
Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

Abstract
In this paper we introduce partitioning oracles, a new class

of decryption error oracles which, conceptually, take a cipher-
text as input and output whether the decryption key belongs
to some known subset of keys. Partitioning oracles can arise
when encryption schemes are not committing with respect to
their keys. We detail adaptive chosen ciphertext attacks that
exploit partitioning oracles to efficiently recover passwords
and de-anonymize anonymous communications. The attacks
utilize efficient key multi-collision algorithms — a cryptana-
lytic goal that we define — against widely used authenticated
encryption with associated data (AEAD) schemes, including
AES-GCM, XSalsa20/Poly1305, and ChaCha20/Poly1305.

We build a practical partitioning oracle attack that quickly
recovers passwords from Shadowsocks proxy servers. We
also survey early implementations of the OPAQUE protocol
for password-based key exchange, and show how many could
be vulnerable to partitioning oracle attacks due to incorrectly
using non-committing AEAD. Our results suggest that the
community should standardize and make widely available
key-committing AEAD to avoid such vulnerabilities.

1 Introduction

The design of encryption historically separated the goals
of confidentiality and authenticity, which led to widespread
deployment of encryption schemes vulnerable to chosen-
ciphertext attacks (CCAs) [17, 81]. Subsequently, researchers
showed how to exploit CCAs to recover plaintext data, most
notably via padding [6, 7, 17, 81] and format [12, 26] ora-
cle attacks. As a result, cryptographers now advocate the
use of authenticated encryption with associated data (AEAD)
schemes and CCA-secure public key encryption. There has
since been a shift to adopt fast CCA-secure schemes, notably
AES-GCM [58], XSalsa20/Poly1305 [13, 15], and (in the
public key setting) hybrid encryption that make use of the
aforementioned AEAD schemes.

Such schemes do not target being robust [5, 23], also
called committing [29]. While exact formal notions vary, ro-
bust/committing schemes ensure that attackers cannot con-
struct a ciphertext that decrypts without error under more
than one key. Thus far robustness has not been considered an
essential security goal for most cryptographic applications,
perhaps because attacks exploiting lack of robustness have
only arisen in relatively niche applications like auction proto-
cols [22], or more recently as an integrity issue in moderation

for encrypted messaging [21, 29].
We introduce partitioning oracle attacks, a new type of

CCA. Briefly, a partitioning oracle arises when an adversary
can: (1) efficiently craft ciphertexts that successfully decrypt
under a large number of potential keys, and (2) can submit
such ciphertexts to a system that reveals whether decryption
under a target secret key succeeds. This enables an attacker
to learn information about the secret key. The main cryptan-
alytic step for our attacks is constructing (what we call) key
multi-collisions, in which a single AEAD ciphertext can be
built such that decryption succeeds under some number k of
keys. We formalize this cryptanalytic goal and give an algo-
rithm for computing key multi-collisions for AES-GCM. It
builds key multi-collision ciphertexts of length O(k) in O(k2)
time, making them reasonably scalable even to large k. We
give more limited attacks against XSalsa20/Poly1305 (and
ChaCha20/Poly1305) and AES-GCM-SIV.

Given access to an oracle that reveals whether decryption
succeeds, our key multi-collisions for AES-GCM enable a par-
titioning oracle attack that recovers the secret key in roughly
m+ logk queries in situations where possible keys fall in a
set of size d = m · k. This will not work to recover much in-
formation about, e.g., random 128-bit keys where d = 2128,
but we show that it suffices to be damaging in settings where
keys are derived from user-selected passwords or where key
anonymity is important.

We explore partitioning oracles via two case studies. First
we show how to build a practical partitioning oracle attack
against Shadowsocks proxy servers [73]. Shadowsocks was
first built to help evade censorship in China, and it underlies
other tools such as Jigsaw’s Outline VPN [62]. In Shadow-
socks, the connections are secured via password-based AEAD
with a user-chosen password shared between a client and the
proxy server. We show how an attacker can turn the proxy
server into a partitioning oracle, despite it being designed to
silently drop incorrect ciphertexts.

Simulations using password breach data show that 20% of
the time the attacker recovers the user’s password by sending
124 ciphertexts to the server — several orders of magnitude
fewer than the ∼60,000 required by a standard remote guess-
ing attack. The latter requires less overall bandwidth because
our attack ciphertexts are large. However, to succeed 70% of
the time, our attack requires fewer queries and less overall
bandwidth than the remote guessing attack. We have respon-
sibly disclosed our attacks to the Shadowsocks community,
and worked with them to help mitigate the vulnerability.

We then turn to password-authenticated key exchange

(PAKE). Here we focus on incorrect implementations of the
OPAQUE [38] protocol, which was recently chosen by the
IETF’s Crypto Forum Research Group (CFRG) as a candi-
date for standardization. OPAQUE makes use of an AEAD
scheme in its protocol and both the original paper and the
(rapidly evolving) standard [46, 47] mandate that the AEAD
used be committing. We consider what happens when im-
plementations deviate from the standard by using a non-
committing AEAD scheme. Indeed, early implementations
(some of which predate the standardization effort) use AES-
GCM, XSalsa20/Poly1305, or AES-GCM-SIV. As we dis-
cuss, these implementations would be hard to use without
giving rise to partitioning oracles. Our simulations show that
a partitioning oracle here would enable successful password
recovery 20% of the time using just 18 man-in-the-middle im-
personations against a vulnerable client implementation. Our
results therefore reinforce the importance of using committing
AEAD by quantifying the danger of failing to do so.

In addition to these in-depth case studies, we discuss
other potentially vulnerable cryptographic tools and proto-
cols. Some of these, such as the file encryption tool called
age [79] and the internet-draft of the Hybrid Public Key En-
cryption scheme [10], have already made updates to mitigate
our attacks.

Our findings join prior ones [21, 29] in a growing body
of evidence that using non-committing AEAD as a default
choice can lead to subtle vulnerabilities. We suggest consider-
ing a shift towards key-committing AEAD being the default
for general use, and using non-committing AEAD only for
applications shown to not require robustness. This will re-
quire some work, however, as existing committing AEAD
scheme designs [21,29] are slower than non-committing ones
and not yet supported by standards. We believe future work
should target fast, committing AEAD schemes suitable for
standardization and widespread deployment.

2 Partitioning Oracle Attacks

Here we provide an overview of the abstract partitioning
oracle attack setting and example attack scenarios.

Attack abstraction. We consider settings in which an at-
tacker seeks to recover a secret pw ∈ D from some set of
possible values D . The attacker has access to an interface that
takes as input a a bit string V , and uses it plus pw to output
the result of some boolean function fpw : {0,1}∗ → {0,1}.
Here fpw is an abstraction of some cryptographic operations
that may succeed or fail depending on pw and V . We use
fpw(V) = 1 for success and fpw(V) = 0 for failure. We give
examples of fpw below; in this work fpw usually indicates suc-
cess or failure of decrypting a ciphertext using password pw.

Given oracle access to adaptively query fpw on chosen
values, the question is: Can an attacker efficiently recover pw?
This of course will depend on f . We refer to f as a partitioning

oracle if it is computationally tractable for an adversary, given
any set S ⊆D , to compute a value V̂ that partitions S into two
sets S∗ and S \S∗, with |S∗| ≤ |S \S∗|, such that f (pw,V̂)= 1
for all pw ∈ S and f (pw,V̂) = 0 for all pw ∈ S \S∗. We call
such a V̂ a splitting value and refer to k = |S∗| as the degree
of a splitting value V̂ . We say that a splitting value is targeted
if the adversary can select the secrets in S∗, in contrast to
untargeted attacks that, e.g., compute a splitting value that
results in a random partition of S.

For most fpw of practical interest it will be trivial to com-
pute splitting values with degree k = 1. In this case, a parti-
tioning oracle attack coincides with a traditional online brute-
force guessing strategy for recovering pw. The adversary has
nothing other than black-box oracle access to fpw and knowl-
edge of an ordering pw1, pw2, . . . of D according to decreas-
ing likelihood. First compute a splitting value V̂1 that parti-
tions S =D into S∗1 = {pw1} and the rest of S . Query fpw(V̂1).
The resulting bit indicates whether S∗1 = {pw1}= {pw}. As-
suming not, compute a splitting value V̂2 that partitions D \S∗1
into S∗2 = {pw2} and the remainder, query fpw(V̂2), and so
on. The attacker will learn pw in worst case d = |D| oracle
queries. Notice that in this case the best possible attack is
non-adaptive, meaning the attacker can pre-compute all of its
splitting values before it begins.

