CSV2=1 CSV2=2
Tensor Cortex A55 ‡ #† — — —
Tensor Cortex A76 #† — —Google
Tensor Cortex X1 #† — —

Qualcomm Snapdragon 855 Cortex A76 #† — —

() Default solution, (#) Disabled, (—) Not available, † Not recommended by the vendor, ‡ Not affected by BTI.

On the other hand, on AMD we observed that even very
recent CPUs do not support the “always-on” IBRS but only
the older and more expensive IBRS variant—we verified this
on the Ryzen 5600X released in late 2020. For this reason,
AMD still recommends the use of AMD retpoline [51].

Deployment in other contexts. Other environments seem
to have followed a similar trend of adopting hardware de-
fenses when available. For instance, we analyzed Windows
on Intel CPUs and we observed that, despite having adopted
retpoline for a long time [31], newer builds rely on eIBRS sim-
ilar to Linux—we empirically verified this behavior on an In-
tel i7-11800H with Windows version 21H2 build 19044.1288.
We observed the same trend on common hypervisors: both
Xen [13, 22] and KVM [42, 66] enforce guest-host separation
by relying on eIBRS and CSV2 as preferred options when the
hardware supports them.

Adoption impact. Considering the widespread deployment
of these hardware solutions across OSes and hypervisors,
it is crucial to understand their effectiveness against cross-
privilege BTI attacks. These defenses promise to prevent
speculative control of targets of any indirect branch across
privilege boundaries. For instance, while previously attackers
could directly mistrain the kernel from userland without any
major impediment, this should no longer be possible. How-
ever, despite these claims, little is known about their security
guarantees. For instance, Arm itself states that, on systems
protected by CSV2, an attacker can still control the specula-
tive execution of indirect branches “in a hard-to-determine
way” [7]. This leaves open questions on the possible short-
comings of the proposed mitigations. In the next section, we
analyze these solutions and disclose fundamental limitations
in some of their implementations, showing how we can still

build cross-privilege BTI attacks even on systems with tar-
geted hardware mitigations.

5 Branch History Injection

In this section, we will first take a closer look at indirect
branch prediction in the era of eIBRS and CSV2 hardware
defenses. Based on our observations, we develop and describe
Branch History Injection (BHI), an attack primitive which
allows attackers to mount BTI attacks even in the presence of
these in-silicon defenses.

5.1 Bypassing eIBRS and CSV2
While little is known about the inner workings of eIBRS, de-
tails about the implementation of CSV2 on Exynos M-series
CPUs were disclosed in prior work [23]. Considering their
very similar security guarantees, we can model both solutions
as an isolation-based defense where the tag of each BTB entry
is hashed using the hardware (and possibly software) context
as a key—in the case of the Exynos predictor, this key is actu-
ally used to encrypt the branch target itself [23]. As such, the
context hash also defines for which predictor mode the BTB
entry is valid. This observation is additionally supported by
the Intel documentation [26], which states that eIBRS does
not protect against intra-mode BTI. Indeed, isolating the BTB
entries would still allow same-mode mispredictions by design.

To characterize the remaining cross-privilege attack sur-
face, we need to verify whether all the components of the
indirect branch prediction logic are correctly isolated. As
shown in Section 2, indirect branch prediction is a complex
procedure that depends on multiple components such as the in-
direct branch source address and the BHB value encoding the
history of previous branches. We hypothesize that especially

USENIX Association 31st USENIX Security Symposium 975

jmp[rax]IPK
F2

BHB
BTB
Tag

 User controlled Kernel controlled

Figure 3: BTB tag computation for indirect branches after a
user→ kernel switch with improper BHB isolation. Even if the in-
direct branch source address IPK and a small portion of the BHB is
not under user control, an attacker can still affect the BTB-tag value.

the BHB may not be properly isolated due to (legitimate)
performance reasons. The intuition is that the accumulated
branch history before a switch to a different privilege level is
essential to accurately predict the initial branches and improve
critical-path performance. As an example, let us consider a
syscall. When executing a syscall, one of the earliest opera-
tions performed by the Linux kernel is an indirect jump to
the correct syscall handler function, whose address is stored
in the sys_call_table. Since the initial kernel code path is
always the same no matter the syscall, it is essential to use the
recent user history to perform an accurate prediction. In this
scenario, the BHB value would be filled with values mostly
originating from the user history, as shown in Figure 3.

To test our hypothesis, we verify whether the BHB value
is isolated after a mode switch to a privileged domain, by
means of the experiment in Algorithm 1. The experiment
associates two different histories with two separate syscalls
by filling the BHB with different values. It does so by exe-
cuting enough taken branches to fill the BHB. Specifically,
history Hload is associated with a custom syscall leaving an
observable microarchitectural trace—observable by means of
a simple FLUSH + RELOAD (F+R) covert channel [61]. His-
tory Hdummy, on the other hand, is mapped to another arbitrary
syscall (e.g., getpid). After the training in Lines 1–6, the indi-
rect branch predictor associates the expected syscall target to
the observed context (i.e., based on the user history). Finally,
the experiment tests whether the predictor mispredicts to the
custom syscall leaving a microarchitectural trace when mix-
ing the history Hload with the dummy syscall. Surprisingly,
despite the presence of the eIBRS and CSV2 defenses, we
observed accurate mispredictions rates of > 95% for all Intel
and Arm devices affected by Branch Target Injection (BTI).

Observation 1. The BHB is not isolated among differ-
ent privilege levels, allowing attackers to control indirect
branch prediction for early branches in the higher-privilege
mode.

We name this attack primitive Branch History Injection (BHI
or Spectre-BHB). BHI is an “extension” of classic Branch
Target Injection (BTI) in that it partially reintroduces the
cross-privilege attack surface BTI lost after the introduction
of eIBRS and CSV2. In fact, while BTI used to allow attackers

Algorithm 1 Experiment to verify BHB isolation between
user and kernel mode. For the training phase, n = 1 is usually
sufficient on the tested CPUs in Table 2.

1: for i← 1,n do ▷ Training
2: set_history(Hload)
3: syscall→ load(mem) ▷ Hload → load(mem)
4: set_history(Hdummy)
5: syscall→ dummy ▷ Hdummy→ dummy
6: end for
7: flush(mem) ▷ Remove mem from cache
8: set_history(Hload)
9: syscall→ dummy ▷ Misprediction to load(mem)?

10: reload(mem)

to perform inter-mode attacks (e.g., user→ kernel), eIBRS
and CSV2 ought to limit them to intra-mode attacks (e.g.,
kernel→ kernel). However, BHI can overcome these defenses,
effectively allowing an unprivileged attacker to leverage their
control over the BHB to divert execution—albeit, only to valid
kernel targets—across privilege boundaries. Also note that,
although BHI attacks are cross-privilege and rely on polluting
the indirect branch prediction state with unprivileged data
(i.e., history), they can still be considered a special subset
of intra-mode BTI attacks—since the mistraining and the
hijacking step still both occur in the higher-privilege mode.

We list the tested devices in Table 2. Our experiments in-
dicate that Intel and Arm processors deploying eIBRS and
CSV2 are vulnerable to BHI. Furthermore, we observed that
the Arm Cortex-A76 deploying the software-based defense
Workaround_1 is also vulnerable to BHI, suggesting that the
mitigation does not invalidate the BTB as expected. In com-
parison, systems which rely on retpoline (i.e., AMD systems
and most Intel systems without eIBRS) are not affected by
BHI. Finally, we observed that AMD IBRS protects against
both inter- and intra-mode BTI altogether, in line with their
documentation [51]. That is, we could not speculatively con-
trol the target of any indirect branch executed after toggling
IBRS—providing security guarantees comparable to IBPB.

BHI on other predictor modes. We extended our exper-
iments to test if the BHB is isolated between the other
major privilege boundaries on x86-64 processors1: guest-
user→ host-supervisor, guest-supervisor→ host-supervisor
and guest-user→ guest-supervisor. In all scenarios, we ob-
served identical results, demonstrating the general applica-
bility of this vulnerability. Our results show that, even with
the state-of-the-art eIBRS in-silicon mitigation, an attacker
can still hijack more privileged indirect branch predictions by
controlling only the BHB value.

1We did not extend these experiments to Arm processors, as our test
platforms (Google Pixel 6 & Pixel 4) did not provide readily accessible
interfaces to run custom code in EL2 or EL3.

