
Why Eve and Mallory Still Love Android:
Revisiting TLS (In)Security in Android Applications

Marten Oltrogge∗

marten.oltrogge@cispa.saarland
Nicolas Huaman†

huaman@sec.uni-hannover.de
Sabrina Klivan†

amft@sec.uni-hannover.de

Yasemin Acar†

acar@sec.uni-hannover.de
Michael Backes∗

backes@cispa.saarland
Sascha Fahl†

fahl@sec.uni-hannover.de
∗CISPA Helmholtz Center for Information Security

†Leibniz University Hannover

Abstract
Android applications have a long history of being vulner-
able to man-in-the-middle attacks due to insecure custom
TLS certificate validation implementations. To resolve this,
Google deployed the Network Security Configuration (NSC),
a configuration-based approach to increase custom certifi-
cate validation logic security, and implemented safeguards in
Google Play to block insecure applications.

In this paper, we perform a large-scale in-depth investi-
gation of the effectiveness of these countermeasures: First,
we investigate the security of 99,212 NSC settings files in
1,335,322 Google Play apps using static code and manual anal-
ysis techniques. We find that 88.87% of the apps using custom
NSC settings downgrade security compared to the default set-
tings, and only 0.67% implement certificate pinning. Second,
we penetrate Google Play’s protection mechanisms by trying
to publish apps that are vulnerable to man-in-the-middle at-
tacks. In contrast to official announcements by Google, we
found that Play does not effectively block vulnerable apps.
Finally, we performed a static code analysis study of 15,000
apps and find that 5,511 recently published apps still contain
vulnerable certificate validation code.

Overall, we attribute most of the problems we find to insuf-
ficient support for developers, missing clarification of secu-
rity risks in official documentation, and inadequate security
checks for vulnerable applications in Google Play.

1 Introduction

Studying the security of Android applications has a long
history [35] and was heavily influenced by the seminal pa-
per by Enck et al. in 2011 [52]. A myriad of investigations
demonstrated that developers struggle with different aspects
of implementing Android application security mechanisms
correctly [46, 50–52, 73, 78]. The number of affected users
of Android applications vulnerable to different types of at-
tacks due to incorrect security implementations goes into
billions [31].

While developers fight with many different security chal-
lenges, custom TLS certificate validation security received
attention early on in 2012 [54, 56] and has become a hotly
debated topic over the years [47, 48, 56, 58, 74, 76, 77, 84, 85].
The problem not only affects Android applications but turns
out to be a broader issue in secure programming [38, 42, 69].
Researchers proposed different countermeasures which all fo-
cus on simplifying the process of implementing non-standard
TLS certificate validation such as certificate or public key
pinning or the secure use of self-signed certificates for appli-
cations under development [56, 74, 85].

However, the problem not only received attention from
academia. Google introduced countermeasures and novel
mechanisms for developers in Android and added further
security policies and safeguards to Google Play (cf. Table 1).
Their goal was to establish new and safer defaults such as
enforcing TLS for all network connections by default and
blocking vulnerable apps and updates from Google Play.

Therefore, Google introduced a significant change in
Android 7 in 2016: The Network Security Configuration
(NSC) [19] allows developers to implement custom certificate
validation logic using an XML configuration file, instead of
requiring custom code.

Additionally, Google Play announced novel security poli-
cies and safeguards in 2016 and 2017 [66–68]. They prohibit
new apps and updates to include insecure certificate validation
logic. While previous work (e.g. [70, 75, 80, 86] found vulner-
able apps in Google Play that were published after 2016, our
study is the first detailed analysis of Google Play’s safeguard
efficacy.

Although the goal of all introduced changes is to improve
TLS security for Android applications and fix the disastrous
circumstances that researchers uncovered in 2012 [54] and
2013 [56], the efficacy and success of this undertaking has not
yet been investigated in-depth. However, incidents illustrate
that Network Security Configuration is not a guarantee for
secure certificate validation logic in Android apps: In 2019,
Google’s official Gmail app for Android had come with an
insecure NSC setting that opened the possibility for a MitMA

via user-installed CAs. This vulnerability affected 43% of
the Android ecosystem [39].

The overall goal of this work is to investigate the current
status of TLS certificate validation security in Android apps.

To the best of our knowledge, we provide the first large-
scale and in-depth evaluation of the success of Android’s
NSC approach combined with an analysis of the new security
policies and safeguards in Google Play. We also revisit the
security of custom certificate validation implementations in
Android apps as performed by Fahl et al. [54]. Overall, we
make the following contributions:

NSC adoption and security. We measure the adoption of
the NSC in 1,335,322 free current Android apps from Google
Play, and find that 99,212 apps include custom NSC settings.
For these apps, we evaluate the security of their custom NSC
settings and find that more than 88.87% of them weaken se-
curity by downgrading safe-defaults. In contrast, only 0.67%
implement certificate pinning. Our findings illustrate that cer-
tificate validation remains a challenging task for developers
and requires further attention from the security research com-
munity and industry. We report and discuss this contribution
in Sections 4 and 4.1.

Efficacy of Google Play Safeguards. We perform multiple
experiments to evaluate the efficacy of Google Play TLS
security policies and safeguards. We find that Google Play
only catches trivial insecure certificate validation code but
still accepts most of the dangerous code already found in
previous work in 2012 [54, 58]. We replicate work by Fahl
et al. [54] and find that out of 15,000 current Android apps
in Google Play more than 5,511 contain custom certificate
validation code that is vulnerable to MitMAs. These findings
are in stark contrast with Google’s official statements [66–68]
and demonstrate the importance of further research in this
area. We report and discuss this contribution in Section 5.

Discussion and Recommendations. Based on our findings,
we provide an in-depth discussion of the successes and fail-
ures of the NSC approach and Google Play’s security policies
and safeguards. We illustrate recommendations to improve
TLS certificate validation security in future Android versions.

2 Background on TLS and Android

TLS is the most widely deployed network protocol to secure
communication channels between clients and servers [36, 82,
83]. It provides confidentiality, integrity, and authenticity for
information shared between network end-points and can pre-
vent active and passive MitMAs. While mutual authentication
for clients and servers is supported, in most cases only the
server’s identity is verified. A server is considered trustworthy
if the certificate was issued by a trusted certificate authority
(CA) for the correct hostname and is still valid 1. Most mod-

1The entire X.509 certificate validation process is much more complex,
but left out here for brevity. We refer the interested reader to [43].

ern operating systems include a pre-installed list of trusted
root CA certificates. As of June 2020 on Android this list
contains 138 entries [4]. While Android correctly validates
TLS certificates signed by one of those 138 CAs by default,
developers may choose to create their validation logic for
several reasons, such as using a custom CA [54]. Before the
introduction of NSC, developers had to implement custom
certificate validation logic using Android APIs [14, 30, 32].
However, using custom code commonly leads to vulnerabili-
ties [54, 58], such as failing to correctly implement practices
like certificate pinning or leaving custom code intended for
debugging in production code. Even when putting consider-
able effort into secure certificate validation implementations,
the Android TLS API makes it unnecessarily complicated
for developers to implement secure certificate validation (cf.
[54]). For example, before Android 4.2, there was no proper
API that returned the trusted certificate chain as constructed
by the system’s certificate validation routines. Hence, attack-
ers were able to manipulate the certificate list as presented
by the server. This shortcoming made the implementation
of correct CA certificate pinning particularly difficult and
made many pinning implementations in the wild vulnerable
to MitMAs [71], affecting both app developers as well as
libraries such as OkHttp’s CertificatePinner [8] [34].

To reduce the threats accompanying insecure implementa-
tions, Google introduced significant changes for X.509 certifi-
cate validation. We categorize changes into the introduction
and updates of NSC and security policy changes and safe-
guards in Google Play. Table 1 illustrates important changes
in chronological order.

2.1 Network Security Configuration
With the release of Android 7, Google introduced the Net-
work Security Configuration (NSC) [19]. NSC supports cer-
tificate pinning, custom CA certificates and debugging flags,
both globally for all network connections or for specific do-
mains [19].

Figure 1 gives an overview of the structure of
an NSC file and how the different features can be
combined in <base-config>, <domain-config> and
<debug-overrides> sections. Below we provide details for
the NSC details that are relevant for our work.

Cleartext Traffic Support This flag can be used to enforce
HTTPS or allow HTTP for network connections. Developers
can make global or domain specific configurations. Starting
with Android 9, cleartext traffic via HTTP is not permitted by
default anymore [45]. Instead, HTTPS is used by default [63].
Developers can set the cleartextTrafficPermitted flag
if they want to enable HTTP (cf. Listing 3 in the Ap-
pendix) [21]. Alternatively, developers can configure cleart-
ext traffic support in the application manifest by setting the
android:usesCleartextTraffic attribute [6]. Since An-

Table 1: Chronological overview of TLS-related events in the history of Android:

Date Android Version Description

1 2015-10-05 Android 6 (API 23) Android introduces the "android:usesCleartextTraffic" flag for Manifest files, and removes the Apache HTTP
Client library [33, 59, 64].

2 2016-05-17 Google Play blocks apps containing unsafe implementations of the X509TrustManager interface [67].
3 2016-08-22 Android 7 (API 24) Android introduces NSC, distrusts user-installed certificates, and ignores the "android:usesCleartextTraffic"

flag in case a NSC file is available [44, 60].
4 2016-11-25 Google Play blocks apps containing unsafe implementations of the onReceivedSslError method in Web-

Views [66].
5 2017-03-01 Google Play blocks apps containing unsafe implementations of the HostnameVerifier interface [68].
6 2017-08-21 Android 8 (API 26) Android adds support for the "cleartextTrafficPermitted" flag for the WebView class [61].
7 2018-08-01 New apps need to target at least Android 8; makes new safe defaults introduced with Android 7 (2016-08-22)

and Android 8 (2017-08-21) [49, 65] available to those apps.
8 2018-08-08 Android 9 (API 28) Sets "cleartextTrafficPermitted" to false; enforces HTTPS connections by default. Developers can revert this

for specific domains or globally in NSC) settings [63].
9 2018-11-01 App updates need to target at least Android 8; makes new safe defaults introduced with Android 7 (2016-08-22)

and Android 8 (2017-08-21) [49, 65] available to existing apps.
10 2019-08-01 New apps need to target at least Android 9; makes new safe defaults introduced with Android 9 (2018-08-

08) [49, 65] available to those apps.
11 2019-11-01 Updates need to target at least Android 9; existing apps benefit from new safe defaults introduced with

Android 9 (2018-08-08) [49, 65].

Affects Android OS & NSC – Affects Google Play security policy & safeguards.

<network-security-config>

<base-config>

<trust-anchors>

<certificates>

<domain-config>

domain <trust-anchors>

<certificates>

<pin-set>

<pin>

<domain-config>

<debug-overrides>

<trust-anchors>

<certificates>

Figure 1: NSC files contain <base-config>,
<domain-config> and <debug-overrides> configu-
rations, including custom CA (<trust-anchors>) and
certificate pinning (<pin-sets>) configurations. Clear-
text traffic can be permitted or forbidden using the
clearTextTrafficPermitted flag globally for specific
domains.

droid 9, the value is true by default. However, it is only hon-
ored if no NSC file is provided by the developer.

Certificate Pinning Allows developers to implement cer-
tificate pinning [53]. Connections can then only be established
if at least one certificate from the server’s certificate chain
matches any of the registered pins. In contrast to before An-

droid 7, developers do not need to write custom Android code.
Developers need to specify expected pinning information in-
side <pin> tags within the <pin-set> environment.