Partitioning oracles become more interesting when we can
efficiently build splitting values of degree k > 1. In the limit,
we can perform a simple adaptive binary search for pw if we
can compute splitting values of degree up to k = dd/2e. Ini-
tially set S = D and compute a value V̂1 that splits S into two
halves of (essentially) the same size. Query fpw(V̂1) to learn
which half of D the value pw lies within. Recurse on that half.
Like all binary searches, this provides an exponential speed-
up over the brute-force strategy because we can recover pw
in dlogde queries. We provide more details about this attack,
in particular taking into account non-uniform distributions of
the secret pw, in Sections 4 and 5.

Example: Password-based AEAD. Consider a server that
accepts messages encrypted using a password pw. To
send an encrypted message m, a client derives a key K ←
PBKDF(sa, pw) using a uniformly random per-message
salt sa. It then uses K to encrypt m according to an au-
thenticated encryption with associated data (AEAD) scheme,
resulting in a ciphertext C. Here PBKDF is a password-
based key derivation function (e.g., one of those speci-
fied in PKCS#5 [42]). The client sends V = (sa,C) to
the server, which re-derives K and decrypts the ciphertext.
This represents a standardized and widely used way to per-
form password-based AEAD, and it is standard practice
now to use fast AEAD schemes such as Galois Counter
Mode (GCM) [58] or XSalsa20/Poly1305 [13, 15].

Nevertheless, if the server reveals just whether or not de-
cryption succeeds (e.g., due to an error message), we can
construct a partitioning oracle with fpw(sa,C) = 1 if and

only if decryption of (sa,C) succeeds. A priori, ciphertext un-
forgeability would seem to necessarily rule out computational
tractability of splitting ciphertexts for degree k > 1, but it does
not. In fact a simple extension of prior work already gives an
attack: Dodis et al. [21] showed how, for any two keys, one
can build an AES-GCM ciphertext such that decryption suc-
ceeds under both keys. This is possible because AES-GCM
is not committing (also called robust [23]). With this, our
adversary can check membership in a set S∗1 = {pw′, pw′′} of
two passwords by sending a splitting value V̂1 to the server,
as follows. First, it computes keys K← PBKDF(sa, pw′) and
K′← PBKDF(sa, pw′′) for some arbitrary sa. Then, it uses
Dodis et al. to construct a ciphertext Ĉ1 that successfully de-
crypts under both K and K′. Finally, it sends splitting value
V̂1 = (sa,Ĉ1) to the server. If the server’s response indicates
decryption succeeded, fpw(sa,Ĉ1) = 1 and pw ∈ S∗1 . Else,
fpw(sa,Ĉ1) = 0 and pw 6∈ S∗1 . Iterating this allows finding pw
in at most |D|/2+1 queries, beating brute-force by almost a
factor of two.

We will achieve more significant speed-ups in recover-
ing pw by showing how to build splitting ciphertexts Ĉ with
degree k proportional to |Ĉ|.

Example: password-authenticated key exchange. A clas-
sical attack against an early version of the Secure Re-
mote Password (SRP) password-authenticated key exchange
(PAKE) protocol [84, 85] can be viewed as a partitioning ora-
cle attack. This attack gives an adversary who engages in the
SRP protocol without knowledge of the victim’s password the
ability to check two password guesses in one run of the proto-
col. In the parlance of partitioning oracles, the attack turns an
SRP client into a partitioning oracle with degree k = 2.

We will show in later sections a “k-for-one” (for k� 2)
partitioning oracle attack against incorrect implementations
of the OPAQUE PAKE protocol. OPAQUE mandates use of
committing AEAD, and the designers clearly specified that
using non-committing AEAD leads to vulnerabilities [38].
Nevertheless we found prototype implementations that use
AES-GCM and other non-committing AEAD schemes. Our
results demonstrate how damaging exploits can be should
implementers not abide by the protocol specification.

Example: hybrid encryption. Partitioning oracles can also
arise in hybrid encryption. For example, some KEM-DEM
constructions, like the HPKE scheme [10] currently being
standardized, support authenticating senders based on a pre-
shared key (PSK) from a dictionary D by mixing the PSK
into DEM key derivation and using AEAD as the DEM.

If the sender can learn whether the receiver successfully
decrypted a ciphertext, a trivial brute-force attack can recover
the PSK with enough queries. However, if the DEM is a non-
committing AEAD, a malicious sender can gain an exponen-
tial speedup by crafting splitting DEM ciphertexts similarly to
the password-based AEAD example above. See Appendix A
for an example of this attack for HPKE.

Example: anonymity systems. Partitioning oracles against
hybrid encryption can also arise in anonymity systems. Prior
work showed a link between robustness and anonymous en-
cryption [5,22,60]; our partitioning oracle attacks can exploit
lack of robustness to perform deanonymization.

As an example scenario consider anonymous end-to-end en-
crypted messaging, in which a recipient has a key pair (pk,sk)
for receiving encrypted messages that are delivered via anony-
mous channel. A modern choice for encryption would be
the crypto_box KEM-DEM scheme in the widely-used lib-
sodium [16, 52] library. An adversary wants to determine
if the recipient is using one of many possible public keys
{pk1, . . . ,pkd} (possibly gleaned from the web or a public-
key directory). The adversary has some way of inferring when
an encrypted message is successfully received (e.g., due to a
reply message or lack thereof). As above, a brute-force attack
over public keys can find the right one in d messages; this
may be prohibitive if d is large.

Instead, one can build a partitioning oracle attack against
crypto_box in this setting requiring only logd messages.
Here D = {1, . . . ,d}, that is, the partitioning oracle’s secret
is which of the keys is used. While we do not know of any
deployed system that is vulnerable to this attack scenario, it
is possible this vulnerability will arise with growing adoption
of non-committing AEAD for E2E encryption.

Discussion. Our results assume that attackers have good
estimates of password distributions. Prior work [63] shows
that attackers do have good estimates and our experiments
follow their simulation methodology. If an attacker wishes to
compromise the password of a particular user whose password
has never been breached, our attack would fail. However,
our simulations show that even with an incomplete password
dataset that results in a 20% success rate, hundreds of millions
of passwords would be vulnerable.

An interesting aspect of our attack settings is that the at-
tacker has no information about the target secret beyond ac-
cess to the partitioning oracle and, perhaps, some information
about the set D and how the secret was sampled from it. In
particular, our adversaries will not have to break in to some
system or observe network communications to obtain a hash
or ciphertext derived from pw.

We note that we have framed partitioning oracles as out-
putting binary values, but it could be possible that there exist
oracles that output one of many values. A partitioning oracle
that returns one of r values could be used to identify a secret
chosen from D in logr |D| queries. We do not know of any
examples of such a partitioning oracle.

Relationship to padding oracles. Partitioning oracle at-
tacks are analogous to, but distinct from, padding oracle at-
tacks [81] or other kinds of format oracle attacks [8, 26]. Par-
titioning oracles can be exploited to reveal information about
secret keys, whereas format oracles can only reveal informa-
tion about plaintexts. That said, there is some overlap concep-

tually in the underlying techniques, as classic padding oracle
attacks like Bleichenbacher’s [17] or Vaudenay’s [81] can
also be viewed as adaptive attacks that provide exponential
speed-ups in recovering unknown values.

Additionally, padding oracles may be useful in helping
construct partitioning oracles. For example, consider our
password-based AEAD example, but replace the AEAD
scheme with a scheme such as HMAC-then-Encrypt which is
well known to give rise to padding oracle attacks that recover
plaintext data [6, 7, 81]. We can use the padding oracle to
construct a partitioning oracle where fpw(Ĉ) = 1 if and only
if the padding check succeeds. Even if the check succeeds,
decrypting Ĉ will fail, but the padding oracle will reveal f ’s
output and thereby enable recovery of pw.

Relationship to side-channels. Side-channel attacks that
exploit timing or other aspects of a computation may help
in constructing partitioning oracle attacks. Many padding
oracle attacks exploit timing side-channels (e.g., [6]) and they
can analogously aid partitioning oracle attacks. One of our
attacks against Shadowsocks, for example, exploits a side-
effect of correct decryption that is remotely observable. In
Section 8, we discuss how timing side-channels that may arise
in decryption can enable partitioning oracle attacks, even if
a nominally committing scheme is used. But partitioning
oracles do not necessarily rely on side channels.

Timing side-channels have also been used recently to learn
information about passwords [80] from implementations of
the PAKE protocol Dragonfly [31]. We discuss this in more
detail in Section 7.