976 31st USENIX Security Symposium USENIX Association

Table 2: Vulnerability to BHI and corresponding attack surface of tested processors. “BHI vulnerable” specifies—for different defenses—if an
unprivileged history can mistrain more privileged indirect branch predictions. “BHI attack surface” indicates whether BHI can be used to
mistrain only from the same indirect branch (in-place BTI) or any indirect branch in the victim context (out-of-place BTI).

Vendor Model µArch BTI vulnerable BHI vulnerable BHI attack surface∗

x86-64 IBRS eIBRS BTI in-place BTI out-of-place
Core i9-9900K Coffee-Lake R ✓ ✓ — ✗ ✗
Core i7-10700K Comet-Lake ✓ ✓ ✓ ✓ ✓
Core i7-11700 Rocket-Lake ✓ ✓ ✓ ✓ ✓
Core i7-11800H Tiger-Lake ✓ ✓ ✓ ✓ ✓
Xeon Silver 4214 Cascade-Lake ✓ ✓ ✓ ✓ ✓

Intel

Xeon Silver 4310 Ice-Lake ✓ ✓ ✓ ✓ ✓

Ryzen 5 5600X Zen 3 ✓ ✗ — ✗ ✗AMD Epyc 7662 Zen 2 ✓ ✗ — ✗ ✗

Arm Workaround_1 CSV2=1
Tensor Cortex A55 ✗ — — ✗ ‡ ✗ ‡

Tensor Cortex A76 ✓ — ✓ ✓ ✗Google
Tensor Cortex X1 ✓ — ✓ ✓ ✗

Qualcomm Snapdragon 855 Cortex A76 ✓ ✓ — ✓ ✗

(✓) affected, (✗) not affected, (—) not available, (‡) Not affected by BTI, (∗) Adopting the default mitigation shown in Table 1.

HA TA

HR TR

BHB
Aliasing

[rax]=TA

[rax]=TR

transientarchitectural

b1: jmp [rax]

b2: jmp [rax]

Randomize HR

Figure 4: Brute-force approach to find colliding BHB values.

5.2 BHI Attack Surface
In the previous section, we demonstrated how Branch History
Injection can re-enable cross-privilege BTI attacks. However,
when limiting ourselves to the experiment in Algorithm 1, its
attack surface is limited to that of intra-mode in-place BTI.
That is, the only available gadgets would be valid kernel tar-
gets (intra-mode) of the specific indirect call being mistrained
(in-place). In this section, we investigate the possibility of ex-
panding the attack surface to other valid kernel indirect branch
targets using BHI to cause out-of-place BTI [9, 11, 18, 34]. In
other words, we want to understand if we can cause BTB-tag
collisions between two distinct indirect branches by manip-
ulating only the BHB value and not the branch address (see
Figure 1). Enabling such primitive would allow us to identify
gadgets across targets of different kernel indirect branches,
considerably expanding the attack surface.

To verify this, we implemented a userland-only (i.e., same-
predictor mode) experiment in which we execute two different
indirect branches, one after the other, in a loop, as shown in
Figure 4. The first branch has a fixed history HA and a fixed

Listing 1 Example of a jmp-chain used to fill the BHB with a
random value.

1 0x1337cafe: jmp 0xdeadbeef
2 ...
3 0xdeadbeef: jmp 0xd0d0caca
4 ...
5 0xd0d0caca: jmp [rax]

target TA, while the second one uses a random history HR for
every iteration and a fixed target TR. Eventually, we want to
observe a mispeculation to TA under a random history HR,
rather than to the correct TR, which would indicate collid-
ing BHB values. We construct the histories by prepending
the indirect branches with a chain of randomly located jmp
instructions, as shown in Listing 1. Since the BHB value
depends on the source and destination addresses of the pre-
vious branches [34, 62], we can randomize these values to
randomize the BHB value as a result.

This experiment successfully found colliding BHB values
for all the tested Intel CPUs, but not for any of the Arm and
AMD processors in our test set. In Table 2, we report the
results when operating cross-privilege mistraining with the
default mitigations enabled, which shows that eIBRS-enabled
Intel CPUs are susceptible to out-of-place BTI via BHI. We
additionally observed that there are no requirements on the
source address alignment of the two indirect branches. Indeed,
we were able to find collisions no matter the values of all
branch addresses in the experiment.

Observation 2. On Intel systems, we can generate the same
BTB tag for two distinct indirect branches by simply con-
trolling the BHB value for one of these branches.

USENIX Association 31st USENIX Security Symposium 977

HA

HB TB

TA
[rax]=TA

[rax]=TB

transient

architecturaljmp [rax]

HA

HB TB

TA
[rax]=TA

[rax]=TB

jmp [rax]

fixed

controlled

Figure 5: BHB size recovery. We start by providing two colliding
histories HA = HB so that we can observe a misprediction. We then
keep HA fixed and start changing old branches in HB until we
observe predictions to the right target TB.

In other words, out-of-place BTI on Intel systems is pos-
sible just by controlling the BHB. This allows an attacker
to transiently execute any valid indirect-branch target in the
victim’s context (i.e., any kernel indirect-call target).

Another interesting result is that a colliding history to
a given branch context leads to high misprediction rates
(> 95%) when replayed against the same branch context.
Hence, once found, an attacker can re-use a colliding history
for a given branch context over and over to cause accurate
branch mispredictions. Interestingly, we observed that col-
liding histories are even portable on different processors of
the same generation with different microarchitectures. For
example, the same collision found on a i7-10700K worked on
a Xeon Silver 4214, suggesting that the same indirect branch
prediction logic is shared among different microarchitectures.

In-place attack surface. In the remainder of the paper, we
show how we can leverage BHI to exploit out-of-place BTI,
since it provides a larger attack surface. Hence, we build end-
to-end exploits only on Intel systems. Nevertheless, exploiting
in-place BTI is still a realistic threat. For instance, Appendix A
discusses an additional issue we reported to the Linux kernel
developers where, on systems protected by eIBRS, all indirect
jumps in the kernel were “funneled” to a handful of call sites
due to the runtime patching performed for retpoline. Under
such circumstances, given the plethora of valid targets avail-
able per indirect branch, in-place BTI attacks have essentially
the same attack surface as out-of-place BTI ones.

Finally, even if we could not reproduce out-of-place BTI
on Arm devices, when we repeated the same experiment with
a single indirect branch, we observed colliding histories (Ta-
ble 2)—confirming in-place BTI attacks are possible on Arm.
Moreover, the fragmentation of the Arm ecosystem does not
ensure the same implementation of predictors and the same se-
curity guarantees for all the systems. For instance, as we show
in Table 1, we observed two different versions of A76-based
architectures: one deploying CSV2, and one which does not.
Similarly, two CPUs with the CSV2 register set may provide
different guarantees depending on the licensee’s design [23]

Table 3: Indirect branch prediction reverse engineering of tested Intel
processors. “BHB size” indicates how many taken branches affect
the BHB value. “Tag entropy” specifies the brute-force entropy size
of the BTB tag. “BHB control” specifies the minimum number of
attacker-controlled branches to generate arbitrary BTB tags.

CPU Tag entropy
(bits)

BHB size
(#branches)

BHB control
(#branches)

Intel Core i7-10700K 14 29 ≥ 9
Intel Xeon Silver 4214 14 29 ≥ 9

Intel Core i7-11700 17 66 ≥ 8
Intel Core i7-11800H 17 66 ≥ 8
Intel Xeon Silver 4310 17 66 ≥ 8

and, as we discuss in Section 7, the mitigations deployed by
Arm confirm the presence of vulnerable platforms.

5.3 Understanding BHI on Intel

From an attacker perspective, it is useful to understand the
capabilities and limitations of BHI. In this section, we inves-
tigate three main parameters. (1) We first want to understand
what the “size” of the BHB is, i.e., the number of previous
branches affecting the BHB value. (2) Then, since we opt for a
microarchitecture-agnostic brute-force approach—in contrast
to prior work that reverse engineered the BHB [34, 62]—we
need to understand how long it takes to find a colliding history.
(3) Finally, we want to understand how many user branches an
attacker needs to control to generate BTB-tag collisions—i.e.,
how deep (from the syscall) the victim indirect branch can be.