Custom Trust Anchors Allows developers to customize
the set of trusted CA certificates – e.g., distrusting pre-
installed system CA certificates, introducing additional CA
certificates, or allowing user-installed CA certificates – for
production purposes. As of Android 7, user-installed CA cer-
tificates are no longer trusted roots by default. Trust is in-
stead limited to the set of pre-installed system root CA cer-
tificates [44, 60]. However, developers can re-enable user-
installed certificates by setting the user flag (cf. Listing 4),
which is a security downgrade comparable to the situation
before Android 7.

Debug Settings Allow developers to configure CA certifi-
cates – e.g., locally issued or self-signed certificates – for
debugging purposes. In contrast to manually implemented
code to switch between debug and production logic, it is not
possible to have debug settings active in production when
publishing apps in Google Play. [28]

Limits of NSC The introduction of NSC did not come
along with the deprecation, suspension, or even removal of
certificate validation APIs in the Android SDK. Developers
are still allowed to write the same erroneous certificate valida-
tion code as in earlier Android versions. This is particularly
critical since custom certificate validation code overrides NSC
settings in some cases (e.g. a vulnerable TrustManager im-
plementation makes NSC certificate pinning configurations
useless).

2.2 Google Play

In addition to NSC for Android, Google Play implemented a
set of policy changes and safeguards.

In 2016 and 2017, Google added safeguards that pre-
vented new apps or app updates to include unsafe
X509Trustmanager and HostnameVerifier interfaces and
onReceivedSslError methods in WebViews. Google did
not provide further details of the safeguards. However, they
are executed as part of an app’s review process before pub-
lishing the app [62]. Since August 2018, Google Play has
only accepted apps and updates that target Android 8 [49],
which enforces that user-installed certificates are not trusted
by default. From late 2019 new apps and updates have been
forced to target Android 9 or higher and therefore enforced
HTTPS by default [65].

3 Related Work

In this section, we discuss related work regarding
measurement studies of insecure TLS certification validation
code in Android apps.

In 2012 Fahl et al. [54] analyzed 13,500 popular, free An-
droid apps and found 8% to be susceptible to Man-in-the-
Middle-attack (MitMA)s because of insecure TLS certificate
validation code. In follow-up work in 2013, Fahl et al. [56]
extended their previous analysis to iOS and manually investi-
gated 1,009 applications. They reported that 14% of the apps
suffer from similar issues as apps on Android.

Like Fahl et al., Georgiev et al. [58] uncovered a variety
of vulnerabilities in TLS certificate verification logic in non-
browser software, including mobile apps in 2012. As root
causes, they identified poorly designed APIs which confused
developers, as well as a lack of safe defaults. In 2014 Soun-
thiraraj et al. [84] presented SMV-HUNTER, an automated,
large-scale analysis tool utilizing a combination of static and
dynamic analysis to detect vulnerabilities in the certificate val-
idation logic of Android applications. They performed a study
of 23,418 apps, identified 1,453 as potentially vulnerable, and
were able to confirm this for 726. In 2015, Onwuzurike and
De Cristofaro [77] conducted static and dynamic analyses on
100 popular Android apps and found 32 to implement unsafe
TLS certificate validation logic. Furthermore, 91 applications
were vulnerable if attackers installed root CAs on a victim’s
device. In 2015 He et al. [69] presented SSLINT, a tool to
detect incorrect use of TLS APIs. They found 27 previously
unknown TLS-related vulnerabilities in Ubuntu applications.
Fischer et al. [57] classified security-related code snippets
from the platform Stack Overflow and assessed their preva-
lence in Android applications in 2017. They found the most
dominant insecure code to be related to unsafe custom TLS.
While they could not determine whether or not developers di-
rectly copied detected code snippets from Stack Overflow, the
authors argue that the platform has a significant impact and

responsibility due to its popularity. Razaghpanah et al. [81]
conducted a dynamic network traffic analysis with data for
1,364,420 TLS handshakes from 7,258 Android apps using
the the Lumen Privacy Monitor framework for 5,000 users in
2017. They find that 2% of the apps in their data set implement
custom certificate validation logic.

In contrast to the previous work above, our work focuses
on the security of custom NSC settings in deployed Android
apps.

Oltrogge et al. [75] analyzed 13 online application gen-
erators for Android, of which six failed to implement TLS
certificate validation code correctly in 2018. In 2019 Kafle
et al. [70] conducted a security analysis of the Google Nest
and Philips Hue smart home platforms. They analyzed 761
smart home management apps from Google Play and Nest
and found that 20.61% respectively 19.82% of the apps im-
plemented insecure TLS certificate validation. Rahaman et
al. [80] present the static analysis tool CryptoGuard, analyzed
6,181 Android apps in 2019 and found insecure TrustMan-
ager implementations in 25.30% of the apps. They conclude
that Google Play’s inspection safeguards are insufficient. Re-
cently, in 2020, Weir et al. [86] performed an online survey
with Google Play developers about their access to security ex-
perts and developer assurance techniques and analyzed their
participants’ apps using MalloDroid [54], CogniCrypt [72]
and FlowDroid [40]. They found SSL issues in 70% of the
apps. While previous work found that apps with vulnerable
certificate validation logic have been published after 2016 in
Google Play, our work is the first that conducts controlled ex-
periments to investigate loopholes in Google Play’s safeguard
mechanism.

In 2020, Possemato and Fratantonio [79] analyzed the se-
curity of NSC settings in 16,332 apps. They find that many
apps do not take full advantage of the NSC feature and allow
insecure network protocols. In a root cause exploration they
discover that developers copy & paste vulnerable settings
from online resources and that several popular third-party li-
braries require developers to weaken their NSC settings. They
conclude their work with a novel NSC extension that allows
developers to include insecure libraries without weakening
the security of the entire app. In contrast, our NSC analysis
is based on a larger set of Android apps (99,212 instead of
16,332) and more detailed analyses (e.g. of certificate pinning
issues and across app categories and download counts) and a
manual analysis of 40 apps. Additionally, we perform a static
code analysis on 15,000 apps and investigate the efficacy of
Google Play’s safeguards against vulnerable certificate val-
idation logic in apps, providing a more complete picture of
the current state of TLS security in Android apps.

Previous works suggested alternative approaches to custom
TLS. As an example, in 2013, Fahl et al. [56] proposed a
configuration approach to custom TLS behavior on Android,
removing the need for developers to write any code. In a
more recent approach in 2017, O’Neill et al. [76] introduced

TrustBase, a centralized approach to move TLS certificate
validation to an OS service that intercepts all connections and
enforces policies.

However, in contrast of providing another approach or re-
search prototype for the custom certificate validation issue,
our work focuses on the security analysis of NSC settings in
Android apps and the efficacy of Google Play’s safeguards.

4 NSC Adoption and Security

In this section, we illustrate the methodology of our NSC
analyses and report their findings.

20
16

-09

20
17

-01

20
17

-05

20
17

-09

20
18

-01

20
18

-05

20
18

-09

20
19

-01

20
19

-05

20
19

-09

20
20

-01

Time

0

10000

20000

30000

40000

50000

60000

Ap
ps

 to
 a

do
pt

 N
SC

 A
nd

ro
id

 7

 A
nd

ro
id

 8

 A
nd

ro
id

 9

 A
nd

ro
id

 9
 e

nf
or

ce
d

Figure 2: Adoption of NSC over time. The release of Android
9 had a significant contribution.

Body of Android Applications. We base our research on a
body of 1,335,322 free Android apps available in Google Play
that had received at least one update since August 2016 when
Google introduced NSC (cf. Section 2) for Android 7. We
downloaded the set of Android applications from Google Play
using the unofficial Google Play protobuf API [13]. To grow
the number of apps, we added apps from the "similar" apps
section of an app’s details website recursively. Overall, we
collected apps between 2016/08/22 2 and 2020/03/18 using
Oltrogge et. al’s Android app crawler [75].

Of the 1,335,322 free Android apps we analyzed, 99,212
implemented custom NSC settings. We used the OBFUSCAN
tool [87] to detect obfuscation and excluded 2,812 (2,83%) ob-
fuscated apps to improve our analysis quality. We conducted
further analyses on the remaining 96,400 apps.3

Table 2 gives an overview of the target SDKs and custom
NSC settings of the apps. Figure 2 illustrates the adoption
of custom NSC settings: We see a significant increase with
the release of Android 9. Similarly, we find that custom NSC
settings are more frequently implemented in popular Android
apps (cf. Figure 3). Even though Android rolled out NSC in

2The release date of Android 7.
3We provide the full list of apps on this link.

Table 2: Body of Android apps: Total Apps vs. Apps with
NSC

Total Apps Apps w. NSC

Target SDK
< Android 7? 236,843 68
>= Android 7 1,098,479 96,332
>= Android 8 963,750 95,826
>= Android 9 565,910 88,854

Total 1,335,322 96,400
? Though NSC is only supported for Android 7 and higher, apps with lower
target SDKs can use backport-libraries (e.g., TrustKit. [25]) to implement
NSC.

September 2016 with Android 7 (cf. Table 1), widespread
adoption was delayed until early 2019 (cf. Figure 2). This
correlates with Android 9 introducing HTTPS as the default
protocol for web requests in late 2018 (cf. Table 1).

4.1 Security Analysis of Custom NSC Settings
Below, we analyze the security of custom NSC settings. Fig-
ure 3 illustrates our findings across app categories and down-
load counts.
Measuring the Adoption of Custom NSC Settings: We
begin with the detection of apps that include custom NSC
settings. If an Android app contains custom NSC settings,
a reference to the respective settings file is included in
the android:networkSecurityConfig property of the An-
droidManifest.xml. In cases of a missing reference, we check
for the android:usesCleartextTraffic attribute to assess
whether cleartext traffic is permitted for all network connec-
tions without using NSC. [6]

NSC Settings Analysis: Since we aim to gain insights on
how NSC settings are used by developers 4, we extract and
analyze all relevant information from the NSC files. First,
we examine the high-level NSC features which are used by
traversing the NSC file’s XML document tree, starting with
the root tag <network-security-config>.

NSC files with <base-config> elements include global
options that affect connections for all hosts. The presence
of <domain-config> elements indicates custom settings for
specific hosts. Each <domain-config> element may include
a set of custom settings for a list of hosts that can each be
specified in a particular <domain> element. Table 3 provides
an overview of the NSC elements and attributes we analyzed.
The table also illustrates secure and insecure options for each
attribute and explains why the given examples are insecure.

Overall, we analyzed 96,400 apps that included a NSC set-
tings file. 95,940 of these implemented at least one custom
NSC setting, while 460 apps contained an empty NSC file.
Regarding app demographics, we find popular apps with more

4Cf. Section 2.1 for an overview of all possible NSC settings developers
can configure.

https://seafile.sec.uni-hannover.de/f/38640bbf45d5416383ea/

Table 3: Security impact of NSC-settings for <base-config> and <domain-config>. A Xdenotes that an element or attribute
can be used in the respective environment. The secure and insecure columns show which attribute values are considered (in)secure.
The reason column gives a brief explanation why values are considered insecure.

base-config domain-config element attribute secure insecure reason

X X cleartextTrafficPermitted -, false true allows HTTP without TLS
X X <certificates> src -, system user allows user trusted CAs

overridePins -, false true disables pinning
X <pin> always adds a pinned certificate
X <pin-set> expiration >10 daysa <10 daysa pinning not enforced after expiration

date
a

Recommendation as checked by Android LINT (cf. [22])

than 50,000 downloads to be more likely to include a custom
NSC file (11-47%, cf. Figure 3). Below, we discuss the results
of our analysis for the use of cleartext traffic, certificate pin-
ning, custom CA certificates and debug configurations. Since
apps may contain the same attributes in both base and domain
specific environments, the numbers in the following sections
may not always add up.