3 Key Multi-Collision Attacks

Our partitioning oracle attacks will utilize the ability to ef-
ficiently compute a ciphertext that decrypts under a large
number k of keys. We refer to this as a key multi-collision,
a cryptanalytic target for encryption schemes that is, to the
best of our knowledge, new. Our primary focus will be on key
multi-collision attacks against widely used AEAD schemes,
including AES-GCM and XSalsa20/Poly1305.

Key multi-collision attacks. We formalize our cryptana-
lytic goal as follows. Let AEAD = (AuthEnc,AuthDec) be
an authenticated encryption with associated data scheme,
and let its key space be the set K . We write encryption
AuthEncK(N,AD,M) to denote running the encryption al-
gorithm with secret key K ∈K , nonce N (a bit string), asso-
ciated data AD (a bit string), and message M (a bit string).
Decryption is written analogously, as AuthDecK(N,AD,C)
where C is a ciphertext. Decryption may output a distin-
guished error symbol ⊥. We require of our AEAD scheme
that AuthDecK(N,AD,AuthEncK(N,AD,M)) = M for all
N,AD,M not exceeding the scheme’s length restrictions. We
formalized AEAD as nonce-based [67], but our treatment and
results easily extend to randomized AEAD.

We define targeted multi-key collision resistance
(TMKCR) security by the following game. It is parame-
terized by a scheme AEAD and a target key set K ⊆ K . A
possibly randomized adversary A is given input a target
set K and must produce nonce N∗, associated data AD∗ and
ciphertext C∗ such that AuthDecK(N∗,AD∗,C∗) 6=⊥ for all
K ∈K. We define the advantage via

Advtmk-cr
AEAD,K(A) = Pr

[
TMKCRA

AEAD,K⇒ true
]

where “TMKCRA
AEAD,K⇒ true” denotes the event that A suc-

ceeds in finding N∗,AD∗,C∗ that decrypt under all keys in K.
The event is defined over the coins used by A .

We can define a similar untargeted multi-key collision re-
sistance goal, called simply MKCR. The associated security
game is the same except that the adversary gets to output a
set K of its choosing in addition to the nonce N∗, associated
data AD∗, and ciphertext C∗. The adversary wins if |K| ≥ κ

for some parameter κ > 1 and decryption of N∗,AD∗,C∗ suc-
ceeds for all K ∈K. We define the advantage as

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ⇒ true
]

where “MKCRA
AEAD,κ⇒ true” denotes the event that A suc-

ceeds in finding K,N∗,AD∗,C∗ such that N∗,AD∗,C∗ de-
crypts to non-⊥ under all keys in K. The event is defined
over the coins used by A .

A TMKCR adversary trivially gives an MKCR adversary,
but not vice versa. Both targeted and untargeted MKCR at-
tacks will enable partitioning oracle attacks, as both provide
the ability to compute splitting values that work for some
subset K of the key space. But targeted attacks are better
for adversaries, since it will allow, for example, generating
sets for the most probable keys (e.g., due to a non-uniform
distribution over the passwords used to derive them).

Our partitioning oracle attacks will require that decryption
fails for K /∈ K. This will hold except with tiny probability
for the target schemes of interest; thus, we focus on the crypt-
analytically hard task of computing the key multi-collisions.

Committing AEAD and MKCR. Informally, a committing
encryption scheme is one for which it is computationally
intractable to find a pair of keys and a ciphertext that decrypts
under both keys. Security goals for committing AE were
first formalized by Farshim et al. [23]. Grubbs et al. [29]
later formalized committing AEAD, with slightly different
semantics than usual for AEAD to capture a goal of compact
commitments. Compactness is relevant in the moderation
settings they considered, but not here.

The Farshim et al. full robustness (FROB) notion is closest
to our MKCR notion: once translated to the nonce-based
AEAD setting (by adding nonces and associated data), it is a
special case of MKCR in which |K|= 2. We use committing
AEAD to refer to schemes that meet this FROB notion, which,
in turn, rule out MKCR attacks. The converse is not true, since
being MKCR for κ does not imply being MKCR for κ′ < κ.

GCM-Enc(K,N,AD,M):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|M|)
T ← (L ·H)⊕P
m← |M|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ← T ⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
C[i]← EK(N +1+ i)⊕M[i]
T ← T ⊕ (C[i] ·Hb+2−i−a)

Return N ‖C ‖T

GCM-Dec(K,AD,N ‖C ‖T):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|C|)
T ′← (L ·H)⊕P
m← |C|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ′← T ′⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
M[i]← EK(N +1+ i)⊕C[i]
T ′← T ′⊕ (C[i] ·Hb+2−i−a)

If T ′ 6= T then return ⊥
Return M

Multi-Collide-GCM(K,N,T):

L← encode64(0)‖encode64(|K|×128)
pairs[·]←⊥ ; C← ε

For i = 1 to |K| :
H← EK[i](0128) ; P← EK[i](N‖0311)
y← ((L ·H)⊕P⊕T) ·H−2

pairs[i]← (H,y)
f ← Interpolate(pairs) ; x← Coeffs(f)
For i = 1 to |K| :

C←C ‖x[i]
Return N ‖C ‖T

Figure 1: (Left) The Galois Counter mode (GCM) encryption and (middle) decryption algorithms. (Right) The Multi-Collide-GCM algorithm,
which takes a set K of keys, a nonce N, and a tag T and computes a nonce-ciphertext-tag triple N‖C‖T such that it decrypts correctly under
every key in K. The function encode64(·) returns a 64-bit representation of its integer input. The function Interpolate(·) is a polynomial
interpolation algorithm that accepts a vector of data pairs and returns a polynomial, while Coeffs(·) returns the coefficients of this polynomial.
We denote · as multiplication and ⊕ as addition in GF(2128).

Related security goals. Multi-collision resistance has been
treated in the context of hash functions, but here we are inter-
ested in multi-collisions over keys and not over messages. In
particular the attacks of Joux [41] are not applicable to our
setting, even if one were to focus on keyed Merkle-Damgård
hash functions, since applying his attack technique would rely
on very long multi-block keys.

One can also formalize and investigate key multi-collision
security for other symmetric and asymmetric primitives, in-
cluding message authentication schemes, digital signatures,
and public-key encryption. We leave doing so to future work.

3.1 Key Multi-collisions for AES-GCM
At a high level, our multi-collision attack against AES-GCM
reduces the task of finding key multi-collisions to solving
a system of linear equations. This is possible because of
the algebraic properties of the universal hashing underlying
integrity protection in AES-GCM [58, 59].

AES-GCM is an AEAD scheme that composes AES in
counter mode with a specially designed Carter-Wegman
MAC [82]. The latter uses an XOR-universal hash function
called GHASH. Detailed pseudocode is provided in Figure 1.
Encryption takes in a nonce N, an AES key K, associated data
AD, and plaintext M. It outputs a ciphertext C1, . . . ,Cm,T ;
here T is the authentication tag and m = dM/ne for n = 128
the blocksize of the underlying AES blockcipher denoted
by E. The ciphertext blocks C1, . . . ,Cm are generated using
counter mode with E, and the tag T is computed by applying
GHASH to AD and C1, . . . ,Cm to obtain a value h. Finally
T = h⊕EK(N ‖0311). Decryption re-computes the tag, com-
pares it with T , and, if successful, outputs the counter-mode
decryption of the ciphertext blocks.

We now explain GHASH, but for simplicity omit associated

data. For a key K, GHASH first derives a hash key H =
EK(0n). It then hashes by computing

h =C1 ·Hm+1⊕·· ·⊕Cm−1 ·H3⊕C∗m ·H2⊕L ·H (1)

where C∗m is Cm concatenated with enough zeros to get an
n-bit string and L is an n-bit encoding of the length of the
message (equivalently, the length of the ciphertext). The max-
imum plaintext length is 239−256. The multiplications are
performed over the finite field GF(2128) with a particular fixed
irreducible polynomial.

Our attack takes as input a set K = {K1, . . . ,Kk} and
nonce N, and produces a single ciphertext (C1, . . . ,Ck−1,T)
that decrypts correctly under every key in K. For each Ki, we
derive the associated GHASH key Hi = EKi(0

n) and construct
a linear equation

T =C1 ·Hk−1
i ⊕·· ·⊕Ck−1 ·H2

i ⊕L ·Hi⊕EKi(N ‖0311)

which one arrives at by assigning Hi to H in (1) and then
substituting the result into the equation T = h⊕EKi(N ‖0311).
Note that we have fixed the number of the ciphertext blocks
to be k− 1. The result is then a system of k equations in k
unknowns:

1 H2
1 H3

1 · · · Hk+1
1

1 H2
2 H3

2 · · · Hk+1
2

...
...

...
. . .

...

1 H2
k H3

k · · · Hk+1
k

 ·


T

Ck−1
...

C1

=


B1

B2
...