BHB size. To find the BHB size (i.e., how many previous
branches are tracked) we use the methodology described in
prior work [34, 62, 64], based on a single indirect branch with
two possible targets TA and TB. As shown in Figure 5, the
experiment starts by training the predictor so that, with a his-
tory HA, the indirect branch would always jump to target TA,
while with a history HB it would always jump to target TB.
With two identical histories HA and HB, the predictor cannot
make accurate prediction, always yielding a mispeculation
to the latest target. Thus, by keeping HA constant while in-
crementally modifying HB, starting from older branches, we
eventually stop observing mispredictions. This means that the
predictor was finally able to correctly distinguish HA from
HB, thus revealing the number of most recent branches affect-
ing the BHB value. We report the results of this experiment
in Table 3. As mentioned in Section 5.2, we observed that
predictor designs may be shared across different microarchi-
tectures. Our experiment suggests that two different designs
are used for our test set and we cluster the respective CPUs
in Table 3 accordingly. Our results showed that the latest 29
or 66 branches determine the BHB value, depending on the
microarchitecture.

978 31st USENIX Security Symposium USENIX Association

4k 8k 12
k

16
k

20
k

24
k

28
k

32
k

36
k

40
k

44
k

48
k

52
k

56
k

0.0

0.2

0.4

0.6

0.8

1.0

Geometric cumulative distr. p= 1/214

Intel i7-10700K. Trials cumulative distr.

32
k

64
k

96
k

12
8k

16
0k

19
2k

22
4k

25
6k

28
8k

32
0k

35
2k

38
4k

41
6k

44
8k

of trials

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 B
HB

 c
ol

lis
io

n

Geometric cumulative distr. p= 1/217

Intel Xeon Silver 4310 Trials cumulative distr.

Figure 6: Cumulative distribution of the required trials to find a
collision for a given context resulting in the same BHB value on
an Intel i7-10700K (top) and an Intel Xeon Silver 4310 (bottom)
over 10,000 individual trials. The results perfectly match geometric
cumulative distribution to brute-force 14 and 17 bits of entropy.

History brute-forcing. In Section 5.2, we brute-force the
BHB value in order to find BTB-tag collisions. However,
this approach may be unfeasible for exploitation if the BTB
tag is too large. For this reason, we repeated the experiment
shown in Figure 4 multiple times to observe the distribution
of trials needed to find a colliding history. We expect this ex-
periment to follow a geometric distribution over the number
of attempts, since all trials are independent, there are only
two outcomes (collision/no-collision), and the probability of
success is the same for every trial. Indeed, the results shown
in Figure 6 follow a geometric distribution. For instance, on
the i7-10700K, our experiment showed that the probability p
of observing at least one collision is approximately 0.4 after
8,000 trials and 0.85 after 32,000 trials. We observed two cu-
mulative distributions matching geometric distributions with
respective success probability of p = 1/214 and p = 1/217

depending on the microarchitecture. This suggests that the
brute-force space for these CPUs is exactly 14 and 17 bits, re-
spectively. We refer to this brute-force space as the “BTB-tag
entropy”, as an attacker needs to overcome this entropy when
attempting to forge a colliding BTB-tag value. The limited
BTB-tag entropy and the reliable misprediction rates prove
that brute-forcing is a viable option for an attacker seeking
portable exploitation without having to reverse engineer the
predictor internals each time.

Observation 3. The BTB-tag entropy is small enough to
allow brute-force approaches.

History controllabilty. Finally, another key parameter is
the minimum number of branches an attacker needs to control

HBHR

HBHR

HRk=29

k=16

k=7

HA

HB

b1: jmp [rax] TA

✔

b2: jmp [rax] TB ✗

b2: jmp [rax] TA

b2: jmp [rax] TA

b2: jmp [rax] TB ✗

✔
...

...

Architectural Transient

✔ Collision found ✗ Collision not found

s=29

Figure 7: Minimum history control recovery for the Intel 10700K.
Starting with two non-colliding histories (HA and HB), we aim to
discover the minimum number of controlled branches in HB to pre-
serve collisions.

to generate arbitrary BTB tags. This is important for BHI
attacks, as an attacker may only control a small portion of
the BHB when exploiting indirect branches deeply nested in
the kernel. To identify the minimum number of branches one
needs to control, we used the experiment shown in Figure 7—
based on the brute-force technique discussed in Section 5.2.
The experiment starts by finding two non-colliding histories
HA and HB of length equal to the BHB size(s). Next, we keep
HA constant and start generating random histories HR until
we find a collision—which will likely happen within a few
thousand executions (Figure 6). Once we observe a collision,
we fix the youngest branch (i.e., the closest to the indirect
jump) to the latest branch of HB (HB[s]) and we randomize
the previous s− 1 branches in the jump chain. That is, the
generated history will be the concatenation between HR[1 : k]
and HB[k : s], where k is the number of branches under the
attacker’s control—ranging from s to 1. We continue this
process by fixing (i.e., losing control over) one more branch
at every round—i.e., k→ k−1. The brute-forcing continues
until a collision is found or when a timeout is reached (i.e., one
million trials based on the results in Figure 6) for each value of
k. When the attacker can randomize only few “old” branches,
the chances of finding a colliding history decrease, causing
the experiment to reach a timeout at every run. We show the
results for a 24-hour run of this experiment in Figure 8. We
observed reliable history collisions (p≈ 1) when controlling
only the oldest 9 out of 29 or 8 out 66 branches (respectively),
depending on the microarchitecture. For example, on a Xeon
Silver 4310, an attacker needs to control only the 8 branches
before a syscall to be able to mistrain an indirect branch as
deep as 58 basic blocks after the kernel mode switch.

Observation 4. The control of few branches is sufficient to
generate colliding BTB tags.

USENIX Association 31st USENIX Security Symposium 979

0.00

0.25

0.50

0.75

1.00 Intel 10700K

1110987654321
Number of branches under control

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s p

ro
ba

bi
lit

y
of

 B
HB

 c
ol

lis
io

n

Intel Xeon Silver 4310

Figure 8: Probability of finding a colliding history to a given history
HA when controlling only the oldest k branches (x-axis). The plot is
the result of a 24-hour run of the experiment described in Section 5.3.

6 End-to-end Exploitation

In this section, we showcase two end-to-end BTI exploits
against the Linux kernel with eIBRS enabled. We first exploit
our BHI primitive to leak data from the Linux kernel at
160 bytes/s. We then show how eBPF allows us to build even
more complex kernel-to-kernel (i.e., generic intra-mode BTI)
exploits. Finally, we conclude by discussing the implications
of disabling unprivileged eBPF.

Attacker model. We consider unprivileged attackers who
aim to disclose confidential information, such as private keys,
passwords, or randomized pointers. We assume an x86-64
based victim machine running the latest microcode and op-
erating system version, with all state-of-the-art mitigations
against transient execution attacks enabled. We also consider
a victim system with no exploitable vulnerabilities apart from
the ones considered. Finally, we assume attackers can run
(only) unprivileged code on the victim system, but seek to
leak data across privilege boundaries.

Experimental setup. All the experiments in this section
were performed on an Intel i7-10700K machine with eIBRS
enabled and microcode revision 0xec, running Linux kernel
version 5.14.10 (latest stable at the time of writing) without
modifications and compiled with the corresponding default
Ubuntu kernel config file (available with the rest of our code
at https://vusec.net/projects/bhi-spectre-bhb).

6.1 Attacker Primitives

In order to craft an end-to-end BTI exploit against the kernel,
we need to acquire the following primitives.

P1 – Victim branch. We need to find an indirect branch in
the kernel we can mistrain. The victim branch needs to: (i)
be triggered from userland; (ii) allow the attacker to control

enough of the history to exploit BHI (see Section 5.3); and
(iii) execute with attacker-controlled registers or stack values.

P2 – Disclosure gadget. We need a disclosure gad-
get to leak arbitrary data via a covert channel such as
FLUSH + RELOAD (F+R) [61] or its eviction-based variant
EVICT + RELOAD (E+R). We show a simple F+R transient
gadget below.

reload[*secret_byte * 4096];

This gadget performs two dependent loads to leak arbitrary
bytes by encoding them in a reload buffer—the secret is
multiplied by 4096 to bypass the cacheline prefetchers [34].
However, the complexity of the gadget depends on the state of
the registers when the victim branch is reached. Hence, more
loads may be required. Depending on the attack primitive,
the gadget must be between the valid targets of the vicitm
branch (in-place BTI) or among any indirect branch target in
the victim space (out-of-place BTI).

P3 – Covert channel. This primitive builds on top of the
previous two. However, it introduces its own set of challenges.
In fact, the disclosure gadget alone only leaves a microarchi-
tectural trace in the cache but does not leak it to the attacker.
Therefore, we need to build a valid channel across privilege
boundaries (e.g., a shared F+R buffer [20, 34, 62]).