4.1.1 Cleartext Traffic

In this section, we analyze all apps that devi-
ate from the standard and explicitly declare the
cleartextTrafficPermitted flag in the NSC file.
Since Android 9, cleartext traffic is disabled by default
(cf. Table 1). Therefore, we distinguish apps that target
Android 9 or higher from apps that target Android 8 or
lower. We also distinguish apps with global settings from
apps with domain-specific settings. In both <base-config>
and <domain-config> environments we check for the
presence of the cleartextTrafficPermitted flag. De-
pending on the environment, an application allows HTTP
connections for all or only specific domains if this flag
is set to true. Table 4 illustrates the frequency the use of
the cleartextTrafficPermitted flag across different
Android versions.

Altogether, we found 89,686 apps that used the
cleartextTrafficPermitted flag. This element was
present uniformly across all apps that used NSC settings in
our dataset, with 89-97% of apps in all download categories
using it. 88,769 (98.98%) used it to re-enable HTTP. However,
only 4,093 (4.56%) apps used the flag to enforce HTTPS
by setting cleartextTrafficPermitted="false". In our
dataset, 565,910 apps target Android 9 or higher. Of those,
84,060 (14.85%) – 57,123 globally and 34,246 for specific
domains – allow HTTP connections, therefore downgrading
the security for these applications. In 3,908 apps that target
Android 9 or higher the cleartextTrafficPermitted
flag is set to false, which has no security benefit, as
HTTPS is enforced by default. These configurations have
little impact in 4,804 apps that target Android versions

lower than 9 as these can use HTTP without custom
workarounds (cf. 2.1) or enforce HTTPS by explicitly
setting the cleartextTrafficPermitted="false" flag. A
small number of apps that target Android 8 or lower (185)
does this and enforces HTTPS. We further check if the
android:usesCleartextTraffic flag in the Manifest file
was modified, which is the attribute used to enforce HTTPS
traffic by default. Since this option is only applied if no NSC
file was provided, the security downgrade to HTTP only
affects apps without NSC. Within our sample, 196,155 apps
explicitly set the flag. Of these, 177,391 apps have no NSC
file. 174,369 apps target Android 9 or higher and use the
android:usesCleartextTraffic flag to re-enable HTTP
for all hosts.

Table 4: Frequency in our dataset and security impact of
cleartextTrafficPermitted across Android versions

Target true false

>= Android 9
Global 57,123 1,252
Domain Specific 34,246 2,712

Total 84,060 3,908

< Android 9
Global 4,002 36
Domain Specific 826 151

Total 4,709 185

All Android Versions 88,769 4,093

Negative impact on security; No impact on security; Positive impact
on security

In contrast, we found only 2,459 apps that use the flag to
enforce HTTPS, of which 2,166 apply the setting as they do
not utilize NSC. About twice as many apps allow HTTP for
all domains (61,125) as opposed to only specific domains
(35,072), while explicitly enforcing HTTPS is more com-
mon for specific domains (1,288 globally, 2,863 for domains).
When HTTP is enabled for certain domains, we extract them
and check whether HTTPS would also be available. Alto-
gether, we found 84,060 apps that featured a HTTP down-

N
SC Settings in APPs Total [4.1]

Cleartext Traffic [4.1.1]

Pinning Certificates [4.1.2]

Custom
 CA Configurations [4.1.3]

U
ser Installed Certificates [4.1.4]

Debug Overrides [4.1.5]

Invalid Dom
ains [4.1.6]

Art & Design

Auto & Vehicles

Beauty

Books & Reference

Business

Comics

Communications

Dating

Education

Entertainment

Events

Family

Finance

Food & Drink

Game

Health & Fitness

House & Home

Libraries & Demo

Lifestyle

Maps & Navigation

Medical

Music & Audio

News & Magazines

Parenting

Personalization

Photography

Productivity

Shopping

Social

Sports

Tools

Travel & Local

Video Players & Editors

Weather

4 98 1 0 28 2 2

6 89 1 2 6 11 3

4 99 0 0 3 3 2

5 91 0 0 16 3 2

8 82 2 2 9 19 2

5 96 0 0 27 2 0

8 93 1 0 17 14 5

7 88 0 0 16 2 5

7 98 0 0 4 4 3

6 95 0 0 9 8 3

6 77 0 1 9 30 4

4 97 0 0 10 6 0

8 81 6 3 11 10 3

5 95 0 1 2 6 1

5 97 0 0 13 6 1

6 91 1 1 3 10 2

7 88 1 1 6 15 1

3 89 0 3 19 3 3

7 97 1 1 12 4 1

7 86 1 1 5 13 2

6 87 0 0 8 9 1

5 91 0 0 4 15 2

15 88 0 0 7 22 1

6 91 2 0 5 9 7

19100 0 0 22 0 0

8 98 0 0 5 2 0

7 90 2 1 17 7 3

8 86 0 1 6 28 4

9 93 0 3 13 10 2

10 89 0 0 4 28 1

7 95 1 0 13 4 1

10 66 0 0 7 46 1

8 95 0 1 8 13 1

9 97 0 0 15 10 5

App Categories

0 25 50 75 100

N
SC Settings in APPs Total [4.1]

Cleartext Traffic [4.1.1]

Pinning Certificates [4.1.2]

Custom
 CA Configurations [4.1.3]

U
ser Installed Certificates [4.1.4]

Debug Overrides [4.1.5]

Invalid Dom
ains [4.1.6]

0+

1+

5+

10+

50+

100+

500+

1,000+

5,000+

10,000+

50,000+

100,000+

500,000+

1,000,000+

5,000,000+

10,000,000+

50,000,000+

100,000,000+

500,000,000+

7 97 0 1 7 7 2

6 96 1 1 5 7 3

4 95 1 1 5 7 3

4 94 1 1 5 7 3

4 93 1 1 5 8 2

5 90 1 1 6 11 2

6 89 0 0 8 13 2

7 89 1 1 10 13 2

8 91 1 0 15 11 1

9 92 1 1 16 9 1

11 93 0 0 13 9 1

13 93 1 0 13 8 1

15 93 0 1 15 11 1

18 94 0 0 13 13 1

26 94 1 0 13 17 1

32 90 1 1 9 21 2

39 94 0 1 7 24 1

47 93 3 0 15 23 1

13 83 0 0 0 33 0

Download Counts

Values:
% of Apps with NSC Setting
[4.1]: % of Apps Total
Legend:

Figure 3: Distribution across the features we analyzed, and
app categories, and download counts.

grade; this affected 24,653 distinct domains. We find valid
HTTPS connections for 8,935 applications and argue that
downgrading safe defaults was unnecessary. Table 8 in the
appendix gives an overview of the most frequent domains for
which we found downgrades.

Interestingly, the top domain values 127.0.0.1 and localhost
seem to have no security impact. However, they might result
from copy & paste from Facebook’s cache proxy library that
is used in many apps [20] or from debugging configurations
developers use for testing.

Table 5 gives an overview of the most popular of these
domains. We found 151 NSC configurations that upgraded to
HTTPS; this concerned a total of 133 different domains.

Table 5: Top 10 domains where a HTTPS upgrade would be
possible. All domains serve the same content over HTTP and
HTTPS and most redirect from HTTP to HTTPS.

Apps Domain Value HTTPS Red. Same Cont.

368 console-forum.net X X
294 securenetsystems.net X X
240 google.com X X
233 fineboost-loghub.ap-

southeast-
1.log.aliyuncs.com

X

202 aff.bstatic.com X X
202 devel.tripwolf.com X X
202 www.tripwolf.com X X
190 competition-edge.com X
172 facebook.com X X
139 clients3.google.com X X

Table 10 in the appendix lists the most frequent domains
for which connections were upgraded to HTTPS. Half of the
entries contain invalid values such as URLs and resource
IDs. They might stem from copy & paste events and have no
security impact since domain values are expected.

It is hard to assess why developers chose HTTP over
HTTPS. Reasons might include lack of knowledge, problems
connecting via HTTPS or copying & pasting URLs from
somewhere. Interestingly, in all cases where HTTPS would
have been possible, the hosts serve the same content over
HTTP and HTTPS and even redirect from HTTP to HTTPS
in most cases. This is even more alarming: developers seem to
suffer from a misconception and underestimate the threat of a
MitMA in the presence of a redirect from HTTP to HTTPS.

4.1.2 Pinning Certificates

In this section, we report details for the certificate pinning
analysis. We check if certificate pinning is used by searching
for a <pin-set> element in <domain-config> elements.

Adoption. Overall, we found 663 apps that implement cer-
tificate pinning using NSC. We found 1,121 distinct pins for
2,781 distinct domains of which 998 are valid domains. Pin-
ning was most common in the finance category (6%). This is
in line with the most frequently pinned domains we found in
Table 9, most of which belong to banking or mobile money
apps.

Pinned Certificates. Our certificate analysis shows that 483
leaf certificates, 542 (intermediate) CA certificates and 289
root CA certificates were pinned. Table 7 in the appendix
gives an overview of the most popular CA certificates. The
majority of pinned CA certificates affected pre-installed sys-
tem CAs. We extract the <pin> child tags and compare them
with the certificates from domains we fetch certificate chains

for. To detect root CA pinning, we also match against pins gen-
erated from default Android system trust [4]. For 778 pinned
domains we collected the complete certificate chain for the
specified domains and analyzed it. We could not download all
certificate chains due to connection problems or malformed
domain names.

Backup Pins. The official Android documentation recom-
mends the use of backup pins [19]. We found 566 apps that
set a backup pin. In 47 cases, the pins were non-functional,
e.g., empty strings were pinned. We discuss these cases in
detail in section 4.1.6. For semantically correct pinning config-
urations, we find possible misconceptions regarding backup
pins. First of all, the Android (Studio) LINT feature suggests
to register two pins instead of one, but does not check for pin
correctness or if both pins are equal [22]. We detect identical
or non-functional backup pins by manual inspection and find
cases containing sequences like ’AAAAAA...’, ’BBBBBB...’ as
prefix, or instances where only a single character is changed.
While this is enough to address the LINT feature’s warning, it
does not enhance the security of the application. We also find
that at least 12 applications used the empty pin hash produced
by hashing an empty string encoded as Base64. This likely
happens due to wrong usage of tools or lack of knowledge.

Pinning Expiration. The Android documentation suggests
to set a pinning expiration date with the optional expiration
parameter. After this date, pinning is no longer enforced, i.e.,
setting an expiration date may decrease security, but prevents
an app from breaking when a certificate is replaced with a
newer version [19]. Expiration values in the near future are
critical from a security perspective as pinning would only be
enforced for a short period. We read the respective element
and found 130 apps that set a pinning expiration parameter.
The mean expiration value was 947 days. Most apps had an
expiration value set that had no negative impact on pinning
security.

4.1.3 Custom CA Configurations

In both <base-config> and <domain-config> elements we
check for <trust-anchors> elements which indicate modi-
fications to the list of trusted root CAs to limit or add CAs.