Bk

 (2)

where Bi =(L ·Hi)⊕EKi(N‖0311). At this point, we can solve
the linear equations using Gaussian elimination to produce
the desired ciphertext. This will require O(k3) time, which
may be prohibitive for very large k.

The polynomial matrix in (2) is almost a Vandermonde
matrix, whose structured form allows for finding solutions

more efficiently. The difference is the missing column
[H1,H2, . . . ,Hk]

ᵀ that is omitted because of the fixed length
value L (which we cannot treat as a variable). We can, how-
ever, treat T as a fixed value (e.g., a randomly chosen constant)
instead of a variable, add one block of ciphertext as a new
variable, and solve for the following system of equations

1 H1 H2
1 · · · Hk−1

1

1 H2 H2
2 · · · Hk−1

2
...

...
...

. . .
...

1 Hk H2
k · · · Hk−1

k

 ·


Ck

Ck−1
...

C1

=


B′1
B′2
...

B′k

 (3)

where B′i = ((L ·Hi)⊕EKi(N+1)⊕T) ·H−2
i and where now L

is larger by one block. We can solve this special system of
equations in time O(k2) and space O(k) using off-the-shelf
polynomial interpolation algorithms, a factor of k improve-
ment. The resulting solution will have one extra ciphertext
block. While ideally an adversary wants multi-collision ci-
phertexts to be as compact as possible, one extra block will
not significantly impact attacks. Detailed pseudocode for this
attack is provided in Figure 1. Let Agcm be the TMKCR adver-
sary that picks N,T arbitrarily and runs Multi-Collide-GCM.

The adversary is guaranteed to succeed assuming the sys-
tem of linear equations is solvable, which is equivalent to
the matrix having a non-zero determinant. A well-known
fact about Vandermonde matrices is that their determinant is
non-zero if and only if all the Hi values are pairwise dis-
tinct, i.e., Hi 6= H j for 1 ≤ i < j ≤ k. In the ideal cipher
model we can therefore directly compute the probability of
success (over the coins of the ideal cipher), because in this
case the Hi values are chosen uniformly at random, and so
Advtmk-cr

GCM (Agcm)≥ 1− k2

2n . This is essentially one for the val-
ues of k we will consider and n = 128.

We conjecture that, up to additive constant terms, our at-
tack is “tight” in its trade-off between ciphertext size and
runtime: namely, any attack that (w.h.p.) constructs degree-k
AES-GCM ciphertexts with fewer than k blocks should re-
quire at least birthday-bound complexity. Informally, finding
an“unusually short” colliding AES-GCM ciphertext means
solving an overdetermined system of equations (i.e. one which
has more equations than variables). For such a system to be
solvable, there have to be rows that are linear combinations
of other rows. Since each column is just increasing powers of
a random field element (the hash key EK(0128) for each K in
K), this is hard to do assuming the blockcipher acts like an
ideal cipher. We leave a formal proof of this to future work.

Performance. We implemented Multi-Collide-GCM using
the Python-based mathematics library SageMath [77] and
the Magma computational algebra system [18]. We used
SageMath for its convenient integration with Python, for
which we could utilize cryptography libraries (specifically, Py-
Cryptodome [64]) for AES and for its interface with Magma.
We used Magma specifically for its polynomial interpolation

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

logq

Su
cc

es
s

ra
te

k = 1 k = 210 k = 212

k = 214 k = 216 k = 218

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

214 170 262,160

216 1,820 1,048,592

218 20,122 4,194,320

Figure 2: (Left) Success rate of identifying a key uniformly chosen
from a set of size d = 230 as a function of the number of queries q
for brute-force attack (k = 1) and partitioning oracle attack (k > 1).
(Right) Time in seconds to generate key multi-collisions for AES-
GCM and the resulting ciphertext size in bytes (including the tag).
For k = 218 the time is just for Magma’s polynomial interpolation.

algorithm, which we found to be faster than that of SageMath.
Timing experiments were performed on a desktop with an

Intel Core i9 processor and 128 GB RAM, running Linux
x86-64. We present the results in the table in Figure 2, which
shows both the time in seconds to generate a k-way key multi-
collision for AES-GCM and the size in bytes of the resulting
ciphertext, including the tag. There was little variance in
timing when generating multi-collisions, so we report the
times for just one execution for each k. Most of the multi-
collision ciphertexts could be computed relatively quickly.
Colliding ciphertexts for k = 216 keys, for instance, took less
than thirty minutes. For smaller k it is much faster. We note
that Sage’s interface with Magma returns a segmentation fault
when polynomial interpolation is used with value k = 218.
In Figure 2 for this k value, we therefore report the time to
perform polynomial interpolation for 218 randomly-generated
points using Magma itself; the timing for the actual attack
will be essentially the same.

To illustrate the power of key multi-collisions, we return
to the simple PW-based AEAD partitioning oracle scenario
described in Section 2. Assume a partitioning oracle that re-
turns fK(N,C,T) = 1 if and only if AES-GCM decryption
AuthDecK(N,C ‖T) 6=⊥ . We omit associated data for sim-
plicity. Then, consider an attacker attempting to discover a
key chosen uniformly from a set D of size d = 230 (i.e., the
approximate size of a large password dictionary). We simulate
the brute-force attack (k = 1) assuming the oracle works for
plaintexts as small as one byte. We also simulate our adaptive
partitioning oracle attack that constructs splitting ciphertexts
of size k iteratively for different sets of keys until the oracle
returns one. At this point the adversary performs a binary
search in logk queries to find the secret. We perform these
simulations for k ∈ {210,212,214,216,218}.

The graph in Figure 2 shows the attacks’ success rates —
how often they succeed in uniquely identifying the key — as a
function of the number of queries made. In this context brute-
force attacks do poorly, achieving negligible performance
even for large numbers of queries. The partitioning oracle
attack can search the space much more efficiently, even for
moderate k.

We also measured total bandwidth cost (total number of
bytes sent to the oracle) used by each attack to achieve a
certain success rate. We omitted the nonces from the band-
width calculations, which can only make the brute-force attack
look more competitive with the partitioning oracle attacks.
For a 20% success rate, the brute force attack (k = 1) has a
bandwidth cost of 3.65 GB, while the other values of k re-
quire about 3.44 GB. For a 60% success rate, the difference is
greater, with the brute force attack accumulating a bandwidth
cost of about 11 GB, while the other values of k require only
about 10.3 GB.

Ultimately, we conclude that partitioning oracle attacks
provide a significant speed up over brute-force search when
queries are the limiting factor.

3.2 Other AEAD Schemes

Schemes that use Poly1305. The XSalsa20/Poly1305 [13,
15] and ChaCha20/Poly1305 [14] are widely used AEAD
schemes due to their speed, ease of constant-time software im-
plementations, and security properties. Both schemes have a
high-level structure similar to AES-GCM, combining a stream
cipher (XSalsa20 or ChaCha20) with a Carter-Wegman style
MAC called Poly1305. Here we outline a key multi-collision
attack against it, and defer the details to the full version of
this work.

The core of the attack is against Poly1305 [13], which
is similar to GHASH except that it: (1) encodes an input
(a ciphertext in the context of its use within the AEAD
schemes here) as a sequence of blocks with 0x01 appended;
(2) performs the polynomial evaluation over Fp for prime
p = 2130− 5 (hence the name); and (3) adds the result to a
pseudorandom pad modulo 2128 to provide a tag value. The
way Poly1305 encodes its inputs breaks the algebraic struc-
ture of the collision-finding problem, necessitating a more
complex and less scalable attack. Concretely, we were not
able to compute splitting ciphertexts with degree greater than
ten with our current techniques; this still gives a factor-of-ten
speedup in partitioning oracle attacks.

Misuse-resistant AEAD. Many schemes, including those
described above, leak information about plaintexts should
nonces (IVs) be accidentally reused. Misuse-resistant
AEAD [68] provides security even in the presence of nonce
reuse. This security goal fundamentally rules out online en-
cryption, meaning one must process the entire plaintext before
outputting any ciphertext bits. One popular suggested scheme

is AES-GCM-SIV [30], which instantiates the SIV mode of
operation [68] using primitives borrowed from AES-GCM
(specifically, AES counter mode and a variant of GHASH
called POLYVAL).

Nonce misuse-resistance is different than robustness, and
in the full version we show that AES-GCM-SIV is vulnerable
to key multi-collision attacks. (A variant of this attack, limited
to only two keys, was discovered by Schmieg in concurrent
work [71].) One interesting point is that our attack against
AES-GCM-SIV is not targeted, meaning we cannot precisely
control the set of keys that end up in a collision set. As men-
tioned previously untargeted key multi-collisions suffice for
partitioning oracle attacks.