P4 – History brute-forcing. In Section 5.1, we rely on a
synthetic covert channel to demonstrate how we can use BHI
to build cross-privilege BTI attacks. However, as the end-to-
end exploit targets an unmodified kernel, this option is no
longer available. Since we do not know the inner workings
of the BHB, we need a way to detect when our brute-forcing
technique succeeds in finding two colliding histories. There-
fore, we need another covert channel to leak this “bit” of
information to an unprivileged attacker.

6.2 Exploiting BHI with eBPF
We now showcase an end-to-end exploit by leveraging
Extended Berkeley Packet Filter (eBPF) to acquire all the
aforementioned primitives.

P1 – Victim branch. In order to simplify the exploit, we
looked for the “closest” indirect branch to the syscall en-
try point. In the Linux kernel, this is in the do_syscall_64
function—only 4 taken branches away from the syscall in-
struction. This function uses an indirect branch to execute the
correct syscall handler stored in the syscall jump table. Since
the function is executed immediately after the user-to-kernel
mode switch, the BHB value is almost entirely under user
control—making BHI easier to exploit.

980 31st USENIX Security Symposium USENIX Association

https://vusec.net/projects/bhi-spectre-bhb

Listing 2 JIT’ted code for the eBPF program serving as dis-
closure gadget.

1 push rbp
2 mov rbp,rsp
3 ;load er_buf base address
4 movabs rsi,0xffffc900028ff110
5 ;rdi+0x18 = &pt_regs.r12 transiently
6 ; = &bpf_sock architecturally
7 mov rax,QWORD PTR [rdi+0x18]
8 test rax,rax
9 je fail

10 ;Dereference of user r12 value transiently
11 mov eax,DWORD PTR [rax+0x14]
12 ;extract the byte to leak
13 and rax,0xff
14 shl rax,0xc
15 add rsi,rax
16 ;maccess(er_buf[byte_to_leak*0x1000])
17 mov rsi,QWORD PTR [rsi+0x0]
18 fail:
19 xor eax,eax
20 leave
21 ret

Additionally, before calling do_syscall_64, all user regis-
ters are pushed onto the stack, and a pointer to them is passed
as a first argument in rdi. In other words, the attacker con-
trols a large portion of the stack when executing the disclosure
gadget, greatly aiding exploitation.

P2 – Disclosure gadget. We rely on eBPF to make our
attack independent of the kernel version and configuration.
eBPF filters are user-developed programs that perform spe-
cific tasks, such as packet filtering, inside a kernel sand-
box. On most Linux-based systems, eBPF programs are JIT-
compiled for additional performance and unprivileged users
have access to a restricted subset of their functionalities2.
As a result, unprivileged attackers can “inject” code into the
kernel, as long it conforms to the restrictions imposed by un-
privileged eBPF, and they can then trigger their execution by
simply writing to a socket. While eBPF JIT’ed code is hard-
ened against traditional Spectre attacks (e.g., Spectre-v1 [34]),
we can still build “transient type confusion” attacks. In fact,
eBPF programs are executed from an indirect branch, making
them ideal BTI gadgets.

For our purposes, we create an eBPF program that can leak
data from arbitrary memory locations when executed tran-
siently from our victim branch. We show the JIT’ed code
of this disclosure gadget in Listing 2. Architecturally, this
program operates on a bpf_socket struct pointer passed
via rdi. However, when executed transiently from the
do_syscall_64 indirect jump, it operates on the stack-saved
user registers referenced by rdi. We abuse this primitive to

2The corresponding build options are CONFIG_HAVE_EBPF_JIT=y and
CONFIG_BPF_UNPRIV_DEFAULT_OFF not set. Default on major Linux distros,
e.g., Debian 11, Ubuntu 20.04, and OpenSuse SLE 15.3 at the time of writing.

read arbitrary kernel addresses (stored in the user-saved r12
register) and then transfer them to userland through an E+R
buffer, one byte at the time.

P3 – Covert channel. To successfully build an E+R
covert channel, we still rely on eBPF. We first allocate two
BPF_MAP_TYPE_ARRAY eBPF buffers: one for reload stage
and another one to perform the eviction.

To measure access times of the reload buffer, we
create a second unprivileged eBPF program using the
bpf_ktime_get_ns helper function, which provides enough
timing resolution to discern between a cache hit and a miss.
To propagate the measured timings, we use eBPF maps—
key/value stores to exchange data between eBPF programs
and userland. Finally, for the eviction stage, we simply access
“enough” page-aligned addresses in the eviction buffer to evict
the leaked entry from the LLC set (i.e., around 4K accesses
for the tested machine) [59].

P4 – History brute-forcing. The last primitive to com-
plete the exploit is a way to detect when BHI succeeded, i.e.,
when we craft a user-controlled history for the victim branch
(i.e., do_syscall_64) that generates the same BTB tag of
the eBPF gadget. eBPF simplifies this step as well, since its
programs are always executed via the same indirect branch.
Therefore, the user-crafted history can be reused to trigger
transient execution of any eBPF program—as long as it was
executed before the victim branch.

To find a history resulting in such a collision, we install a
one-bit E+R gadget (i.e., it loads a single variable). This pro-
gram allows us to determine whether the gadget was executed
in the first place or not. We then brute-force different BHB
values from userland, as shown in Listing 1. If the histories
collide, our E+R gadget detects a hit. Thanks to the limited
size of the BTB tag, only a few thousand trials—usually com-
pleting in less than a minute—are sufficient to find a BHB
value that aliases to the target BTB entry (see Section 5.3).

Optimizations. While these primitives are sufficient to build
a working exploit, the transient window is fairly small. As
such, we observe a fairly weak signal. We improve the signal
by evicting the cache line containing the sys_call_table
entry of the mistrained syscall (e.g., getpid) before triggering
the BHI-based misprediction. Doing so extends the transient
execution window of the victim branch, greatly improving
the reliability of the exploit. However, this step comes at the
cost of an increased setup time, as we now need to program-
matically find a matching eviction set. This can be achieved
by starting with a large eviction set and trying different cache
line offsets until we measure an increased execution time for
the targeted syscall. After being sure that the correct cache
line is evicted, the eviction set can be reduced using methods
described in prior work [59].

USENIX Association 31st USENIX Security Symposium 981

BTB

TAGG ebpf_gadget

write(sock)

BHBG

bpf_run()IPG
F

getpid()

do_syscall_64()IPSF==

User Kernel

a = *(regs->r12)
buf[(a&0xff)*1024]

Yes. Predict ebpf_gadget
ebpf_gadget

fill_bhb()

TAGG

1

2

3

5

User controlled Kernel controlled Transient exec.

BHBU
4

Figure 9: Visualization of our BHI exploit.

The full attack. With all these components in place, the
attack can be summarized in 5 main steps (Figure 9):

1 Initially, the attacker triggers the execution of the eBPF
disclosure gadget by sending a packet to a socket with
an eBPF packet filter.

2 Since eBPF programs are executed from an indirect
branch in bpf_run(), the execution of the eBPF gad-
get generates a BTB entry with tag TAGG, based on
the history BHBG and the source address of the branch
IPG; i.e., TAGG = f (BHBG , IPG). This entry is kernel-
tagged since the indirect branch is performed by the
eBPF scheduler.

3 The attacker then fills the BHB from userland by execut-
ing the jump-chain they previously identified to cause a
BHB collision right before performing a syscall.

4 Upon reaching the syscall entry point in
do_syscall_64, the branch predictor tries to pre-
dict the indirect target of the correct syscall handler (e.g.,
getpid). Due to BHI, the attacker-controlled BHB value
causes a BTB-tag collision with the eBPF-gadget entry,
that is, TAGG = f (BHBU , IPS) = f (BHBG , IPG).
As a result, the branch predictor will mispeculate and
transiently execute the eBPF disclosure gadget instead
of the syscall handler.

5 Finally, thanks to the “transient type confusion”, the gad-
get in Listing 2 speculatively leaks the value referenced
by the user-saved register r12. The leaked data can then
be recovered using the E+R covert channel above (P3).

Evaluation. We evaluated our exploit by leaking 10 times
8 kB of contiguous kernel memory. Our proof-of-concept
exploit requires an average setup time of 22 seconds to build
an eviction set, and an average of 13 seconds to brute-force
the BHB history. We observed a bandwidth of 160 bytes/s and
an error rate of 1% on average.