We found custom CA configurations in 38,628 apps 5

(37,562 globally, 1,781 for domains).
759 apps distrusted all pre-installed CAs and added their

own set of custom CA certificates (30 globally, 744 for do-
mains). Furthermore, 123 apps restrict the list of pre-installed
system CAs (14 globally, 112 for domains).

We further found 836 apps that added supplementary certifi-
cates (784 globally, 58 for domains). Table 12 in the appendix
gives an overview of all added certificates and provides a

5We only discuss custom CA configuration in production code here. Cus-
tom CA configurations for debugging purposes are addressed in Section 4.1.5

summary of the most frequent custom CA certificates that
apps used for production.

4.1.4 User-Installed Certificates

Based on the nested <certificates> element, we check if
the value of the src property is set to user which enables
trust for user-installed CA certificates. Compared to Android
7 default settings, enabling user-installed CA certificates is a
security downgrade (cf. Section 2.1).

Out of 1,098,479 apps targeting Android 7 or higher, we
found 8,606 apps that re-enable trust for user-installed certifi-
cates (8.67%) (8,001 globally, 707 for domains).

User-installed certificates are more common in popular
apps. We found this issue more frequently in apps in the
categories Art & Design (28%), Books & Reference (16%),
Comics (27%) and Personalization (22%) (cf. Figure 3).

Since user-installed certificates increase the attack sur-
face for MitMAs, developers are encouraged to use debug-
overrides instead (cf. Section 4.1.5).

4.1.5 Debug Overrides

In this section, we present how app developers configured
debugging settings.

Correct Use of Debug Overrides. <debug-overrides>
can be used to debug secure network connections, e.g., us-
ing self-signed certificates or MitMA tools. The use of
<debug-overrides> is a recommended security best prac-
tice, as these cannot be used in production code and apps
with enabled debug flags cannot be published in Google Play.
Overall, we found 10,085 apps with <debug-overrides>.
Debug overrides were most popular among travel & local
(46%) and event apps (30%), and generally among apps with
higher download counts of 10,000,000 or more ((21-33%).
We analyze their <trust-anchors> child elements for spe-
cific configurations of trusted roots. These can include user-
installed certificates or bundled custom certificates which
might be needed for MitMA proxies and other debugging
purposes [10]. We found 318 apps that register custom certifi-
cates in <debug-overrides> (cf. Table 11 in the appendix).
We detected 170 certificates of MitMA tools. 9,904 apps allow
user-installed certificates in <debug-overrides>.

Mis-Use of Debug Overrides. Unfortunately, we also found
several configurations outside the <debug-overrides> envi-
ronment that we could unambiguously attribute to debugging
purposes. 41 apps in our set use custom CA configurations
to use MitMA certificates for debugging TLS connections.
This was identified by observing the CA certificates’ subject
CN, in which popular MitMA proxy tools include the term
proxy. For example, the Charles Proxy [9] MitMA proxy
tool was the most popular in our dataset and included the sub-
string "Charles Proxy Custom Root Certificate". Contrary to

<debug-override> configurations, these are used in produc-
tion code and can therefore pose a security threat. Therefore,
the Android documentation discourages their use [4]. While
this list is not exhaustive, it shows that developers mis-use
NSC settings for debugging purposes although NSC provides
distinct debugging options.

4.1.6 Malformed NSC Files

In this section, we investigate faulty NSC files. We distinguish
faulty configurations from configurations with syntax errors
as they are simply ignored by Android and therefore do not
negatively contribute to an app’s security. Instead, we focus
on configurations with ambiguous security settings resulting
in confusing security implications.

Configurations with Flawed Domain Parameters. In
1,310 apps, we found <domain> configurations that contained
an URL instead of a hostname, e.g., http://example.com/
or http://example.com/index.php instead of example.com. In
these cases, no error message is shown and the app compiles
successfully. However, during app execution, such configura-
tions are ignored and the <domain-config> setting becomes
ineffective. We further identified 42 similar cases, where de-
velopers gave string resources (e.g., @string/host) instead
of a hostnames. In 210 configurations, we found wildcard
domain specifications (e.g. *.example.com). These are also
non-functional and therefore make the configurations ineffec-
tive.

Ambiguous Pinning Configurations. We analyzed our
dataset for apps that include ambiguous pinning configura-
tions, such as pins specified for the system-certificate with
the overridePins flag, which overrides the pinning secu-
rity benefits. We found 6, including two parental control
apps and two that explicitly activate override pins for user-
installed certificates, which developers registered as non-
default trust anchors. Therefore, attackers can more easily
mount MitMAs using social engineering. We further find all
of these apps to be rather popular with more than 100,000
downloads. In 129 apps that pin specific domains we also
found the permitClearTextTraffic="true" flag, which
overrides pinning if HTTP is used instead of HTTPS.

Copy & Paste of Insecure Configurations. We investigate
if apps contain NSC files that were copied & pasted from the
Internet by manually inspecting common NSC snippets. We
found applications that copy NSC snippets from information
sources like library documentations, blog articles or Q&A
threads [2,5,23]. We find NSC snippets in 496 apps that solve
problems with an exception that requires HTTPS for specific
network connections as HTTP is not sufficient. These snippets
can be found on either StackOverflow [3] or in the MoPub
app monetization documentation [11]. Overall, we find 1,609
applications that include a NSC snippet from the MoPub
library documentation that instructs application developers

to permit cleartext traffic globally [11] (cf. Listing 5 in the
appendix). While the snippet permits cleartext traffic, it also
restricts cleartext traffic for the domain example.com. For
the cases we found, developers used the same code without
making any changes. Similarly, we found 4 apps that use
certificate pinning for the datatheorem.com or subdomains
thereof. As these are related to Trustkit [25] and have no
further effects, they are likely copied from the Trustkit demo
application [26].

4.1.7 Impact of NSC on Android Ecosystem

Overall, NSC impacts app security on all levels of popularity.
While most apps have less than 1,000 installs, there are nu-
merous top apps with immense popularity. Within the most
popular apps with more than a billion downloads, we find
NSC to be mostly used to circumvent safe defaults, for ex-
ample, to permit cleartext traffic in Android 9. This is the
case for WhatsApp and several Google applications such as
Youtube and GMail [39], all of which had more than five
billion downloads. We further find a popular web browser
that uses NSC to re-enable trust for user-installed certificates.
We found all cases of misconfigurations and malformed NSC
configurations we described in Section 4.1.6 in popular apps
with more than one million downloads. Particularly interest-
ing, we found one of the few cases where re-enabling trust for
user-installed certificates leads to ineffective pinning. Simi-
larly, we found copied & pasted code in apps with 100 million
downloads. Overall, our findings suggest that the insecure use
of NSC is not limited to amateur or unpopular apps.

4.1.8 Manual Analysis

Static analysis of NSC settings can show the potential for se-
curity problems for apps. However, the fact that NSC settings
for insecure TLS certificate validation are present in an app’s
NSC or Manifest file does not necessarily mean that it is used
or that sensitive information is passed along it. Even more
detailed automated app analysis techniques cannot guarantee
that all uses are correctly identified. Hence, we decided to
conduct an in-depth manual investigation of affected apps.
We aimed to find out what sort of information is actually
sent over potentially insecure network connections. There-
fore, we installed a set of apps that re-enabled HTTP cleartext
traffic by installing the apps on an Android device and execut-
ing a passive MitMA against the apps. We focused on apps
that re-enabled cleartext traffic since this vulnerability was
widespread and is easy to exploit by a passive MitMA.

Therefore, we selected two sets of apps that re-enabled
cleartext traffic for specific domains or globally:

Random apps. First, we selected and analyzed 20 random
apps. We found 13 of them to use HTTP to transfer user data.
In general, we found that affected apps use HTTP to transfer
ad, tracking and debugging information including personally

identifiable information such as device identifiers. However,
we also found a smart home app that allows users to remotely
talk to their doorway devices and a school app that connects
schools, parents and teachers. Both send sensitive account
information including username and passwords from their
users’ devices to the service providers.

Privacy sensitive apps. Additionally, we analyzed 20 apps
likely to handle sensitive data. 6 In this set of apps, eleven
apps used HTTP. In all eleven apps we found login-related
information, including usernames, emails, passwords, or pass-
codes. Similar to the random app set, we found one school
for parents and a shopping app that send login credentials via
HTTP.

In conclusion we find that in both sets more than half of
the apps we tested manually used HTTP to transfer sensitive
user data including login credentials.

5 Google Play Safeguards

In addition to NSC, Google Play changed their TLS policies
and implemented new safeguards. In 2016, they announced
to block new Android apps and updates that include insecure
certificate validation code [67, 68].

In particular, Google announced to detect three imple-
mentations: TrustManagers vulnerable to attacks using
invalid certificates [67], HostnameVerifiers vulnerable to
malicious domains and hostnames [68], and WebView-
Client.onReceivedSSLError implementations that do not ap-
propriately handle HTTPS errors in a WebView [66]. To
investigate root causes for the findings in previous work
[70, 75, 80, 86] and the efficacy of these safeguards, we con-
ducted multiple controlled experiments. We aimed to identify
under which conditions Google Play still accepts apps with
insecure certificate validation code. Therefore, we simulated
a benign Android app developer who accidentally published
vulnerable certificate validation code as part of their app. In
each experiment, we included one or more vulnerable cer-
tificate validation implementations. After submitting each
experiment to Google Play, the app went through the Google
Play app review procedure. Once the verification process con-
cluded, we checked for security alerts in the Google Play
Console. 7

Table 6 gives an overview of the four categories of exper-
iments we performed: TrustManagers (TM), HostnameVer-
ifiers (HV), WebViewClients (WV) and Libraries (LB). Li-
braries refer to insecure third party libraries we experimented

6To identify these apps, we extracted static HTTP URL strings from app
apks, tested their availability on the default HTTP port 80, and selected apps
with URLs containing substrings such as ’login’, ’register’ and ’secure’.

7In case a vulnerable app was accepted, we removed it immediately to
avoid that clueless users would install vulnerable software on their device.
Given Google Play’s download reports, no user installed one of our vulnerable
apps.

Table 6: Details of our TLS security policy experiments.

Experiment R
ea

ch
ab

ili
ty

Pa
ss

ed

Validation Logic

TrustManager
TM-U X No Validation at All
TM-R X No Validation at All
TM-D X No Validation at All
TM-R-renamed X No Validation at All, Renamed
TM-R-expired X Cert Is Not Expired
TM-R-selfsigned X Cert Is selfsigned and Not Expired
TM-R-chain X Cert Has a Chain
TM-R-chainexpired X Cert Has a Chain or Is Not Expired

HostnameVerifier
HV-R X No Validation at All
HV-D X No Validation at All, Debug switch
HV-R-global X No Validation at All, Used by Default
HV-R-contains X Verify Hostname Using "string.contains"

WebViewClient
WV-R X always proceed
WV-D X always proceed, Debug switch
WV-wrapped X always proceed, Depend on invariant condition

Library
LB-U-acra X Acra with Insecure TM
LB-U-jsoup X JSoup with Insecure TM and HV
LB-U-asynchttp X async-http with insecure TM

Always (R)eachable; Hidden Using a Debug Flag; (U)nreachable
X App was accepted by Google Play; X App was blocked by Google Play

with, trying to reproduce developer complaints we found on-
line on GitHub [12, 17, 24, 27]. We also distinguish if the
faulty code was reachable (R), hidden behind debug options
(D), or unreachable (U).