3.3 Passing Plaintext Format Checks
Our MKCR attacks so far ensure that decryption succeeds,
but the resulting plaintexts are random. In some cases this suf-
fices, for example when a decryption implementation aborts
with an error message when decryption outputs ⊥. However
in some situations — including one of our attacks against
Shadowsocks — building partitioning oracles will require
MKCR attacks that result in plaintexts that satisfy some for-
mat checks.

MKCR with plaintext format checks. We formalize the
resulting cryptanalytic goal by extending the MKCR security
definition as follows. Let M be the set of possible plaintexts.
We generalize the MKCR game by parameterizing it with a
predicate pr : M ∪{⊥}→ {0,1} that determines whether a
message M is valid (i.e., pr(M) = 1) or invalid (pr(M) = 0).
We assume pr(⊥) = 0 and that pr is fast to compute.

Then we change the MKCR game to be parameter-
ized by pr, written MKCRAEAD,κ,pr. The adversary wins
by producing a set K, associated data AD∗, and cipher-
text C∗ such that |K| ≥ κ and for all K ∈ K it holds that
pr(AuthDecK(AD∗,C∗)) = 1. This strictly generalizes the
prior definition, since we can set pr(M) = 1 for all M ∈M
and thus arrive at the original same definition. We define the
advantage via

Advmk-cr
AEAD,κ,pr(A) = Pr

[
MKCRA

AEAD,κ,pr⇒ true
]

where “MKCRA
AEAD,κ,pr ⇒ true” denotes the event that A

wins. The event is defined over the coins used by A .

A rejection sampling approach. Consider a predicate pr
and let p1 = Pr [pr(M) = 1] for message M sampled ran-
domly from M . When p1 is not very small, one simple ap-
proach is to use rejection sampling. Consider a target set of
keys K. We can choose a random nonce N and tag T and run
our MKCR algorithm using S ,N,T to obtain a solution cipher-
text N ‖C ‖T . We then check that pr(AuthDecK(C,T)) = 1
for all K ∈ S . If not, then repeat the attack using a fresh choice
of nonce. Each attempt will succeed with probability (negli-
gibly far from) pk

1 for k = |S |, because changing the nonce

leads to fresh pseudorandom plaintexts for each key.
Most format checks will make p1 too small for this basic

approach to work. For example, one of our attacks against
Shadowsocks will require the first byte to be a fixed value,
making p1 = 1/256. So unless k is small, rejection sampling
alone will be too inefficient.

Exploiting structure. We can instead take advantage of
the fact that many format predicates will be structured, e.g.,
checking just the first few bytes of a header. This allows us
to extend our AES-GCM attack (and others) in an efficient
way. Intuitively we will set aside the ciphertext blocks whose
underlying plaintext must satisfy format checks, and leave the
rest as free variables to define a system of linear equations.

As a concrete example, assume a predicate pr that only
compares the first byte of the plaintext M to some arbitrary
fixed byte. We extend our AES-GCM MKCR attack as fol-
lows. Consider a potential set of multi-collision keys S . First,
choose a nonce N arbitrarily and compute for each K ∈ S
the first byte of AES-GCM ciphertext. We then determine
the largest subset K⊆ S that have the same ciphertext byte
value. Applying known results [65] on balls-and-bins prob-

lems gives us that E[|K|] ≈ |D|256 + 8
√
|D|
256 . Then run the tar-

geted TMKCR attack against AES-GCM using N, but fixing
the first block of ciphertext to a constant equal to the byte
value plus some arbitrary 15 bytes to get a full fixed cipher-
text block C1. Then the system of equations is defined by
taking the corresponding contribution to the GHASH equa-
tion, namely C1 ·EKi(0

128)k+1 as a constant and adding it to
the right hand side of each equation. One can generalize this

to n bits of plaintext, for which E[|K|]≈ |D|2n +

√
2n|D|

2n .
This extension is efficient, running in time in O(S). One

could also combine it with the rejection sampling approach
by having the first phase try multiple random nonces to look
for fortuitous multi-collisions in the first byte, but we did not
need to do this for practical attacks.

One can easily extend the approach to other kinds of format
checks, though if the check is too constrained it may become
inefficient (e.g., if plaintexts must have many fixed bytes). The
technique also extends to other stream-cipher based AEAD
schemes in a straightforward manner.

4 Password Recovery for Shadowsocks

The prior section showed how to build partitioning oracle
attacks against non-committing AEAD schemes. Now we
turn to case studies that surface how partitioning oracles arise
in practice, enabling password recovery or other harms. We
start with Shadowsocks, and show how to build a partitioning
oracle that efficiently recovers user-chosen passwords.

Background on Shadowsocks. Originally written by a
pseudonymous developer, Shadowsocks [73] is an encrypted
proxy for TCP and UDP traffic, based on SOCKS5 [49]. It

is used both as a standalone proxy and as the core of other
censorship evasion tools such as Google Jigsaw’s Outline
VPN [62]. The original Github repository has been “starred”
by more than 32,000 users and forked by nearly 20,000 [72].

To use Shadowsocks, a user first deploys the Shadowsocks
proxy server on a remote machine (typically hosted in a cloud
service), provisions it with a static password1 pw, and chooses
an encryption scheme to use for all connections. Originally,
only AES-CFB was supported, but cipher choices were mod-
ernized after a series of integrity attacks on the protocol [74].
Current documentation recommends either AES-GCM or
ChaCha20/Poly1305, which are the only two AEAD schemes
supported. Clients given pw can then forward TCP or UDP
traffic from their machine to the Shadowsocks proxy. Our
attack targets UDP and use of AES-GCM, and so we restrict
our explanation to this setup.

The Shadowsocks protocol. The client starts by hashing
the user password to obtain a key Kr = H(pw). The hash is
currently MD5, but our attacks would work as well should
it be replaced with a modern password hashing algorithm.
The client then samples a random sixteen-byte salt sa and
computes a session key Ks using HKDF [45], as Ks ←
HKDF(Kr,sa,“ss-subkey”). (A new salt and session key are
generated for every message.) The client encrypts its plain-
text payload pl via C← AuthEnc(Ks,Z,ε,01‖ ip‖port ‖pl)
where Z denotes a nonce that is set to a string of sufficiently
many zero bytes (12 for AES-GCM); the value ε indicates
empty associated data; and 01 is a one-byte header indicat-
ing that ip is an IPv4 address. The client sends (sa,C) to the
server.

When the Shadowsocks server receives (sa,C), it extracts
the salt and uses it together with pw to re-derive the session
key Ks. It decrypts the remainder of the ciphertext with Ks. If
decryption fails, no error message is sent back to the client.
Silently dropping invalid or malformed requests is an explicit
countermeasure against active probing attacks [83]; it also
complicates building partitioning oracles, as we shall see.

If decryption instead succeeds the plaintext’s format is
checked by verifying that its first byte is equal to 01.2 If that
check passes, the next six bytes are interpreted as a four-byte
IPv4 address ip and two-byte port number port. Finally, the
rest is sent to the remote server identified by ip and port, and
the proxy listens on an ephemeral source UDP port assigned
by the kernel networking stack for a reply from the remote.

When Shadowsocks receives a reply on the ephemeral port,
the server generates a random salt and uses it with pw to
generate a new session key. It then encrypts the response, and
sends the resulting salt and ciphertext back to the client. The
same encryption algorithm is used in both directions.

1Using high-entropy symmetric keys instead of passwords became possi-
ble recently [75]; this feature does not appear to be widely used.

2In fact Shadowsocks supports ASCII domain names and IPv6 addresses,
indicated by other byte values, but we ignore these for simplicity.

Shadowsocks
1. Send splitting ciphertext

4. If listener open,
spoofed reply sent
back to attacker

2. Decrypt !𝑉 with ks. If success:
send UDP packet to (ip, port)
from plaintext, listen for reply

Server
ports

3. Send spoofed UDP
replies to each port

!𝑉

Figure 3: Diagram of the Shadowsocks partitioning oracle. Values V̂
and Ks defined in the text. Solid lines indicate actions that always
occur, and dashed lines indicate actions that occur only if V̂ decrypts
correctly, begins with byte 01, and contains a valid (ip,port) pair.

Threat model. We focus on remote password recovery at-
tacks, meaning a malicious client that knows the IP address
of a Shadowsocks server seeks to recover the password(s) it
uses. We do not assume the ability to monitor network traffic
from honest clients. Capturing honest traffic would enable
offline brute-force dictionary attacks against the password-
based encryption — future versions of Shadowsocks might
consider using password-authenticated public-key encryption
instead to mitigate this [19].