6.3 Same-Predictor-Mode Exploit

Isolation-based mitigations, such as eIBRS and CSV2, were
developed under the assumption that intra-mode exploit are
impractical at best, if not impossible [4, 29]. In the previous
sections, we unveiled fundamental implementation flaws of
these mitigations (Section 5) and demonstrated how we can
exploit BHI to build an end-to-end exploit against the kernel
(Section 6.2). However, assuming a hypothetical implemen-
tation of these mitigations that inhibits cross-privilege BHI,
would we still be able to mount attacks?

We now show that, even with completely isolated branch
contexts, intra-mode (e.g., kernel-to-kernel) BTI exploits are
not only possible, but even practical. Indeed, almost all the
primitives we built in Section 6.2 remain untouched. We only
move the BHB brute-forcing (P4) inside eBPF itself. How-
ever, differently from Section 6.2, we now exploit the BHB
only to perform out-of-place BTI within the kernel, without
performing BHI. To this end, we create an additional eBPF
program that executes “enough” conditional branches to poi-
son the BHB based on a value provided by the attacker via
eBPF maps. At the end of this program, we use the eBPF
tail_call helper function to append an indirect branch in-
jecting a BTB entry for our disclosure gadget (P2). Then,
we simply brute-force the BHB value during the setup of the
exploit and, once we find a colliding history, we fix it for the
rest of the execution. Hence, the general attack flow remains
the same as the one shown in Figure 9, with the only differ-
ence being that we now generate a colliding BTB tag with the
fill_bhb function inside the kernel when writing to a socket
(step 1). We evaluated this generalized intra-mode BTI ex-
ploit and observed identical leak rate and setup time compared
to the cross-privilege BHI variant shown in Section 6.2.

Implications. Intra-mode BTI exploits were previously
deemed unfeasible. This assumption has motivated the design
of mitigations such as eIBRS and CSV2. By demonstrating a
working kernel-to-kernel BTI exploit, we show that adopting
isolation-based solutions as full-fledged mitigations is too op-
timistic. In fact, thanks to user-accessible interpreters and JIT
engines in the kernel such as unprivileged eBPF, an attacker
can sufficiently control kernel execution to mount practical
attacks. Furthermore, exploits may be feasible even in the
absence of such features, as we discuss in the next section.

982 31st USENIX Security Symposium USENIX Association

#Executed BBs

1 5 10 15 20 25 30 35 40 45 50 55 60 65
0

5

10

15

#
V

ic
ti

m
B

ra
n

ch
e

s

Figure 10: Victim branches vs. executed BBs. The stacked bins
account for the branches with no user-controlled registers.

1 2 3 4 5
#Controlled (Unique) Registers

0

20

40

4644

2

10

1#
V

ic
ti

m
B

ra
n

c
h

e
s

Figure 11: Victim branches vs. number of controlled registers. We
account only for unique user-controlled values (i.e., two registers
with the same value count as one).

6.4 Exploitation Beyond eBPF

In this section, we analyze the possibility of building attacks
against the Linux kernel even with unprivileged eBPF dis-
abled. In the absence of eBPF, an attacker mainly needs to
identify a victim branch (P1) and a disclosure gadget (P2)
to build a covert channel across privilege boundaries. In this
section, we focus mainly on identifying exploitable victim
branches in the kernel, as this is the most relevant step when
exploiting BHI. We then present a preliminary analysis of
indirect-branch targets in the kernel codebase.

6.4.1 Victim Branches

We built a tool on top of angr [47, 48, 50] to identify every
kernel indirect branch reachable from the syscall entry point.
When building intra-mode exploits, any indirect branch in the
kernel may be a viable target for exploitation. However, when
exploiting BHI, we can only abuse indirect branches close
to the syscall entry point. Therefore, based on the results we
presented in Section 5, we limited the depth of our search to
66 Basic Blocks (BBs). In total, we identified 202 reachable
victim branches, 99 of which have user-controlled registers.
In Figure 10, we show the number of victim branches over
the number of previously executed BBs.

To better evaluate their exploitation capabilities, in Fig-
ure 11 we show the distribution of how many registers are
under attacker control when reaching the indirect jumps.
We can see that an attacker can often control at least two
registers—minimum requirement to exploit a simple F+R

0

10

20

30

40

50

#
V

ic
ti

m
B

ra
n

c
h

e
s

rbx rdx rsi rdi r8 r9 r10 r11 r12 r13 r14 r15rcx

Full
Partial

51

37

2

30

2

8

30

51

8

3
1

4
1

14

35

10

32

24

6

33

3 34

Figure 12: Controllability of each register when reaching the victim
branches. One does not always control all the 64 bits. However, most
of the time one lacks control only over one or two bits. Finally, as
expected, one never controls rax, rbp and rsp.

gadget. We further show which registers are user-controlled
for each victim branch in Figure 12. Having control over
function-argument registers (as per the System V calling con-
vention [38]), provides more options for an attacker. Indeed,
since the main use case of indirect branches is executing func-
tion pointers, the function code will likely load data from the
registers containing its arguments. Nonetheless, we observe
that an attacker can often control registers used for function
arguments (e.g., rsi, rdx, and rcx).

Moreover, while not all these branches are easily ex-
ploitable, some of them provide more control compared to
what we exploited in Section 6.2. For instance, we identified
an easily reachable indirect jump in __x64_sys_prctl with
9 controlled registers (with 5 unique user-controlled values)—
only 7 basic blocks away from the syscall entry point.

Finally, while our analysis already reveals a nontrivial num-
ber of victim branches of interest, extending our results to the
entire kernel to cover intra-mode BTI attacks beyond BHI
would further increase these figures. And the larger the num-
ber of victim branches of interest, the higher the likelihood of
fall-through targets (i.e., those following the indirect branch
instruction in the binary) originating disclosure gadgets. Since
such fall-through targets are transiently reachable through
Straight-Line Speculation (SLS) on many Arm and x86-64
processors [14], our analysis also suggests that enabling SLS
mitigations (e.g., available for both architectures in recent
Linux kernel versions [36]) is of practical importance.

6.4.2 Indirect-Branch Targets

To find potential disclosure gadgets in the kernel, we first need
all the possible kernel indirect-branch targets. In this section,
we perform a preliminary attack-surface analysis for BHI and
other intra-mode BTI attacks. We extracted an approxima-
tion of all the targets via static analysis. We implemented a
LLVM compiler pass (using the hasAddressTaken function)
to export all the function entry points used as indirect call
targets. We identified 16715 possible targets for the same
setup mentioned earlier in this section. While our analysis

USENIX Association 31st USENIX Security Symposium 983

does not consider switch-case indirect jump targets, it does at
least cover all the kernel functions an attacker may be able to
reach when exploiting intra-mode BTI.

Potential disclosure gadgets. We further reduced the num-
ber of targets to the ones containing a possible disclosure
gadget (P2). We built a second tool based on angr to search
for potential F+R gadgets. We define them as potential disclo-
sure gadgets (i.e., not conclusively exploitable), since we rely
on a loose definition of a F+R gadget: two tainted loads—one
dependent on the other—originating from different registers
(see the example in Section 6.1). We conservatively consider a
transient execution window of maximum 30 instructions from
the indirect-branch target. Therefore, angr stops its search
after reaching this upper-bound limit. Overall, our tool iden-
tified 1177 potential F+R gadgets. While further analysis is
required to study their practical exploitability, our results in-
dicate that the possible attack surface is nontrivial even when
unprivileged eBPF is not available. Moreover, our analysis
is by no means exhaustive, only focusing on the most “con-
venient” disclosure gadgets. For instance, one may want to
exploit the kernel with a more classic PRIME + PROBE covert
channel [20], loosening the requirements for the disclosure
gadget. Or one may consider control over the stack, unlocking
more complex gadgets, such as the one used in Section 6.2.

7 Mitigations

To mitigate the limited isolation guarantees of eIBRS and
CSV2, it is not sufficient to flush the BHB value on mode
switches. Tagged-based isolation strategies are fundamen-
tally limited by the presence of same-predictor-mode mis-
predictions. As demonstrated in Section 6.3, an attacker can
still mount BTI attacks in a fully isolated system by using
privileged-to-privileged mispredictions. In the absence of
Simultaneous Multithreading (SMT), we verified that a com-
plete flush of all previous BTB entries with IBPB on x86-64
can be used as an effective countermeasure. This strong bar-
rier prevents unprivileged layers from interfering with higher-
privilege predictor modes. However, this defense introduces
a huge performance overhead since all privilege levels are
affected by every flush.