5.1 TrustManager Implementations
We started with investigating insecure TrustManager imple-
mentations [54, 58].

Empty TrustManager. First, we conducted experiments on
an empty TrustManager implementation. Therefore, our test
app used to download a file from a remote server. This was
one of the most common insecure implementations [54, 58]
and is frequently discussed in online Q&A forums [15, 16].
Given Google Play’s announcement [67], this insecure im-
plementation should be rejected. For full coverage, we tested
multiple different empty TrustManager implementations: One
that could be toggled with a debug flag (TM-D)8, one that was
always used (TM-R) and finally one where the TrustManager
code was unreachable (TM-U). None of these implementa-
tions was blocked by Google Play. Additionally, we renamed
the TM-R implementation to TrustAllTrustManager (TM-
R-renamed) to match the most common TrustManager name
reported by Fahl et al. [54]. This passed as well, which implies

8Some apps use such a flag for debugging purposes.

that the verification process employed by Google does not
test for empty TrustManagers.

Non-Empty but Insecure TrustManager. Since not all in-
secure implementations reported in previous work [54] and
discussed in online developer forums [29] are empty imple-
mentations, we extended the TrustManager experiments from
above to also investigate non-empty but still insecure imple-
mentations. First, we implemented certificate validation logic
that only tested for the server’s certificate expiration date (TM-
R-expired, TM-R-chainexpired, TM-R-selfsigned). Second,
we tested an implementation that only checked whether the
server sends a certificate chain (TM-R-chain). In both cases
we did not implement secure certificate validation and only
tested code that was always reachable. Again, Google Play
accepted both vulnerable implementations.

5.2 HostnameVerifier Implementations
Our second set of experiments investigated the efficacy of
Google Play’s safeguards against insecure hostname verifica-
tion in apps [54].

Always True Hostname Verification. We started with in-
cluding HostnameVerifier implementations that accept any
hostname for a certificate. We tested both, a reachable (HV-
R) and a debugging implementation that was protected by a
boolean debug flag (HV-D). These implementations turned
off hostname verification. We further investigated an app that
registered a global HostnameVerifier for all TLS connections
by calling the static setDefaultHostnameVerifier method
for the HttpsURLConnection class with the HV-R implemen-
tation (HV-R-global). Google Play accepted all vulnerable
implementations.

Insufficient Hostname Verification. Next, we tested a Host-
nameVerifier implementation, which included code that did
not always return true but only included insufficient hostname
verification logic. As discussed in previous work [54], de-
velopers publish apps with implementations that only check
for substring inclusion instead of testing the entire hostname.
Hence, our experiment included a respective implementation
(HV-R-contains). Again, this faulty implementation was ac-
cepted.

5.3 WebViewClient Implementations
The experiments in this section investigate Google Play’s
safeguard efficacy against insecure HTTPS error handling in
WebViewClient implementations.

No Error Handling at All. First, we investigated HTTPS
error handling logic that ignored certificate validation errors
entirely and always proceeded with the TLS handshake. Sim-
ilar to the experiments above, we tested vulnerable code that
was always reachable (WV-R) and code that was hidden be-
hind a debug flag (WV-D). Google Play detected WV-R and

blocked the app from being published. However, the slightly
more complex implementation WV-D passed without warn-
ing.

Obfuscated Error Handling. Motivated by previous
work [74], we included an experiment that obfuscated in-
secure error handling. We tested error handling logic that
hides the proceed call behind a boolean expression based
on an invariant check (WV-wrapped). Again, this vulnerable
implementation passed the Google Play checks.

5.4 Reproducing Complaints of Developers
Finally, we conducted a set of experiments to reproduce com-
plaints of Android developers we found online [12,17,24,27]
concerning problems with specific Android libraries. We
searched StackOverflow and GitHub issues for Google Play
Console warning messages in the context of vulnerable certifi-
cate validation and found three vulnerable versions of popular
android libraries (LB-U-acra, LB-U-jsoup, LB-U-asynchttp).
Acra 4.2.3. We aimed to reproduce the GitHub issue [27] in
which a developer reports that the use of the Acra [7] library
that provides application crash reports for Android in version
4.2.3 was rejected by Google Play on 2019/11/20 (LB-U-
acra). We isolated and tested the vulnerable implementation
and were able to confirm this issue as our app was blocked
with this specific version of the library.
JSoup 1.11.1. In this experiment, we aimed to reproduce an
error report for the JSoup [18] library for HTML parsing in
version 1.11.1. Developers report that their apps were rejected
because of a vulnerable TrustManager implementation [17,
24] (LB-U-jsoup). Similar to the experiment above, we used
the exact same version of JSoup in our test app. However,
we could not reproduce the error. Our app passed the Google
Play safeguards successfully.
android-sync-http 1.4.9. Finally, we looked at the android-
async-http [1] library providing interfaces for HTTP connec-
tions. This library included a vulnerable TrustManager in
version 1.4.9 [12] (LB-U-asynchttp) and like previous experi-
ments passed successfully without warnings.

5.5 Insecure Apps in Google Play
Motivated by the experiments above and previous work [70,
75, 80, 86], we replicated a study performed by Fahl et al. in
2012 [54]. However, we replaced the outdated MalloDroid
tool [54] with the most currently published tool for vulnerable
certificate validation logic in Android apps CryptoGuard [80]
that was released in 2019. CryptoGuard can detect crypto-
graphic vulnerabilities in general and vulnerable certificate
validation code of both Java programs and Android apps. We
picked a random set of 15,000 Android apps for the Crypto-
Guard analysis. Since CryptoGuard does not perform reach-
ability analyses, we cannot tell whether vulnerable code is

actually executed. Using CryptoGuard reports we also can-
not distinguish developer code from third party library code.
Following Rahaman et. al [80] we terminated app processing
after 10 minutes, therefore possibly skipping the analysis of
more complex apps.

Overall, we found 2,232 (14.8%) apps with vulnerable
HostnameVerifier and 5,202 (34.7%) apps with vulnerable
TrustManager implementations. Most of the affected apps
implemented both vulnerabilities, resulting in 5,511 (36.7%)
vulnerable apps total.

Surprisingly, these results are in line with reports from Fahl
et al. [54] and Georgiev et al. [58] and show that the Google
Play security checks for TLS are inefficient.

6 Limitations

Our work has the following limitations:

Body of Android Apps. The Google Play crawler we used
to download apps works on a best-effort basis. We seeded
the crawler with a small list of popular free Google Play ap-
plications and recursively downloaded all available similar
apps. Although we were able to find 1,335,322 free apps that
have received an update after Android 7, we cannot guarantee
that we were able to find all free Google Play applications.
However, the behavior of our crawler is in line with previous
work [37]. We also limited our analysis to free apps and ig-
nored paid apps. Although we cannot generalize our findings
to paid Android apps, this is also in line with previous Android
security research [46, 48, 50–52, 54–57, 74, 75, 85]. We de-
ployed the crawler at a university in Germany which resulted
in 77,676 apps that we could not download due to geographic
restrictions. Similarly, we could not download 264,249 apps
that were e.g. removed from Google Play between crawling
meta-data and download of APK files.

NSC Analysis. We identified 99,212 apps with custom NSC
files. However, we could not analyze 2,812 of them due to
obfuscation. As for the analysis of NSC files, we might be
limited in our analysis of data related to HTTP(S) origins
and certification data since we downloaded HTTPS certifi-
cates from Germany. Hence, the availability of HTTPS for
certain websites, certificate chains and corresponding pins
from certificates might differ from the respective results in
other regions. In addition, since we analyze older versions of
applications, servers could have changed their configurations
over time which might not reflect the contents of NSC files
anymore. Both limitations might apply in situations where
certificate data is fetched in order to calculate pins we want
to match against either trusted roots or pins specified in NSC
files. Likewise, especially pins for backup that are not yet in
use might not be matched by us as they might not (yet) be vis-
ible. As there is only one NSC file per application, there is no
distinction between configuration related to the main applica-
tion and libraries. This limitation may also apply for the static

code analysis we conducted, which means that our analysis
might not accommodate or might be limited to account for
e.g. runtime behavior or reflection.

7 Discussion

In this section, we discuss key takeaways and the lessons
we learned from our analysis of TLS certificate validation
security in 1,335,322 free Android applications from Google
Play. We discuss our analysis results and compare the state of
certificate validation security in Android in 2020 with results
reported in 2012 [54, 58].

We report positive as well as disappointing trends. Android
deployed multiple measures in response to security vulnerabil-
ities related to certificate validation. The measures include the
introduction of NSC to support developers in implementing
custom certificate validation logic, the default enforcement
of HTTPS in apps targeting Android 9 or higher, and Google
Play safeguards in 2016 and 2017 to prevent the publication of
apps included insecure certificate validation code. While new
Android apps benefit from new secure defaults (e.g., HTTPS
by default), our results show the need for further security im-
provements. In the following, we will address the problems
we found and discuss possible improvements.

Customization is Harmful. We find that usually, whenever
developers configure NSC files manually to handle TLS cer-
tificate validation, security takes a hit. Our results mirror the
2012 results by Fahl et al. [54] and Georgiev et al. [58] that
showed that custom certificate validation implementations in
Android apps lead to vulnerabilities. In 2012, the underlying
problem was insecure code that turns off certificate validation
in 95% of apps with custom certificate validation code. Our
results show that the problem persists in customized NSC files.
Out of the 99,212 apps with custom NSC files that we were
able to identify in our body of Android applications, 88,174
(88.87%) apps included configurations that downgrade secu-
rity compared to default settings, mostly due to developers
re-enabling HTTP traffic. Dramatically, we were able to show
that this is usually unnecessary since the remote servers often
supported HTTPS. Similar to the 2012 results, we were also
able to see that developers still tend to roll out debug configu-
rations in their production apps, unnecessarily leaving users
at risk. We also show that 8.67% of the apps that include cus-
tom NSC settings allow user-installed CAs, which attackers
can exploit in MitMAs [77]. This is in line with findings of
Possemato and Fratantonio [79]. While they investigated a
smaller app set, our findings supports theirs in several ways:
First, we can confirm NSC’s dominating use to re-enable
cleartext traffic (cf. 4.1.1). We report similar findings regard-
ing configurations for 127.0.0.1 (cf. Section 4.1.1) and copy
paste behavior (cf. Section 4.1.6). Furthermore, their insights
extend the investigations regarding the impact of vulnerable
library use reported in our work, but clearly corroborate our

findings in a bigger picture. Likewise, we can support their
proposals for extending NSC.

Pinning is Still an Issue. As early as 2012, 2013 and 2015,
Fahl et al. [54,56] and Oltrogge et al. [74] showed that only a
small portion of developers implement certificate pinning. In
developer interviews and surveys, they found that pinning is
too complicated for most developers to implement and that
the implementations are often faulty. Android has since sim-
plified the use of certificate pinning, which has become much
more straightforward via the configuration of NSC files as
compared to the more complicated implementation via cus-
tom code, which was previously necessary. Our results show
that, even though pinning should, in theory, have become
more accessible, the rollout of NSC has not led to increased
pinning use. Only 0.67% of the apps we investigated use
NSC’s pinning feature. The (non-)use of pinning seems to,
therefore, not only be caused by the complexity of its imple-
mentation. Additionally, pinning seems to be a feature that is
only interesting for a small minority of developers. Our find-
ings confirm the results of Possemato and Fratantonio [79] on
the low occurrence of pinning in NSC files and unintentional
misconfigurations of pins that occurs across their sample (cf.
Section 4.1.2 and 4.1.6).