A basic attack that works in our threat model is online
brute-force, in which the adversary enumerates a sequence
of guesses pw1, pw2, . . . and sends an encryption under each
guess to the server. By having the encrypted plaintext pl en-
code a request back to the malicious client, the adversary can
determine if decryption succeeds by seeing if it obtains a for-
warded request from the proxy. The Shadowsocks designers
recommend using rate limits to make remote guessing attacks
more difficult, and several of the libraries implement them.

Shadowsocks would be considered secure in our threat
model if online brute-force attacks were the best possible
attack. We now show how adversaries can do better via parti-
tioning oracles.

Building a partitioning oracle. We now show how to turn
a Shadowsocks proxy server into a partitioning oracle. This
would be simple if the proxy server responded with an er-
ror message when decryption fails, in which case the basic
partitioning oracle attack described in Section 2 would apply.
But the active probing countermeasure prevents this simple
approach. A key insight is that we can exploit the fact that
the proxy server opens an ephemeral UDP port in response to
a valid request (and does not otherwise). One can view this
as a remotely observable, logical side-channel that reveals
whether decryption succeeds. See Figure 3 for a diagram of
our attack, which we now explain in detail.

The attacker starts with knowledge of a password dictio-
nary D and an estimate p̂ of the probability distribution over

passwords in the dictionary. That is, p̂(pwi) is the probability
that pwi ∈D is the correct password. (We will use password
leak data to derive p̂, as discussed below.) The attack has two
steps, a pre-computation phase and an active querying phase.

Pre-computation phase: In a pre-computation phase, the at-
tacker generates a splitting value (sa∗,C∗), as follows. Given
D with d = |D| and p̂, the attacker uses the MKCR at-
tack that handles format checks from Section 3.3. It derives
Ki

s← HKDF(H(pwi),sa,“ss-subkey”) for all pwi ∈D, uses
the resulting set S = {K1

s , . . . ,K
d
s } as the target keys, sets the

nonce to be the zero byte string Z, and sets the format check
predicate pr to output one if the first byte is equal to 01. The
algorithm outputs a subset of keys K⊂ S and a ciphertext C∗

such that decrypting C∗ under each of the keys in K results in
a plaintext with a leading byte equal to 01.

Applying this directly will not quite work, because Shad-
owsocks servers will only accept UDP packets whose length
is less than or equal to 65,507 bytes. This means we can
at best use a key-colliding ciphertext for a key set of size
k = 4,091. We therefore modify slightly the procedure above
to find a size-k subset Kmax ⊂K that has maximum aggregate
probability under p̂. Fixing a salt sa, we abuse notation and
let p̂(Ks) = p̂(pw) for Ks the key derived from pw using sa.
Then we solve the optimization problem defined by

Kmax = argmax
S⊆K , |S|≤k

∑
Ks∈S

p̂(Ks) .

We compute the key-colliding ciphertext C∗ that decrypts
under that subset using the first block fixed to ensure the
format check is passed. Let P ⊆ D be the set of passwords
associated to the subset of colliding keys Kmax (for salt sa∗).
Recall that since we must fix a block of C∗, C∗ will have k+2
blocks, including the tag.

Querying phase: Having done the pre-computation, the at-
tacker can then submit to the proxy server (sa∗,C∗) and it will
decrypt correctly for any of the 4,091 passwords in P. This is
shown as step (1) in Figure 3. Should pw ∈ P, the server will
interpret the decrypted plaintext as a 01 byte followed by a
random IPv4 address, destination port, and payload. The IPv4
and destination port will be accepted by the server’s network
protocol stack with high probability, and so the server will
send the payload as a UDP packet to the IP address ip and
destination port port. It will also open a UDP source port to
listen for a response. This is step (2) in the figure.

The attacker does not a priori know the listening port the
server uses, and modern operating systems randomize this
port. The traditional range used for ephemeral source ports
is 49,152 through 65,535, though some systems use slightly
larger ranges. The attacker can simply send a UDP probe to
every port in that range — the port is left open for five minutes
by default for the Shadowsocks server implementations we
inspected. This is shown as step (3) in the figure. Should the
system respond with ICMP error messages on closed ports,
this will already be sufficient for the attacker to learn if a port

was opened. If there is no other activity on the system, then
this suffices to construct a partitioning oracle.

But in fact we observed that Shadowsocks server imple-
mentations will accept arbitrary response data. Thus, upon
receiving the UDP probe the server believes this to be the
valid response and proceeds to encrypt it and send it back to
the attacker.3 This is marked as step (4) in the diagram. At
this point, the attacker can simply perform trial decryption for
each pw ∈ P and recover the password.

The attacker can repeat steps (1)–(3) multiple times, focus-
ing iteratively on the set of remaining passwords. The attacker
can also amortize the cost of the UDP port scan across multi-
ple attempts, by simply sending a sequence of pre-computed
key colliding ciphertexts to the server (for distinct subsets of
keys), and then performing the port scan.

Proof of concept. We implemented a proof of concept of the
attack. Our experimental setup used a laptop running OS X as
a malicious client on a home network, and an EC2 micro in-
stance running Ubuntu 18.04 and go-shadowsocks2 [28]. We
used a default configuration of the EC2 instance, except that
we allowed UDP inbound traffic on the server’s ephemeral
port range (32,768–60,999). Without opening those ports,
Amazon’s firewall will by default block the UDP port scan
(because the attacker will not be able to guess the proper
source IP and port, which are random).

We verified steps (1)–(4) of the attack work as expected,
except that we avoided a port scan (disallowed by Amazon’s
acceptable use policy without explicit permission) by sending
a single UDP packet to the correct port. A real attacker would
perform a standard port scan of the ephemeral port range; we
confirmed that this works as expected in a local LAN setup
(where we had permission to do port scans) using nmap [54].
Computing a key multi-collision ciphertext for k = 4,091
took 32 seconds on the same Intel i9 system described in
Section 3.1; recall that this is offline pre-computation.

Success rate simulations. To evaluate the efficacy of the at-
tack in recovering a target password, we perform simulations
using a sanitized version of a large breach compilation [20] ob-
tained from the authors of [63]. The sanitized dataset contains
1.1 billion passwords together with the frequency with which
they occurred. To perform password simulation experiments,
we partitioned the password dataset randomly into two halves:
a training set (Ptrain) used by the attacker to estimate p̂ and
a testing set (Ptest) used as an empirical distribution for sam-
pling a target password pw. This represents an attacker having
a good, but not exact, estimate of the distribution from which
a password is drawn. The maximum success rate achievable
for the simulations is 70%, because the test set has many
passwords not found in the training set.

We wrote a program that uses the training set Ptrain to
determine a sequence of password sets P1,P2, . . . according

3This seems to be a vulnerability in its own right, as it could potentially
allow attackers to inject malicious responses to honest client UDP requests.

0 5,000 10,000 15,000 20,000
0

20

40

60

80

Number of queries

Su
cc

es
s

ra
te

k = 1 k = 4091

0 1 2 3 4 5 6
0

20

40

60

80

Bandwidth (GB)

Su
cc

es
s

ra
te

k = 1 k = 4091

Figure 4: The (left) number of queries versus success rate and (right)
bandwidth versus success rate for simulations of the brute-force
attack (k = 1) and partitioning oracle attack (k = 4091).

to the maximization approach described earlier. Computing
the first set (the worst case) took about 704 seconds. The
probability of success of this first set is 0.9%. In contrast,
the brute-force attack achieves a 0.76% success rate with
its first ciphertext. The reason for the mild improvement is
that the formatting check for Shadowsocks means that P1
contains one of the most popular passwords plus many lower
probability passwords. One could improve this with further
precomputation effort by repeating the process to find higher
performing P1.

Even without such embellishments, the success rate as a
function of the number of ciphertext queries made goes up
rapidly. The left graph of Figure 4 shows how the partitioning
oracle attack outperforms brute force for all query budgets.
As examples: the partitioning oracle attack achieves a suc-
cess rate of 20% with just 124 ciphertexts while brute-force
achieves only 3% with the same number. A success rate of
70% would require 21,503 partitioning oracle queries while
the brute-force attack would require 87.8 million ciphertexts.

We also estimated bandwidth usage for both attacks, shown
in the right graph of Figure 4. A single query in the partition-
ing oracle attack is 65,532 bytes total, including an 8-byte
UDP header, 20-byte IP header, 16-byte salt, and 65,488-byte
ciphertext. For the simple brute-force attack a single query
is 68 bytes, including the UDP header, IP header, salt, and
24-byte ciphertext. The ciphertext itself includes a 16-byte
authentication tag and encrypted 7-byte header and 1-byte
payload. For success rates below 25% the brute-force attack
requires less total bandwidth than the partitioning oracle at-
tack, but the latter uses less bandwidth above 25%.