A more cost-effective mitigation strategy is to selectively
disable indirect branch prediction on privileged code. For
example on most x86-64 systems, this can be achieved by
re-enabling retpoline—known to be faster than other existing
in-silicon defenses (i.e., IBRS [54]). Since all major OSes,
compilers, etc. already support it, retpoline can be easily de-
ployed on many systems. For hardware defenses, we believe
that disabling indirect branch speculation for high-privilege
predictor modes altogether—as already available in specific
Arm microarchitectures (e.g., CPUACTLR_EL1 [2])—is a vi-
able option. Ultimately, this mitigation can provide similar

security guarantees as retpoline, while avoiding RSB pollu-
tion. Note that, as our results suggest, it is also important to
inhibit Straight-Line Speculation (SLS) [14] and eliminate
potential fall-through disclosure gadgets, unless alternative
compiler-based mitigations are in place [36].

One last hardening technique to complicate exploitation
is to disable access to exploitation-friendly features such as
the Linux kernel’s eBPF for unprivileged users by default. As
shown in our exploits, eBPF is the ideal playground to mount
transient execution attacks due to the attacker-controlled code
generation and the presence of precise timers. Controlling
code executed in kernel space (or other privileged modes)
should only be possible for administrators, since verifying the
security of JIT’ed code against microarchiectural attacks is a
nontrivial task.

Vendors’ response. In response to our disclosure, Intel
and Arm released whitepapers [3, 30] with suggested mitiga-
tions, while AMD confirmed they are not affected by BHI—
matching our findings.

As a first line of defense, Intel suggests disabling unpriv-
ileged eBPF by default, a mitigation which was indeed de-
ployed by the Linux developers [25]. To address more general
BHI attacks, Intel recommends lfencing potential disclo-
sure gadgets or adopting additional hardening options. In
particular, Intel implemented dedicated indirect branch con-
trols (IA32_SPEC_CTRL MSR) to disable higher-privilege
BHB pollution, a feature available on some current and fu-
ture processors. For other processors, software BHB-clearing
sequences are available. To address intra-mode BTI attacks
beyond BHI, additional indirect branch controls, where avail-
able, can disable user/supervisor indirect branch prediction
altogether. Alternatively, Intel recommends re-enabling retpo-
line on processors where it is fully effective.

Regarding Arm, while we could not cause out-of-place
mispredictions in our experiments on a limited sample of the
Arm ecosystem, their extensive set of mitigations and the list
of affected architectures [3], suggests BHI still represents a
realistic threat on many Arm devices. Indeed, they proposed
5 different solutions depending on the microarchitecture of
the device. A CPU can be protected against BHI via software
during a mode switch by (1) a BHB-clearing sequence, (2)
the new clearbhb instruction, or (3) a SMC to trigger the
firmware BHB-clearing mitigation named “Workaround_3”.
Regarding in-silicon defenses, (4) “Exception Clears Branch
History Buffer” will ensure that exception vectors are unaf-
fected and additionally (5) CSV2.3 will be released to specify
when a device is affected by BHI. We are not aware of planned
Arm mitigations against intra-mode BTI attacks beyond BHI.

On a related note, AMD found flaws in their retpoline
implementation during the disclosure process. AMD realized
that the lfence/jmp sequence is racy and thus not safe (i.e.,
provably so on systems with SMT enabled) starting from
the Zen microarchitecture (family 17h), reverting to generic

984 31st USENIX Security Symposium USENIX Association

retpoline as a result. Similar behavior can be observed on
modern Intel microarchitectures. Finally, the Linux kernel
developers concurrently fixed the funneling issue described
in Appendix A, by patching indirect jumps in-place instead
of relying on the indirect thunks.

8 Related Work

Spectre [34] and Meltdown [37] set the stage for a large body
of transient execution attacks [8, 20, 35, 39, 40, 43–45, 49, 55–
58, 63]. In this work we focus on Branch Target Injection,
also dubbed Spectre v2, and specifically focus on the security
guarantees and limitations of related defenses. Throughout the
paper, we show the incompleteness of isolation-based hard-
ware mitigations alongside end-to-end Linux/Intel exploits
against the kernel from unprivileged user applications.

Previous work [9, 11, 34, 62] already demonstrated out-of-
place BTI attacks on Intel CPUs, either by abusing virtual
address aliasing (i.e., same 32 LSBs) [9, 11], or by relying
on the BHB [9, 34, 62]. In our work, we expand on these re-
sults demonstrating how, despite the introduction of dedicated
hardware mitigations (i.e., eIBRS), the “leaky” isolation can
lead to serious security threats. Furthermore, we expand the
practicability of out-of-place BTI when controlling only the
BHB, lowering the bar for BTI attacks in the general case.

Zhang et al. [64] implemented Spectre-v2 attacks abus-
ing IP-address collisions and early front-end collisions in the
context of transient trojans, i.e., software modules conceal-
ing their malicious activity. In our exploits, we only exercise
BHB-based mispredictions against an unmodified kernel and
exploit bugs in hardware defenses to leak data across privi-
lege boundaries. We also consider a different threat model
of an unprivileged attacker performing both user-to-kernel
and kernel-to-kernel attacks, while Zhang et al. consider a
privileged attacker performing kernel-to-user and kernel-to-
kernel attacks based on injected trojans. Finally, while the
feasibility of same-predictor-mode mispredictions has been
demonstrated before, we are the first to show that this enables
practical exploitation for an unprivileged attacker.

Schwarzl et al. [46] verified that the address translation
attack [24] became viable again after switching defaults from
retpoline to eIBRS in the Linux kernel on compatible systems.
The root cause is the funneling issue described in Appendix A,
which re-enables Spectre-v2 in-place attacks.

Lastly, many prior efforts have reverse engineered indirect
branch prediction internals [19,34,62,64]. Our work confirms
their partial results, provides information on the most recent
processor generations, and proposes a new approach based
on history brute-forcing to mount BHB-based BTI attacks.

9 Conclusion

Despite the rise of in-silicon mitigations against transient exe-
cution attacks since the public disclosure of Spectre in 2018,
we demonstrate that Branch Target Injection is still possible
on modern processors deploying these mitigations. We an-
alyzed indirect branch prediction internals and showed that
BHB-based cross-privilege BTI attacks are not only feasible,
but also practical. In more detail, we implemented end-to-end
exploits breaking both partial, as well as full (hypothetical)
indirect branch prediction state isolation on Intel systems,
leaking secrets from the kernel at a rate of 160 bytes/s.

As countermeasures, we suggest re-enabling software de-
fenses such as retpoline and forbidding unprivileged access to
exploitation-friendly features such as eBPF to further reduce
the transient execution attack surface.

Disclosure

We disclosed the security vulnerabilities described in the pa-
per to Intel, AMD, Arm, and the Linux Kernel in Sep, 2021.
Other affected software vendors have been notified by Intel.
Following our reports, affected vendors have acknowledged
our findings, developed mitigations, and released security ad-
visories. Intel rewarded our findings with the Intel Bug Bounty
program and issued two CVEs (CVE-2022-0001 for BHI and
CVE-2022-0002 for Intra-mode BTI). Arm also issued a CVE
(CVE-2022-23960). After initially proposing a 90-day em-
bargo period, we later agreed to delay the public disclosure
date to March 8, 2022, in order to provide vendors with suffi-
cient time to implement and deploy mitigations.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments. We also thank Alyssa Milburn and Andrew Cooper for
their feedback. This work was supported by the EU’s Horizon
2020 research and innovation programme under grant agree-
ment No. 825377 (UNICORE), by Intel Corporation through
the Side Channel Vulnerability ISRA, and by Netherlands
Organisation for Scientific Research through projects “TROP-
ICS”, “Theseus”, and “Intersect”. This paper reflects only the
authors’ view. The funding agencies are not responsible for
any use that may be made of the information it contains.

References
[1] Nadav Amit, Fred Jacobs, and Michael Wei. JumpSwitches: restoring

the performance of indirect branches in the era of Spectre. In USENIX
ATC, 2019.

[2] Arm. CPUACTLR_EL1: ARM Cortex-A72 MPCore Processor Tech-
nical Reference Manual r0p3. https://developer.arm.com/do
cumentation/100095/0003/way1382037666700. Accessed on
21-02-2022.

USENIX Association 31st USENIX Security Symposium 985

https://developer.arm.com/documentation/100095/0003/way1382037666700
https://developer.arm.com/documentation/100095/0003/way1382037666700

[3] Arm. Speculative processor vulnerability. https://developer.arm.
com/support/arm-security-updates/speculative-processor
-vulnerability.