NSC Implementation is Error-Prone. We were able to de-
tect several faulty and insecure NSC configurations. Even
though these are not responsible for a large number of vul-
nerabilities, they show systematic weaknesses in the current
deployment of NSC. We were able to find apps that used
URLs instead of domain names for domain-specific configu-
rations. While this type of erroneous configuration does not
prevent the app from working, it ignores the setting for the do-
main. Similar to our findings, Possemato and Fratantonio [79]
report problematic domain usage, e.g. by developers using
both the dummy domain example.com or invalid parameters
for pins or domains (cf. Section 4.1.6). However, in addition,
we discover cases in which URLs, regular expressions or other
invalid strings are added instead of domains, all of which can
lead to apps becoming less secure despite the use of pinning
due to non-functional configurations.

We trace these misconfigurations back to insufficient docu-
mentation and lack of support for the Android Studio IDE. An-
droid Studio only provides basic XML support for NSC files.
There is limited support for tags and attributes (only limited
support for misspelled or wrong tags or attributes (e.g., URLs
instead of domains) or duplicates (e.g., for pins)). Android
Studio does not support auto-completion for NSC. Available
Android Studio support is based on LINTING checks [22]
for NSC and dates back to 2016. Since then, there were no
significant enhancements.

We corroborate findings that resemble vulnerabilities found
in 2012, 2013, and 2015 by Fahl et al., Georgiev et al., and
Oltrogge et al. Nguyen et al. [73] showed that better developer
support in the IDE has the potential to lead to significant

improvements to app security. Similar approaches for NSC
seem promising.

Google Play Safeguards are Insufficient. Even though
Google Play announced safeguards for vulnerable imple-
mentations of certificate validation logic in 2016 and 2017,
and the ability of state of the art tools [41, 80] to iden-
tify the vulnerabilities we tested, our findings and previous
work [70,75,80,86] suggest that Google Play’s present deploy-
ment of these checks is insufficient. We were able to publish
simple but vulnerable implementations of TrustManager,
HostnameVerifier, and WebViewClient code to Google
Play that, according to Google’s announcements, should have
been detected and prevented. In addition to our experiments
with publishing insecure certificate validation, we were able
to use static code analysis to show that a multitude of newly re-
leased apps still contains vulnerable implementations. While
we could not pinpoint the exact technical realization of Google
Play’s certificate validation vulnerability detection safeguards,
tools such as CryptoGuard [80] or LibScout [41] would have
detected the vulnerable apps we tested. Hence, we recom-
mend Google Play to consider the integration of state of the
art vulnerability detection mechanisms to detect and block
vulnerable apps in the future.

8 Conclusion

In this paper, we continued the long history of research efforts
covering the state of (custom) TLS certificate validation in
Android apps. While earlier studies focused on dangerous
custom TLS code and proposals to prevent this, we focus
on the on-going evolution of Android. New secure defaults
lead to better security regarding HTTPS adoption as well as
making MitMA harder to mount. At the same time, NSC,
rather than accelerating wide-spread secure use of pinning, is
mostly used for degradation of security in apps by undermin-
ing safe defaults. Also, we find that Google Play’s safeguards
intended to prevent vulnerable TLS implementations in apps
being published do not work as expected. Overall, our results
confirm that customization is often harmful to an application’s
security.

Acknowledgements

We thank the anonymous reviewers of this and an earlier revi-
sion of this paper, who have all contributed significantly; and
particularly USENIX shepherd Professor Adwait Nadkarni
of the College of William and Mary.

This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092
CASA – 390781972).

References

[1] An Asynchronous HTTP Library for Android.
https://github.com/android-async-http/android-
async-http (visited on 09/22/2020).

[2] Android 7.0 unable to capture https packets. https://www.
cnblogs.com/0616--ataozhijia/p/9766682.html (vis-
ited on 09/22/2020).

[3] Android 8: Cleartext HTTP traffic not permitted.
https://stackoverflow.com/questions/45940861/
android-8-cleartext-http-traffic-not-permitted
(visited on 09/22/2020).

[4] Android Root CAs. https://android.googlesource.com/
platform/system/ca-certificates/+/master/files/
(visited on 09/22/2020).

[5] Android WebView setCertificate issues SSL problems.
https://stackoverflow.com/questions/6511434/
android-webview-setcertificate-issues-ssl-
problems/57951506#57951506 (visited on 09/22/2020).

[6] <application> | Android Developers. https:
//developer.android.com/guide/topics/manifest/
application-element#usesCleartextTraffic (visited
on 09/22/2020).

[7] Application Crash Reports for Android. https://github.
com/ACRA/acra (visited on 09/22/2020).

[8] CertificatePinner. https://square.github.io/okhttp/3.
x/okhttp/okhttp3/CertificatePinner.html (visited on
09/22/2020).

[9] Charles Web Debugging Proxy • HTTP Monitor / HTTP Proxy.
https://www.charlesproxy.com/ (visited on 09/22/2020).

[10] Debug your app | Android Developers. https://developer.
android.com/studio/debug (visited on 09/22/2020).

[11] Get Started with the MoPub SDK for Android.
https://developers.mopub.com/publishers/android/
get-started/#step-4-add-a-network-security-
configuration-file (visited on 09/22/2020).

[12] Google Play Blocker: Unsafe SSL TrustManager De-
fined #1260. https://github.com/android-async-
http/android-async-http/issues/1260 (visited on
09/22/2020).

[13] Google play python API. https://github.com/
NoMore201/googleplay-api (visited on 09/22/2020).

[14] HostnameVerifier. https://developer.android.com/
reference/kotlin/javax/net/ssl/HostnameVerifier
(visited on 09/22/2020).

[15] Java android - uplaud apk and google play security
alert. https://stackoverflow.com/questions/
43847629/java-android-uplaud-apk-and-google-
play-security-alert (visited on 09/22/2020).

[16] Java android . Google play security alert for inse-
cure TrustManager. https://stackoverflow.com/
questions/43777599/java-android-google-play-
security-alert-for-insecure-trustmanager (visited
on 09/22/2020).

[17] JSoup Issue: TLS Certificate Bypassable, throws warnings
#912. https://github.com/jhy/jsoup/issues/912 (vis-
ited on 09/22/2020).

[18] jsoup: Java HTML Parser, with best of DOM, CSS, and jquery.
https://github.com/jhy/jsoup/ (visited on 09/22/2020).

[19] Network security configuration. https://developer.
android.com/training/articles/security-config
(visited on 09/22/2020).

[20] Network security configuration - Caching on Android 9.
https://developers.facebook.com/docs/audience-
network/android-network-security-config/ (visited
on 09/22/2020).

[21] Network security configuration | Android De-
velopers | Opt out of cleartext traffic. https:
//developer.android.com/training/articles/
security-config#CleartextTrafficPermitted (vis-
ited on 09/22/2020).

[22] Network security configuration LINT Checks - Net-
workSecurityConfigDetector. https://android.
googlesource.com/platform/tools/base/+/
6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/
libs/lint-checks/src/main/java/com/android/
tools/lint/checks/NetworkSecurityConfigDetector.
java (visited on 09/22/2020).

[23] SwipeCardView network_security_config.xml. https:
//github.com/Gxyong/SwipeCardView/blob/master/
app/src/main/res/xml/network_security_config.xml
(visited on 09/22/2020).

[24] TrustAllX509TrustManager issue #909. https://github.
com/jhy/jsoup/issues/909 (visited on 09/22/2020).

[25] TrustKit-Android: Easy SSL pinning validation and report-
ing for Android. https://github.com/datatheorem/
TrustKit-Android (visited on 09/22/2020).

[26] TrustKit-Android: Sample NSC file. https://github.
com/datatheorem/TrustKit-Android/blob/master/
app/src/main/res/xml/network_security_config.xml
(visited on 09/22/2020) (visited on 09/22/2020).

[27] Unsafe implementation of X509TrustManager #374.
https://github.com/ACRA/acra/issues/374 (visited on
09/22/2020).

[28] Upload failed You uploaded a debuggable APK. https:
//github.com/phonegap/build/issues/436 (visited on
09/22/2020).

[29] Use X509TrustManager for SSL in android. https:
//stackoverflow.com/questions/49650900/use-
x509trustmanager-for-ssl-in-android (visited on
09/22/2020).

[30] WebViewClient onReceivedSslError. https://
developer.android.com/reference/android/webkit/
WebViewClient.html#onReceivedSslError(android.
webkit.WebView,%20android.webkit.
SslErrorHandler,%20android.net.http.SslError)
(visited on 09/22/2020).

https://github.com/android-async-http/android-async-http
https://github.com/android-async-http/android-async-http
https://www.cnblogs.com/0616--ataozhijia/p/9766682.html
https://www.cnblogs.com/0616--ataozhijia/p/9766682.html
https://stackoverflow.com/questions/45940861/android-8-cleartext-http-traffic-not-permitted
https://stackoverflow.com/questions/45940861/android-8-cleartext-http-traffic-not-permitted
https://android.googlesource.com/platform/system/ca-certificates/+/master/files/
https://android.googlesource.com/platform/system/ca-certificates/+/master/files/
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://stackoverflow.com/questions/6511434/android-webview-setcertificate-issues-ssl-problems/57951506#57951506
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://github.com/ACRA/acra
https://github.com/ACRA/acra
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html
https://www.charlesproxy.com/
https://developer.android.com/studio/debug
https://developer.android.com/studio/debug
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://developers.mopub.com/publishers/android/get-started/#step-4-add-a-network-security-configuration-file
https://github.com/android-async-http/android-async-http/issues/1260
https://github.com/android-async-http/android-async-http/issues/1260
https://github.com/NoMore201/googleplay-api
https://github.com/NoMore201/googleplay-api
https://developer.android.com/reference/kotlin/javax/net/ssl/HostnameVerifier
https://developer.android.com/reference/kotlin/javax/net/ssl/HostnameVerifier
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43847629/java-android-uplaud-apk-and-google-play-security-alert
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://stackoverflow.com/questions/43777599/java-android-google-play-security-alert-for-insecure-trustmanager
https://github.com/jhy/jsoup/issues/912
https://github.com/jhy/jsoup/
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developers.facebook.com/docs/audience-network/android-network-security-config/
https://developers.facebook.com/docs/audience-network/android-network-security-config/
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://android.googlesource.com/platform/tools/base/+/6c94f47a39aafc2f2dbd85c5263075c7a16c9297/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/NetworkSecurityConfigDetector.java
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/Gxyong/SwipeCardView/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/jhy/jsoup/issues/909
https://github.com/jhy/jsoup/issues/909
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/datatheorem/TrustKit-Android/blob/master/app/src/main/res/xml/network_security_config.xml
https://github.com/ACRA/acra/issues/374
https://github.com/phonegap/build/issues/436
https://github.com/phonegap/build/issues/436
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://stackoverflow.com/questions/49650900/use-x509trustmanager-for-ssl-in-android
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)
https://developer.android.com/reference/android/webkit/WebViewClient.html#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError)

[31] WhatsApp Hack Attack Can Change Your Messages.
https://www.forbes.com/sites/daveywinder/
2019/08/07/whatsapp-hack-attack-changes-your-
messages-and-facebook-doesnt-seem-to-care/ (vis-
ited on 09/22/2020).

[32] X509TrustManager. https://developer.android.com/
reference/javax/net/ssl/X509TrustManager (visited
on 09/22/2020).