Concretely, the total bandwidth of all the submitted cipher-
texts in the partitioning oracle attack to achieve 20% success
rate would be 8.1 MB across 124 UDP packets. The total
bandwidth of submitted ciphertexts to achieve 70% success
rate, the maximum possible, would be 1.4 GB across 21,503
UDP packets. The simple online brute-force attack achieves
success rate of 20% using 4.1 MB of data sent over 60,250
requests. For 70%, this increases to 5.97 GB of data sent over
87.8 million requests. Note that these calculations do not in-
clude the up to 28,231 UDP packets for the port scan of the
partitioning oracle attack, but these can potentially be sent

once for multiple (or even all of the) ciphertexts.
To summarize, while partitioning oracle attacks are more

expensive computationally, they outperform brute-force in
terms of queries and, for larger success rates, bandwidth. This
also means that while rate limiting of requests could help
mitigate brute-force attacks, it will not be effective against
our attack.

Other attack variants. In the full version, we describe a
different attack on Shadowsocks servers that support multiple
users (with different passwords) on a single port. Because
the server identifies the correct key via trial decryption, a
“cross-user” key recovery attack is possible.

We were not able to build a working attack that uses TCP
connections. The main challenge is that here Shadowsocks
servers expect two ciphertexts, first an encryption of the pay-
load length and then an encryption of the payload. The former
only allows ciphertexts including 2-byte plaintexts, which is
too small for the construction of a splitting ciphertext. As
mentioned above deployments use the same password across
TCP and UDP, so our UDP attack affects both.

5 Password-Authenticated Key Exchange

We turn now to partitioning oracles in the context of password-
authenticated key exchange (PAKE). As noted earlier, a ver-
sion of the PAKE secure remote password (SRP) protocol [84]
has long been known to be vulnerable to a “two-for-one” at-
tack (cf., [85]). An active network adversary impersonates
a server response to a client, and based on the client’s sub-
sequent behavior can rule out two possible passwords. This
provides a modest speedup over brute-force, which rules out
one password at a time. We want to know if our techniques
can yield bigger speedups in the context of PAKE.

We explore this question in the context of a modern
PAKE protocol called OPAQUE [38]. It is undergoing a stan-
dardization process currently, having been suggested by the
IETF CFRG as a good candidate for next generation PAKE.
OPAQUE uses as a component an AEAD scheme, and its
designers and the (evolving) draft standards [46, 47] make
clear the necessity of using committing AEAD.

We perform a case study focusing on what happens when
implementations incorrectly deviate from the specification,
and instead use a non-committing AEAD. Indeed some early
prototype implementations of OPAQUE use AES-GCM or
XSalsa20/Poly1305, as we detail below.

Background on OPAQUE. OPAQUE is meant to replace
existing password authentication protocols on the web, which
today is done by having the client send the server its password
through TLS. This approach requires the server to handle
the client’s plaintext password, and also relies on public-key
infrastructure (PKI) for authentication.

In contrast, OPAQUE is an asymmetric PAKE (aPAKE)
that keeps the client’s password hidden from the server and

does not need PKI to authenticate the server to the client.
Asymmetric here means the server only stores the equivalent
of a (salted) hash of the password, while the client uses the
password directly. OPAQUE provides mutual authentication
based on the password. While one can integrate OPAQUE
with certs/PKI, we focus on password-only authentication.

OPAQUE works by composing an oblivious PRF
(OPRF) [25] with authenticated key exchange (AKE) using
a committing AEAD. For space reasons, we defer the reader
to [38] for protocol details. Here we follow the OPAQUE
description from [38]; recent internet drafts differ in some
details that do not affect the attack (should non-committing
AEAD be used).

The protocol begins with the server holding an oblivi-
ous pseudorandom function (OPRF) key ks and the user
holding password pw. A user registers by sending (over
a secure channel) pw to the server. The server computes
rw ← H (pw,H ′(pw)ks) where H ′ hashes strings into a
group and H is any hash function. (This is a standard OPRF
construction [39].) The server then chooses a long-term key
pair for itself and for the client, uses AEAD with key rw to
encrypt the client’s key pair and its own public key, and stores
its key pair, the client’s public key, and the ciphertext C.

After the user has registered, they can initiate a login with
the server. The client first chooses an ephemeral public key Xu,
computes a blinded OPRF input α←H ′(pw)r for random r,
and then sends both values to the server. The server retrieves
the client’s keys and C, and computes a blinded OPRF out-
put β← αks . It chooses its own ephemeral public key Xs and
computes the HMQV session key Ksess. It sends (β,Xs,C,As)
to the client, where As is a PRF output using Ksess (used
for session key confirmation). The client can then compute
rw← H (pw,β1/r) and use that to decrypt C to get its long-
term key pair. It can then derive the session key Ksess as per
HMQV and confirm that As is correct. The OPAQUE protocol
immediately aborts should the client’s decryption of C fail.

As discussed in [38], the AEAD must be key-committing
because otherwise the client’s decryption of C could reveal
information about more than one password, similar to the SRP
two-for-one attack. Various instantiations of the AEAD have
been proposed, including Encrypt-then-HMAC, modifying
AES-GCM to add a zeros check, and more.

Early implementations. Despite this guidance, a survey of
prototype OPAQUE implementations revealed that a majority
use non-committing AEAD. See Figure 5. Many of these pro-
totypes predate the standard drafts, the most recent version
of which provides more specific guidance on allowed AEAD
schemes. Only one implementation is from a commercial
product (opaque-ke [51]); most do not appear to have been
reviewed by cryptographers. We therefore expect that future
implementations will do better in terms of correctly select-
ing a committing AEAD. Nevertheless, these indicate that
developers need strong, specific guidance about committing

Implementation AEAD Scheme
MKCR Emit
attacks? errors?

libsphinx [56] XSalsa20-Poly1305 X X

threshold-OPAQUE [61] XSalsa20-Poly1305 X X

Opaque [53] XSalsa20-Poly1305 X X

opaque-rs [4] AES-GCM X X

gustin/opaque [1] AES-GCM-SIV X X

gopaque [66] Encrypt-then-HMAC X –

frekui/opaque [48] Encrypt-then-HMAC X –

opaque-ke [51] AEAD-then-HMAC X –

noisat-labs/opaque [2] NORX X –

Figure 5: A summary of early prototype implementations of
OPAQUE and the AEAD scheme they use. The righthand column
specifies whether the vulnerable implementations emit distinct, ex-
plicit error messages during decryption.

AEAD. For instance, Figure 5 shows that XSalsa20-Poly1305,
the default authenticated encryption scheme in popular cryp-
tography library libsodium [52], is one of the most popular
choices for an AEAD scheme. However, it is not committing,
and while versions of the OPAQUE documentation explicitly
mention that AES-GCM should not be used, no warnings
about XSalsa20-Poly1305 have been given. Developers seem
unclear about its security properties: one implementation has
source code comments stating that a key-committing scheme
is necessary right where it uses XSalsa20-Poly1305.

To quantify the danger of such confusion about what AEAD
to use, we turn to building partitioning oracles against imple-
mentations that use non-committing AEAD.

Building partitioning oracles. We assume the implementa-
tion runs the OPRF and AKE in parallel, and that an adversary
that can somehow trigger client requests (e.g., via appropri-
ate client-side Javascript [6, 9, 11]), intercept the requests,
and respond to them. Upon intercepting a login request, the
attacker acts as the OPAQUE server to turn the client into
a partitioning oracle fpw. It chooses its own OPRF key k∗s ,
and then constructs a splitting value (β,Xs,C∗,As). It sets
β← αk∗s , lets As be arbitrary, and generates an ephemeral
key Xs. Finally it generates a key-multicollision ciphertext C∗

for K = {H (pw,H ′(pw)k∗s)) | pw ∈ S} for some target set
of passwords S . We discuss selecting passwords for S below.
Note that, save β, the splitting value can be pre-computed.

The adversary sends (β,Xs,C∗,As) to the client, who will
unblind β to obtain a key rw, hash it to derive an AEAD
key, and then decrypt C∗. If decryption fails, the client will
abort immediately and fpw(β,Xs,C∗,As) = 0; if it succeeds,
the client will use the key pair from the plaintext to derive the
shared secret k. Then, the client will re-compute A′s and abort
if A′s 6= As. If this abort occurs, fpw(β,Xs,C∗,As) = 1.