[4] ARM. Vulnerability of Speculative Processors. https://developer.
arm.com/support/arm-security-updates/speculative-proce
ssor-vulnerability, 2018.

[5] ARM. Speculative processor vulnerability FAQ. https://develope
r.arm.com/support/arm-security-updates/speculative-pro
cessor-vulnerability/frequently-asked-questions, 2021.

[6] ARM. Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism. https://developer.arm.com/support/arm-
security-updates/speculative-processor-vulnerability,
2021.

[7] Arm®. Architecture Reference Manual - Armv8, for A-profile archi-
tecture. DDI 0487G.b (ID072021), 2021.

[8] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, et al. Fallout: Leaking data on meltdown-resistant
cpus. In ACM CCS, 2019.

[9] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In USENIX Security, 2019.

[10] Po-Yung Chang, Eric Hao, and Yale N Patt. Target prediction for
indirect jumps. In ACM SIGARCH Computer Architecture News, 1997.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In IEEE EuroS&P, 2019.

[12] Yu cheng Yu. Firmware interfaces for mitigating cache speculation
vulnerabilities. https://developer.arm.com/-/media/develope
r/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigatin
g_CVE-2017-5715.pdf, 2021.

[13] Andrew Cooper. Mitigations for SP2/CVE-2017-5715/Branch Target
Injection. https://lists.xenproject.org/archives/html/xen
-devel/2018-01/threads.html#02169, 2018.

[14] Jonathan Corbet. Blocking straight-line speculation – eventually. http
s://lwn.net/Articles/877845, 2022.

[15] Karel Driesen and Urs Holzle. Accurate indirect branch prediction. In
ACM ISCA, 1998.

[16] Karel Driesen and Urs Holzle. The cascaded predictor: Economical
and adaptive branch target prediction. In IEEE MICRO, 1998.

[17] Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik Van Der Kouwe.
Pibe: practical kernel control-flow hardening with profile-guided indi-
rect branch elimination. In ACM ASPLOS, 2021.

[18] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In IEEE
MICRO, 2016.

[19] A. Fog. The Microarchitecture of Intel, AMD and VIA CPU. http:
//www.agner.org/optimize/microarchitecture.pdf, 2021.

[20] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative probing: Hacking blind in the spectre
era. In ACM CCS, 2020.

[21] Google. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886,
2018.

[22] Julien Grall. xen/arm64: Add skeleton to harden the branch predictor
aliasing attacks. https://github.com/xen-project/xen/commi
t/4c4fddc166cf528aca49540bcc9ee4f196b01dac#diff-6092d8
e9c6cb4df6f4c9b08626778f9dbac0e8b7209445276498639a2139
8039R97, 2018.

[23] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell,
Daniel A Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward
Brekelbaum, Vikas Sinha, et al. Evolution of the samsung exynos cpu
microarchitecture. In ACM ISCA, 2020.

[24] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing smap and
kernel aslr. In ACM CCS, 2016.

[25] Pawan Gupta. Disallow unprivileged bpf by default. https://lore
.kernel.org/bpf/20211027233943.kehyrdbibp2d2u4c@gupta
-dev2.localdomain/T/, 2021.

[26] Intel. Indirect Branch Restricted Speculation . https://www.intel.
com/content/www/us/en/developer/articles/technical/sof
tware-security-guidance/technical-documentation/indire
ct-branch-restricted-speculation.html, 2018.

[27] Intel. INTEL-SA-00088. https://software.intel.com/content
/www/us/en/develop/articles/software-security-guidance
/advisory-guidance/branch-target-injection.html, 2018.

[28] Intel. Retpoline: A Branch Target Injection Mitigation. https://so
ftware.intel.com/sites/default/files/managed/1d/46/Ret
poline-A-Branch-Target-Injection-Mitigation.pdf, 2018.

[29] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual
combined volumes. 325462-070US, 2019.

[30] Intel. Branch History Injection advisory. https://www.intel.co
m/content/www/us/en/developer/articles/technical/softw
are-security-guidance/advisory-guidance/branch-history
-injection.html, 2022.

[31] Mehmet Iyigun. Mitigating Spectre variant 2 with Retpoline on Win-
dows. https://web.archive.org/web/20211126075707/https:
//techcommunity.microsoft.com/t5/windows-kernel-intern
als-blog/mitigating-spectre-variant-2-with-retpoline
-on-windows/ba-p/295618, 2019.

[32] John Kalamatianos and David R Kaeli. Predicting indirect branches
via data compression. In IEEE MICRO, 1998.

[33] Hyesoon Kim, José A Joao, Onur Mutlu, Chang Joo Lee, Yale N Patt,
and Robert Cohn. Virtual program counter (vpc) prediction: Very low
cost indirect branch prediction using conditional branch prediction
hardware. In IEEE Transactions on Computers, 2008.

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
IEEE S&P, 2019.

[35] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In USENIX WOOT, 2018.

[36] Michael Larabel. x86 straight line speculation cpu mitigation appears
for linux 5.17. https://www.phoronix.com/scan.php?page=news
_item&px=x86-SLS-Mitigation-5.17, 2022.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
USENIX Security, 2018.

[38] Hongjiu Lu, Michael Matz, Milind Girkar, Jan Hubiaka, Andreas Jaeger,
and Mark Mitchell. System v application binary interface amd64
architecture processor supplement (with lp64 and ilp32 programming
models) version 1.0. https://github.com/hjl-tools/x86-psABI
/wiki/x86-64-psABI-1.0.pdf, 2018.

[39] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execu-
tion using return stack buffers. In ACM CCS, 2018.

[40] Ken Johnson Microsoft Security Response Center (MSRC). Analysis
and mitigation of speculative store bypass. https://msrc-blog.mi
crosoft.com/2018/05/21/analysis-and-mitigation-of-spec
ulative-%store-bypass-cve-2018-3639/, 2019.

986 31st USENIX Security Symposium USENIX Association

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf
https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf
https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf
https://lists.xenproject.org/archives/html/xen-devel/2018-01/threads.html#02169
https://lists.xenproject.org/archives/html/xen-devel/2018-01/threads.html#02169
https://lwn.net/Articles/877845
https://lwn.net/Articles/877845
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
https://support.google.com/faqs/answer/7625886
https://github.com/xen-project/xen/commit/4c4fddc166cf528aca49540bcc9ee4f196b01dac#diff-6092d8e9c6cb4df6f4c9b08626778f9dbac0e8b7209445276498639a21398039R97
https://github.com/xen-project/xen/commit/4c4fddc166cf528aca49540bcc9ee4f196b01dac#diff-6092d8e9c6cb4df6f4c9b08626778f9dbac0e8b7209445276498639a21398039R97
https://github.com/xen-project/xen/commit/4c4fddc166cf528aca49540bcc9ee4f196b01dac#diff-6092d8e9c6cb4df6f4c9b08626778f9dbac0e8b7209445276498639a21398039R97
https://github.com/xen-project/xen/commit/4c4fddc166cf528aca49540bcc9ee4f196b01dac#diff-6092d8e9c6cb4df6f4c9b08626778f9dbac0e8b7209445276498639a21398039R97
https://lore.kernel.org/bpf/20211027233943.kehyrdbibp2d2u4c@gupta-dev2.localdomain/T/
https://lore.kernel.org/bpf/20211027233943.kehyrdbibp2d2u4c@gupta-dev2.localdomain/T/
https://lore.kernel.org/bpf/20211027233943.kehyrdbibp2d2u4c@gupta-dev2.localdomain/T/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://web.archive.org/web/20211126075707/https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/mitigating-spectre-variant-2-with-retpoline-on-windows/ba-p/295618
https://web.archive.org/web/20211126075707/https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/mitigating-spectre-variant-2-with-retpoline-on-windows/ba-p/295618
https://web.archive.org/web/20211126075707/https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/mitigating-spectre-variant-2-with-retpoline-on-windows/ba-p/295618
https://web.archive.org/web/20211126075707/https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/mitigating-spectre-variant-2-with-retpoline-on-windows/ba-p/295618
https://www.phoronix.com/scan.php?page=news_item&px=x86-SLS-Mitigation-5.17
https://www.phoronix.com/scan.php?page=news_item&px=x86-SLS-Mitigation-5.17
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/

[41] Phronix. Amd retpoline benchmarks from fx to threadripper & epyc.
https://www.phoronix.com/scan.php?page=news_item&px=AM
D-Retpoline-Linux-4.15-FX-Zen, 2018.