[33] Android M and the war on cleartext traffic, 2015.
https://koz.io/android-m-and-the-war-on-
cleartext-traffic/ (visited on 09/22/2020).

[34] CVE-2016-2402. Available from MITRE, CVE-ID CVE-
2016-2402., Feb. 3 2016. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-2402 (visited on
09/22/2020).

[35] ACAR, Y., BACKES, M., BUGIEL, S., FAHL, S., MCDANIEL,
P., AND SMITH, M. Sok: Lessons learned from android se-
curity research for appified software platforms. In Proc. 37th
IEEE Symposium on Security and Privacy (SP’16) (2016),
IEEE.

[36] ALLEN, C., AND DIERKS, T. The TLS Protocol Version
1.0. RFC 2246, Jan. 1999. https://rfc-editor.org/rfc/
rfc2246.txt (visited on 09/22/2020).

[37] ALLIX, K., BISSYANDÉ, T. F., KLEIN, J., AND LE TRAON,
Y. Androzoo: Collecting millions of android apps for the
research community. In Proceedings of the 13th International
Conference on Mining Software Repositories (New York, NY,
USA, 2016), MSR ’16, ACM, pp. 468–471.

[38] AMOUR, L. S., AND PETULLO, W. M. Improving application
security through TLS-library redesign. In Security, Privacy,
and Applied Cryptography Engineering (SPACE). Springer,
2015, pp. 75–94.

[39] ANDRÉ, C. GMail Android App Insecure Network Se-
curity Configuration, 2018. https://labs.integrity.
pt/articles/Gmail-Android-app-insecure-Network-
Security-Configuration/ (visited on 09/22/2020).

[40] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In Proc.
ACM SIGPLAN 2014 Conference on Programming Language
Design and Implementation (PLDI’14) (2014), ACM.

[41] BACKES, M., BUGIEL, S., AND DERR, E. Reliable Third-
Party Library Detection in Android and its Security Appli-
cations. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security (2016), ACM,
pp. 356–367.

[42] BATES, A., PLETCHER, J., NICHOLS, T., HOLLEMBAEK, B.,
TIAN, D., BUTLER, K. R., AND ALKHELAIFI, A. Securing
SSL certificate verification through dynamic linking. In ACM
Conference on Computer and Communications Security (CCS)
(2014), pp. 394–405.

[43] BOEYEN, S., SANTESSON, S., POLK, T., HOUSLEY, R., FAR-
RELL, S., AND COOPER, D. Internet X.509 Public Key In-
frastructure Certificate and Certificate Revocation List (CRL)

Profile. RFC 5280, May 2008. https://rfc-editor.org/
rfc/rfc5280.txt (visited on 09/22/2020).

[44] BRUBAKER, C. Changes to Trusted Certificate
Authorities in Android Nougat, 2016. https:
//android-developers.googleblog.com/2016/07/
changes-to-trusted-certificate.html (visited on
09/22/2020).

[45] BRUBAKER, C. Protecting users with TLS by default
in Android P, 04 2018. https://android-developers.
googleblog.com/2018/04/protecting-users-with-
tls-by-default-in.html (visited on 09/22/2020) (visited
on 09/22/2020).

[46] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing inter-application communication in Android. In
Proc. 9th International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys’11) (2011), ACM.

[47] CHOTHIA, T., GARCIA, F. D., HEPPEL, C., AND STONE,
C. M. Why banker bob (still) can’t get tls right: A security
analysis of tls in leading uk banking apps. In Financial Cryp-
tography and Data Security (Cham, 2017), A. Kiayias, Ed.,
Springer International Publishing, pp. 579–597.

[48] CONTI, M., DRAGONI, N., AND GOTTARDO, S. MITHYS:
Mind the hand you shake-protecting mobile devices from SSL
usage vulnerabilities. In Security and Trust Management.
Springer, 2013, pp. 65–81.

[49] CUNNINGHAM, E. Improving app security and per-
formance on Google Play for years to come, 12 2017.
https://android-developers.googleblog.com/2017/
12/improving-app-security-and-performance.html
(visited on 09/22/2020).

[50] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND

KRUEGEL, C. An empirical study of cryptographic misuse
in android applications. In Proc. 20th ACM Conference on
Computer and Communication Security (CCS’13) (2013),
ACM.

[51] ENCK, W., GILBERT, P., CHUN, B. G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-flow Tracking System for Realtime Privacy Moni-
toring on Smartphones.

[52] ENCK, W., OCTEAU, D., MCDANIEL, P. D., AND CHAUD-
HURI, S. A Study of Android Application Security. In Proc.
20th Usenix Security Symposium (SEC’11) (2011), USENIX
Association.

[53] EVANS, C., PALMER, C., AND SLEEVI, R. Public Key Pinning
Extension for HTTP. RFC 7469, Apr. 2015. https://rfc-
editor.org/rfc/rfc7469.txt (visited on 09/22/2020).

[54] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory
love Android: An analysis of Android SSL (in)security. In
Proc. 19th ACM Conference on Computer and Communication
Security (CCS’12) (2012), ACM.

[55] FAHL, S., HARBACH, M., OLTROGGE, M., MUDERS, T.,
AND SMITH, M. Hey, you, get off of my clipboard - On How
Usability Trumps Security in Android Password Managers. In
Proc. 2013 Financial Cryptography and Data Security (FC’13)
(2013), Springer.

https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://www.forbes.com/sites/daveywinder/2019/08/07/whatsapp-hack-attack-changes-your-messages-and-facebook-doesnt-seem-to-care/
https://developer.android.com/reference/javax/net/ssl/X509TrustManager
https://developer.android.com/reference/javax/net/ssl/X509TrustManager
https://koz.io/android-m-and-the-war-on-cleartext-traffic/
https://koz.io/android-m-and-the-war-on-cleartext-traffic/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2402
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2402
https://rfc-editor.org/rfc/rfc2246.txt
https://rfc-editor.org/rfc/rfc2246.txt
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://labs.integrity.pt/articles/Gmail-Android-app-insecure-Network-Security-Configuration/
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://rfc-editor.org/rfc/rfc7469.txt
https://rfc-editor.org/rfc/rfc7469.txt

[56] FAHL, S., HARBACH, M., PERL, H., KOETTER, M., AND

SMITH, M. Rethinking SSL Development in an Appified
World. In Proc. 20th ACM Conference on Computer and
Communication Security (CCS’13) (2013), ACM.

[57] FISCHER, F., BÖTTINGER, K., XIAO, H., STRANSKY, C.,
ACAR, Y., BACKES, M., AND FAHL, S. Stack Overflow Con-
sidered Harmful? The Impact of Copy&Paste on Android Ap-
plication Security. In Proc. 38th IEEE Symposium on Security
and Privacy (SP’17) (2017), IEEE.

[58] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: validating SSL certificates in non-browser software.
In Proc. 19th ACM Conference on Computer and Communica-
tion Security (CCS’12) (2012), ACM.

[59] GOOGLE. Android 6.0 Changes. https://developer.
android.com/about/versions/marshmallow/android-
6.0-changes (visited on 09/22/2020).

[60] GOOGLE. Android 7.0 for Developers. https://developer.
android.com/about/versions/nougat/android-7.0
(visited on 09/22/2020).

[61] GOOGLE. Android 7.0 for Developers. https:
//developer.android.com/about/versions/oreo/
android-8.0-changes (visited on 09/22/2020).

[62] GOOGLE. App security improvement program. https:
//developer.android.com/google/play/asi (visited on
09/22/2020).

[63] GOOGLE. Behavior changes: apps targeting API level 28+.
https://developer.android.com/about/versions/
pie/android-9.0-changes-28#framework-security-
changes (visited on 09/22/2020).

[64] GOOGLE. Security Enhancements in Android
6.0. https://source.android.com/security/
enhancements/enhancements60 (visited on 09/22/2020).

[65] GOOGLE. Upload App. https://support.google.
com/googleplay/android-developer/answer/
113469#targetsdk (visited on 09/22/2020).

[66] GOOGLE. How to address WebView SSL Error Handler alerts
in your apps, 2016. https://support.google.com/faqs/
answer/7071387 (visited on 09/22/2020).

[67] GOOGLE. How to fix apps containing an unsafe implemen-
tation of TrustManager, 2016. https://support.google.
com/faqs/answer/6346016 (visited on 09/22/2020).

[68] GOOGLE. How to resolve Insecure HostnameVeri-
fier, 2017. https://support.google.com/faqs/answer/
7188426 (visited on 09/22/2020).

[69] HE, B., RASTOGI, V., CAO, Y., CHEN, Y., VENKATAKRISH-
NAN, V. N., YANG, R., AND ZHANG, Z. Vetting ssl usage in
applications with sslint. In 2015 IEEE Symposium on Security
and Privacy (May 2015), pp. 519–534.

[70] KAFLE, K., MORAN, K., MANANDHAR, S., NADKARNI, A.,
AND POSHYVANYK, D. A study of data store-based home
automation. CODASPY’19, Association for Computing Ma-
chinery, p. 73–84.

[71] KOZYRAKIS, J. An examination of ineffective cer-
tificate pinning implementations, 2016. https:
//www.synopsys.com/blogs/software-security/
ineffective-certificate-pinning-implementations/
(visited on 09/22/2020).

[72] KRÜGER, S., NADI, S., REIF, M., ALI, K., MEZINI, M.,
BODDEN, E., GÖPFERT, F., GÜNTHER, F., WEINERT, C.,
DEMMLER, D., AND KAMATH, R. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software
Engineering (2017), ASE’17, IEEE Press, p. 931–936.

[73] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES, M.,
WEIR, C., AND FAHL, S. A Stitch in Time: Supporting An-
droid Developers in Writing Secure Code. In Proc. 24th
ACM Conference on Computer and Communication Security
(CCS’17) (2017), ACM.

[74] OLTROGGE, M., ACAR, Y., DECHAND, S., SMITH, M., AND

FAHL, S. To Pin or Not to Pin - Helping App Developers
Bullet Proof Their TLS Connections. In Proc. 24th Usenix
Security Symposium (SEC’15) (2015), USENIX Association.

[75] OLTROGGE, M., DERR, E., STRANSKY, C., ACAR, Y.,
FAHL, S., ROSSOW, C., PELLEGRINO, G., BUGIEL, S., AND

BACKES, M. The rise of the citizen developer: Assessing
the security impact of online app generators. In 2018 IEEE
Symposium on Security and Privacy (SP), vol. 00, pp. 102–115.

[76] O’NEILL, M., HEIDBRINK, S., RUOTI, S., WHITEHEAD,
J., BUNKER, D., DICKINSON, L., HENDERSHOT, T.,
REYNOLDS, J., SEAMONS, K., AND ZAPPALA, D. Trustbase:
An architecture to repair and strengthen certificate-based
authentication. In USENIX Security Symposium (2017).

[77] ONWUZURIKE, L., AND DE CRISTOFARO, E. Danger is
my middle name: experimenting with SSL vulnerabilities in
Android apps. In ACM Conference on Security & Privacy in
Wireless and Mobile Networks (WiSec) (2015), ACM, pp. 1–6.

[78] POEPLAU, S., FRATANTONIO, Y., BIANCHI, A., KRUEGEL,
C., AND VIGNA, G. Execute this! analyzing unsafe and mali-
cious dynamic code loading in android applications. In Proc.
21st Annual Network and Distributed System Security Sympo-
sium (NDSS’14) (2014), The Internet Society.