[42] Sai Praneeth. [PATCH] x86/speculation: Support Enhanced IBRS on
future CPUs. http://lkml.iu.edu/hypermail/linux/kernel/1
807.3/00923.html, 2018.

[43] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine clears
and their implications for transient execution attacks. In USENIX
Security, 2021.

[44] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Crosstalk: Speculative data leaks across cores are real. In
IEEE S&P, 2021.

[45] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In ACM CCS, 2019.

[46] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. Speculative dereferencing: Reviving foreshadow. In Inter-
national Conference on Financial Cryptography and Data Security,
2021.

[47] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In NDSS,
2015.

[48] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In IEEE S&P,
2016.

[49] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[50] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In NDSS, 2016.

[51] AMD64 Technology. Indirect Branch Control Extension - Revision
4.10.18". https://developer.amd.com/wp-content/resources
/Architecture_Guidelines_Update_Indirect_Branch_Contr
ol.pdf. Accessed on 21-02-2022.

[52] AMD64 Technology. Software techniques for managing speculation
on amd processors - Revision 7.10.18. https://developer.amd.co
m/wp-content/resources/Managing-Speculation-on-AMD-P
rocessors.pdf. Accessed on 21-02-2022.

[53] AMD64 Technology. AMD64 Architecture Programmer’s Manual:
Volumes 1-5s - Revision 4.03, 2021.

[54] Linus Torvalds. Re: [RFC 09/10] x86/enter: Create macros to restric-
t/unrestrict Indirect Branch Speculation. https://lkml.org/lkml/
2018/1/21/192, 2018.

[55] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In USENIX
Security, 2018.

[56] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. Lvi: Hijacking transient execution through mi-
croarchitectural load value injection. In IEEE S&P, 2020.

[57] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Ridl: Rogue in-flight data load. In IEEE S&P, 2019.

[58] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. Cacheout: Leaking data on intel cpus via cache
evictions. In IEEE S&P, 2021.

[59] Pepe Vila, Boris Köpf, and José F Morales. Theory and Practice of
Finding Eviction Sets. In IEEE S&P, 2019.

[60] David Woodhouse. [PATCH v8 00/12] Retpoline: Avoid speculative
indirect calls in kernel. https://lore.kernel.org/all/15157071
94-20531-5-git-send-email-dwmw@amazon.co.uk/T/#u, 2018.

[61] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution,
low noise, l3 cache side-channel attack. In USENIX Security, 2014.

[62] Jann Horn Google Project Zero. Reading privileged memory with a
side-channel. https://googleprojectzero.blogspot.com/201
8/01/reading-privileged-memory-with-side.html, 2018.

[63] Jann Horn Google Project Zero. Speculative execution, variant 4:
speculative store bypass. https://bugs.chromium.org/p/projec
t-zero/issues/detail?id=1528, 2019.

[64] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
branch predictors for constructing transient execution trojans. In ACM
ASPLOS, 2020.

[65] Peter Zijlstra. objtool,x86: Rewrite retpoline thunk calls. https:
//lore.kernel.org/all/20210219220158.GD59023@worktop.p
rogramming.kicks-ass.net/T/#m18b6cfece23f71b4526106b9
3ec7bb4aeeb86df2, 2021.

[66] Marc Zyngier. KVM: arm64: Set CSV2 for guests on hardware unaf-
fected by Spectre-v2. https://github.com/torvalds/linux/co
mmit/e1026237f90677fd5a454f63057a62f984c2188d, 2020.

USENIX Association 31st USENIX Security Symposium 987

https://www.phoronix.com/scan.php?page=news_item&px=AMD-Retpoline-Linux-4.15-FX-Zen
https://www.phoronix.com/scan.php?page=news_item&px=AMD-Retpoline-Linux-4.15-FX-Zen
http://lkml.iu.edu/hypermail/linux/kernel/1807.3/00923.html
http://lkml.iu.edu/hypermail/linux/kernel/1807.3/00923.html
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://lkml.org/lkml/2018/1/21/192
https://lkml.org/lkml/2018/1/21/192
https://lore.kernel.org/all/1515707194-20531-5-git-send-email-dwmw@amazon.co.uk/T/#u
https://lore.kernel.org/all/1515707194-20531-5-git-send-email-dwmw@amazon.co.uk/T/#u
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
 https://lore.kernel.org/all/20210219220158.GD59023@worktop.programming.kicks-ass.net/T/#m18b6cfece23f71b4526106b93ec7bb4aeeb86df2
 https://lore.kernel.org/all/20210219220158.GD59023@worktop.programming.kicks-ass.net/T/#m18b6cfece23f71b4526106b93ec7bb4aeeb86df2
 https://lore.kernel.org/all/20210219220158.GD59023@worktop.programming.kicks-ass.net/T/#m18b6cfece23f71b4526106b93ec7bb4aeeb86df2
 https://lore.kernel.org/all/20210219220158.GD59023@worktop.programming.kicks-ass.net/T/#m18b6cfece23f71b4526106b93ec7bb4aeeb86df2
https://github.com/torvalds/linux/commit/e1026237f90677fd5a454f63057a62f984c2188d
https://github.com/torvalds/linux/commit/e1026237f90677fd5a454f63057a62f984c2188d

A Linux eIBRS Adoption Flaw

In Section 5, we discussed the BHI attack surface and the
differences between in-place and out-of-place BTI [9]. How-
ever, during our security analysis, we discovered an issue
with the adoption of eIBRS in the Linux kernel (versions
< 5.14) that made the two scenarios almost equivalent. In
fact, on eIBRS-supporting systems Linux used to “funnel” all
the kernel indirect jumps to one single call site per register—
essentially originating the same attack surface as out-of-place
BTI since all the indirect jumps converge to few locations.

Such implementation was motivated by the fact that the
Linux kernel does not know at compile time whether it will
be running on a system that supports eIBRS. Indeed, since
cpuid holds this information, the kernel discovers only at
boot time whether it should use the in-silicon mitigation or
the software-based retpoline. Thus, the Linux kernel devel-
opers opted for a hot-patching approach to gain the perfor-
mance improvements of the in-silicon mitigation. Unfortu-
nately, prior to version 5.14, the kernel used to patch a single
thunk per register (Listing 3) for both environments. This
caused no drawbacks on systems deploying retpoline, since
retpoline does not allow the CPU to speculate on the tar-
get. However, on eIBRS-enabled systems, this resulted into
__x86_indirect_thunk_$reg being patched to a simple
jmp $reg at runtime. Doing so undermined the desired secu-
rity guarantees of eIBRS (as well as indirect branch prediction
performance), as all the branches in the kernel previously pro-
tected by retpoline are dispatched from the same few call
sites. Effectively, this “funneling” allowed for straightforward
in-kernel mistraining of the indirect branch predictor, since all
indirect jumps are sunk to few source addresses, increasing
the attack surface for Spectre-v2 (in-place BTI) attacks.

We disclosed this issue to the Linux kernel developers, who
had observed it concurrently to our work and, in response,
developed a patch set. As a result, as of Linux kernel 5.14 [65],
indirect thunks are only used in the early boot process of
the system, while for all the other indirect jumps the kernel
performs patching directly “over” the original indirect jumps
to completely eradicate this issue.

Listing 3 Linux implementation for the Spectre v2 mitigation
before version 5.14 on Intel processors depending on eIBRS
hardware support. The shown example is taken from the
indirect jump in charge to execute the correct syscall handler
stored in the sys_call_table.

1 do_syscall_64:
2 ;...
3 mov rax, [sys_call_table + rax*8]
4 call __x86_indirect_thunk_rax

1 ;with eIBRS support
2 __x86_indirect_thunk_rax:
3 jmp rax

1 ;without eIBRS support (retpoline)
2 __x86_indirect_thunk_rax:
3 call B
4 A: pause
5 lfence
6 jmp A
7 B: mov [rsp], rax
8 ret

988 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	Branch Prediction
	Branch Target Injection

	Overview
	Spectre-v2 Defenses
	Software Defenses
	Hardware Defenses
	A Complex Adoption

	Branch History Injection
	Bypassing eibrs and CSV2
	BHI Attack Surface
	Understanding bhi on Intel

	End-to-end Exploitation
	Attacker Primitives
	Exploiting bhi with eBPF
	Same-Predictor-Mode Exploit
	Exploitation Beyond ebpf
	Victim Branches
	Indirect-Branch Targets

	Mitigations
	Related Work
	Conclusion
	Linux eibrs Adoption Flaw