[79] POSSEMATO, A., AND FRATANTONIO, Y. Towards HTTPS
everywhere on android: We are not there yet. In 29th
USENIX Security Symposium (USENIX Security 20) (Aug.
2020), USENIX Association, pp. 343–360.

[80] RAHAMAN, S., XIAO, Y., AFROSE, S., SHAON, F., TIAN, K.,
FRANTZ, M., KANTARCIOGLU, M., AND YAO, D. D. Cryp-
toguard: High precision detection of cryptographic vulnerabili-
ties in massive-sized java projects. CCS’19, Association for
Computing Machinery, p. 2455–2472.

[81] RAZAGHPANAH, A., NIAKI, A. A., VALLINA-RODRIGUEZ,
N., SUNDARESAN, S., AMANN, J., AND GILL, P. Studying
tls usage in android apps. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperiments
and Technologies (New York, NY, USA, 2017), CoNEXT’17,
Association for Computing Machinery, p. 350–362.

https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/nougat/android-7.0
https://developer.android.com/about/versions/nougat/android-7.0
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/google/play/asi
https://developer.android.com/google/play/asi
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://developer.android.com/about/versions/pie/android-9.0-changes-28#framework-security-changes
https://source.android.com/security/enhancements/enhancements60
https://source.android.com/security/enhancements/enhancements60
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/googleplay/android-developer/answer/113469#targetsdk
https://support.google.com/faqs/answer/7071387
https://support.google.com/faqs/answer/7071387
https://support.google.com/faqs/answer/6346016
https://support.google.com/faqs/answer/6346016
https://support.google.com/faqs/answer/7188426
https://support.google.com/faqs/answer/7188426
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/

[82] RESCORLA, E. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, Aug. 2018. https://rfc-editor.
org/rfc/rfc8446.txt (visited on 09/22/2020).

[83] RESCORLA, E., AND DIERKS, T. The Transport Layer Se-
curity (TLS) Protocol Version 1.2. RFC 5246, Aug. 2008.
https://rfc-editor.org/rfc/rfc5246.txt (visited on
09/22/2020).

[84] SOUNTHIRARAJ, D., SAHS, J., GREENWOOD, G., LIN, Z.,
AND KHAN, L. Smv-hunter: Large scale, automated detection
of ssl/tls man-in-the-middle vulnerabilities in android apps.

[85] TENDULKAR, V., AND ENCK, W. An Application Package
Configuration Approach to Mitigating Android SSL Vulnerabil-
ities. In Proceedings of the IEEE Mobile Security Technologies
workshop (MoST) (2014), IEEE.

[86] WEIR, C., HERMANN, B., AND FAHL, S. From needs to ac-
tions to secure apps? the effect of requirements and developer
practices on app security. In 29th USENIX Security Sympo-
sium (USENIX Security 20) (Aug. 2020), USENIX Association,
pp. 289–305.

[87] WERMKE, D., HUAMAN, N., ACAR, Y., REAVES, B.,
TRAYNOR, P., AND FAHL, S. A Large Scale Investigation of
Obfuscation Use in Google Play. In Proc. 34th Annual Com-
puter Security Applications Conference (ACSAC’18) (2018),
ACM.

A Appendix

Table 7: Top 10 Root CAs detected in pinning

Apps CAa

44 CN=Amazon Root CA 1
39 CN=Go Daddy Root Certificate Authority - G2
24 CN=Starfield Services Root Certificate Authority - G2
22 CN=DigiCert High Assurance EV Root CA
22 CN=DigiCert Global Root CA
19 CN=DigiCert Global Root G2
17 CN=Entrust Root Certification Authority - G2
16 CN=GlobalSign Root CA
16 CN=Baltimore CyberTrust Root
16 CN=COMODO RSA Certification Authority

a
We use the CAs’ CommonName attribute for brevity here

Table 8: Top 10 Domains with HTTPS downgrade.

Apps HTTPS Domain Value

11,689 127.0.0.1
4,290 localhost

740 10.0.2.2
449 localdev.cc
392 amazon-adsystem.com
376 virenter.com
366 10.0.3.2
366 X securenetsystems.net
293 X renweb.com
290 X getfitivity.com

X HTTPS would be possible

Table 9: Top 10 domains that were used with pinning.

Apps Domain Value Exp Leaf CA

29 ayers.com.hk X X
36 subaio.com
24 finopaymentbank.in
23 webmobi.com X
12 api.app.olbisoft.de X
12 cmtelematics.com X
12 info.app.olbisoft.de X
11 demo.pay2india.com
11 gmail.com X
9 app.sociabble.com X X

* We could not find the certificate for the given pinning value.

Table 10: Top 10 Domains with HTTPS upgrade

Apps Domain Value

76 cdn.example2.com
76 example.com

8 horaires-aeroports.appspot.com
7 ayers.com.hk
4 apis.appnxt.net
4 10.0.2.2
4 10.0.3.2
4 http://credu.com
4 http://el.multicampus.com
4 http://www.credu.com

Listing 1: Empty TrustManager - Accepts all certificates

@Override
public void checkServerTrusted(X509Certificate[]

chain , String authType) throws
CertificateException {

}

https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc5246.txt

Table 11: Top custom certificates for debugging

Apps Certificate

170 /CN=CharlesProxyCustomRootCertificate
65 /C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.

ru
12 /C=DE/O=aktivkonzepte/CN=aktiv-konzepte

9 /C=SI/ST=Slovenija/L=Ljubljana/O=Omsoftd.
o.o./OU=Primoz/CN=OmsoftCA/emailAddress=
primoz@omsoft.si

9 /CN=ng_test_ca_2/C=SI/O=Halcom/OU=NG
9 /C=SI/L=Ljubljana/O=Halcomd.d./OU=Corporate/

CN=ljvfep3.halcom.local/emailAddress=
sysadmins@halcom.si

8 /C=SI/O=Halcomd.d./OU=servercertificates/CN=
fep-r3.halcom.local/SN=halcom.local/GN=fep-r3

8 /C=US/O=GeoTrustInc./CN=RapidSSLSHA256CA
6 /OU=Createdbyhttp://www.fiddler2.com/O=

DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
4 /C=CA/ST=PrinceEdwardIsland/L=Charlottetown/O=

silverorangeInc./CN=roble/emailAddress=
sysadmin@silverorange.com

* Certificates for Charles Proxy are generated during setup and include indi-
vidual user and device names. Therefore, we only used the prefix for aggre-
gation.

Table 12: Top custom certificates for production

Apps Certificate

647 /C=US/ST=NY/L=NY/O=NarviiInc./OU=Aminoapps/
CN=https://aminoapps.com//emailAddress=
system@narvii.com

379 /CN=console-forum.net
174 /C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.

dm7.me/emailAddress=dushyanth@zerista.com
174 /C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.

dm7.me/emailAddress=dushyanth@zerista.com
89 /CN=*.zerista.io
21 /C=AU/ST=Some-State/O=InternetWidgitsPtyLtd/CN=

*.zerista.d.dm7.me
21 /C=US/ST=Colorado/L=Denver/O=Zerista,Inc./OU=

Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=
dushyanth@zerista.com

16 /C=US/O=DigiCertInc/OU=www.digicert.com/CN=
RapidSSLRSACA2018

16 /CN=CharlesProxyCA(1Jul2019,MacBook-Pro-de-
Toni.local)/OU=https://charlesproxy.com/ssl/O=
XK72Ltd/L=Auckland/ST=Auckland/C=NZ

16 /CN=CharlesProxyCA(20Nov2019,Marc.local)/OU=
https://charlesproxy.com/ssl/O=XK72Ltd/L=
Auckland/ST=Auckland/C=NZ

Listing 2: Empty HostnameVerifier - Accepts all hostnames

@Override
public boolean verify(String host , SSLSession

session) {
return true;

}

Listing 3: NSC permitting HTTP traffic again

<?xml version="1.0" encoding="utf -8"?>
<network -security -config>
...
<base -config cleartextTrafficPermitted="true">
...
</base -config>
...
</network -security -config>

Listing 4: Reactivating trust for user-installed CAs

<?xml version="1.0" encoding="utf -8"?>
<network -security -config>
...
<base -config>

<trust -anchors>
<certificates src="system" />
<certificates src="user" />

</trust -anchors>
</base -config>
...
</network -security -config>

Listing 5: Insecure NSC Snippet from the Mopub Library

<?xml version="1.0" ?>
<network -security -config>

...
<base -config cleartextTrafficPermitted="

true">
<trust -anchors>

<certificates src="system"
/>

</trust -anchors>
</base -config>
<domain -config cleartextTrafficPermitted="

false">
<domain includeSubdomains="true">

example.com</domain>
<domain includeSubdomains="true">

cdn.example2.com</domain>
</domain -config>

</network -security -config>

/CN=Charles Proxy Custom Root Certificate
/C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.ru
/C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.ru
/C=DE/O=aktivkonzepte/CN=aktiv-konzepte
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/C=SI/ST=Slovenija/L=Ljubljana/O=Omsoft d.o.o./OU=Primoz/CN=Omsoft CA/emailAddress=primoz@omsoft.si
/CN=ng_test_ca_2/C=SI/O=Halcom/OU=NG
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/L=Ljubljana/O=Halcom d.d./OU=Corporate/CN=ljvfep3.halcom.local/emailAddress=sysadmins@halcom.si
/C=SI/O=Halcom d.d./OU=server certificates/CN=fep-r3.halcom.local/SN=halcom.local/GN=fep-r3
/C=SI/O=Halcom d.d./OU=server certificates/CN=fep-r3.halcom.local/SN=halcom.local/GN=fep-r3
/C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA
/OU=Created by http://www.fiddler2.com/O=DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
/OU=Created by http://www.fiddler2.com/O=DO_NOT_TRUST/CN=DO_NOT_TRUST_FiddlerRoot
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=CA/ST=Prince Edward Island/L=Charlottetown/O=silverorange Inc./CN=roble/emailAddress=sysadmin@silverorange.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/C=US/ST=NY/L=NY/O=Narvii Inc./OU=Aminoapps/CN=https://aminoapps.com//emailAddress=system@narvii.com
/CN=console-forum.net
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.d.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=CO/L=Denver/O=Zerista/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/CN=*.zerista.io
/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*.zerista.d.dm7.me
/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*.zerista.d.dm7.me
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/ST=Colorado/L=Denver/O=Zerista, Inc./OU=Dushyanth/CN=*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=RapidSSL RSA CA 2018
/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=RapidSSL RSA CA 2018
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (1 Jul 2019, MacBook-Pro-de-Toni.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ
/CN=Charles Proxy CA (20 Nov 2019, Marc.local)/OU=https://charlesproxy.com/ssl/O=XK72 Ltd/L=Auckland/ST=Auckland/C=NZ

	Introduction
	Background on TLS and Android
	Network Security Configuration
	Google Play

	Related Work
	NSC Adoption and Security
	Security Analysis of Custom nsc Settings
	Cleartext Traffic
	Pinning Certificates
	Custom CA Configurations
	User-Installed Certificates
	Debug Overrides
	Malformed nsc Files
	Impact of NSC on Android Ecosystem
	Manual Analysis

	Google Play Safeguards
	TrustManager Implementations
	HostnameVerifier Implementations
	WebViewClient Implementations
	Reproducing Complaints of Developers
	Insecure Apps in Google Play

	Limitations
	Discussion
	Conclusion
	Appendix