The difference between the two errors must be visible to
the server impersonator to realize the partitioning oracle. We
note that the OPAQUE security model [38] and specification
allow for distinct error messages (which should be fine when

using committing AEAD, but is dangerous here). In Figure 5
the last column marks which vulnerable prototype implemen-
tations emit distinct error messages — three of five do. If
these messages reach the server impersonator, a partitioning
oracle is immediate.

Even without distinct messages, the protocol specifies
aborting if decryption fails, then having a separate abort later
if the As check fails. If implemented with this “early abort”,
side channels like memory accesses, branch predictors, or
timing could reveal which of the two errors occurred.

Measuring the timing channel. To determine whether the
potential timing side channel is exploitable, we performed an
experiment with libsphinx [56], a more mature prototype that
does not emit distinct error messages but does abort early on
decryption failure. Most of libsphinx’s code is similar to the
protocol as described in [38], with two changes that impact
timing: (1) it uses a triple-DH handshake instead of HMQV,
and (2) it uses the memory- and time-hard Argon2 hash on
rw to derive the AEAD key. By default, libsphinx accepts a
C∗ only up to length 4 MB due to a memory management
bug — it crashes for larger ciphertexts due to a statically
allocated buffer. Once fixed, it accepts ciphertexts of up to
2 GB. This would enable splitting ciphertexts with degree up
to k = 1.25×108.

We performed timings for 1000 trials each on a MacBook
Pro with a 2.5 GHz Intel Core i7 processor using a static 1 MB
key multi-collision ciphertext. The median and mean time
were both 121 ms for server responses that did not decrypt
properly and 125 ms for server responses that decrypted prop-
erly but failed the As check. The standard deviation in both
cases was 2 ms. This suggests that remote timing attacks
should be feasible, though they may require multiple samples
per partitioning oracle query to reduce noise (which would
reduce attack efficiency by a small factor).

An adaptive partitioning oracle attack. Given the ability
to construct a partitioning oracle, the question becomes how
to build an attack that extracts the target password pw from the
client in as few oracle queries as possible. As for the Shadow-
socks attack, consider an attacker that starts with knowledge
of a password dictionary D and an estimate p̂ of the password
probabilities. Assume k is the maximum multi-collision feasi-
ble from our attack, given an implementation’s constraint on
ciphertext size (e.g., 1.25×108 for bug-free libsphinx).

The algorithmic challenge is to develop a search strategy
that minimizes the expected number of queries to recover the
password. Given input D, q, and k the attacker proceeds as
follows. First it finds a subset P⊂D that maximally balances
the aggregate probability mass of the partition. In other words
it solves the following optimization problem:

argmin
P⊂D , |P|≤k

∣∣∣∣∣
(

∑
pw∈P

p̂(pw))

)
−

(
∑

pw∈D\P
p̂(pw)

)∣∣∣∣∣ .
This is exactly the optimization version of the partitioning

0 20 40 60 80 100

0

20

40

60

Number of queries

Su
cc

es
s

ra
te

k = 1 k = 2 k = 210

k = 212 k = 214 k = 216

k = 218

k BW q

1 1.0 60,255

2 1.4 30,085

210 0.9 69

212 1.0 27

214 1.5 18

216 4.0 18

218 12.0 19

Figure 6: (Left) Success rate achieved for different numbers q of
partitioning oracle queries. (Right) The maximum total bandwidth
(BW) in megabytes and number of queries required to guarantee a
20% success rate.

problem, which is known to be NP-hard but relatively easy to
solve (q.v., [44]). Pragmatically for the k, q, and p̂ we found
that the following simple heuristic works well. First check if
the top k passwords by probability have aggregate mass less
than 50%. If so, set P to those top k passwords. Otherwise,
perform the classic greedy heuristic that starts with two empty
sets P,P′. Then in order of decreasing probability, add each
password to whichever of the two sets has smaller aggregate
mass, initially starting with P and stopping when |P|= k.

The attacker can then use the partitioning oracle with P as
described above to learn if pw ∈ P. If so it recurses by setting
D = P and otherwise D = D \P.

Attack performance. We use simulations using the datasets
described in Section 4 to evaluate the efficacy of the attack,
compared to brute force. We compute up to q = 100 the set
of passwords that will be successfully recovered by the attack
for k ∈ {1,2,210,212,214,216,218}. We then calculate their
aggregate probability according to their distribution in Ptest ,
yielding the success rate (the percentage of times the attack
will succeed). Again note that the maximum success rate
is 70% for these simulations.

Figure 6 summarizes the simulation results. The graph
(left) shows that in a bruteforce search (k = 1), only 3% of
passwords can be found with 100 queries. The partitioning
oracle attack does significantly better. The curves for k > 2
exhibit an initial exponential growth in success rate, which
then tapers off to a logarithmic growth. This shift occurs at
around log2(k) for each value of k because: (1) the first set
P almost always contains the most probable k passwords,
and (2) the attack needs around log2(k) queries to recover
passwords from this set. Growth then tapers off because the
popularity of passwords found with further queries decreases.

What this means is that for, e.g., k = 210 which corresponds
to a ciphertext length of 16.4 kB, an attacker can achieve 20%
success with just 100 queries. For k = 218 the attack obtains
20% with only 19 queries, and 57% with 100 queries.

The right table in Figure 6 shows the total bandwidth and
number of queries used by each attack to guarantee a 20%
success rate. Despite the linear dependence of k on ciphertext
length, partitioning oracles can use about the same bandwidth
(k = 212) compared to brute-force search, while decreasing
the query cost by 2,228×.

Attack viability with TLS integration. We must imperson-
ate the server to build a partitioning oracle. Here we study if
the attack still works if OPAQUE is integrated with TLS, as
suggested by the paper and a later internet-draft [76].

One suggested integration is to run OPAQUE login within
an outer TLS session. The server is authenticated to the client
(via TLS’s cert auth) before the client begins the OPAQUE
login protocol, preventing server impersonation. If the PKI is
compromised or circumvented the attack can still work. The
draft [76] also suggests using the server’s OPAQUE private
key for its TLS signature. The server public key is sent to the
client in C. (The document notes “there is no need to send a
regular TLS certificate”.) Because the client must decrypt C
before it can check the signature, our attack is possible.

6 Countermeasures

The partitioning oracle attacks against Shadowsocks and non-
compliant OPAQUE implementations represent just two ex-
amples of a broader problem. We discuss more vulnerable
or possibly vulnerable cryptographic tools and protocols in
Appendix A, including the Age tool [79], the draft HPKE
RFC [10], IKEv1 with passwords as pre-shared secrets [32],
password-based encryption in the Java Web Encryption stan-
dard [40], and proposed Kerberos extensions [35, 36]. We
responsibly disclosed our results to relevant parties, and in
several cases worked with developers to explore remediations.
Here we discuss these efforts as well as longer-term fixes.

Immediate mitigations. In many cases partitioning oracle
vulnerabilities can be mitigated by: (1) length limitations on
ciphertexts and/or (2) entropy requirements on shared secrets.
For example, in response to our disclosure, the developer of
the age tool enforced ciphertext length limits to ensure that
splitting ciphertexts generated by our attack can have degree
at most k = 2 [3]. This limits a partitioning oracle attack to a
factor-2 speedup over brute force. The HPKE draft RFC [10],
after we disclosed to the authors, was updated to require use
of high-entropy secrets, effectively barring human-chosen
passwords. This makes the attack infeasible.

When we disclosed our attack to several prominent mem-
bers of the Shadowsocks community and Outline’s tech lead,
the Shadowsocks developers took immediate action to disable
UDP proxying where it was enabled by default. We discussed
possible mitigations at length; because all require a breaking
protocol change, the developers elected not to deploy them.

The most recent OPAQUE draft standard specifies an
ad hoc committing AEAD scheme, obviating the concern

that future (compliant) implementations will choose a non-
committing AEAD scheme. With the current parameter rec-
ommendations, the OPAQUE protocol only needs a six-block
AE ciphertext; thus, implementions could also limit the ci-
phertext size as a defense-in-depth measure.

Modifying schemes to be committing. The mitigations
above are application-specific, and in some cases they do not
completely prevent partitioning oracle attacks. This leaves
open the question of how to fix the root cause of vulnerability,
the use of non-committing encryption.

One approach would be to attempt to retrofit existing pop-
ular AEAD schemes to render them committing. A trans-
form suggested by NIST [78] and an early OPAQUE draft
appends an all-zeros block to a message before encrypting
with AES-GCM, and, during decryption, checks that resulting
plaintext includes the zeros block. This technique can be for-
mally shown to be committing when used with AES-GCM as
well as XSalsa20/Poly1305 and ChaCha20/Poly1305. How-
ever, security relies on implementations avoiding timing side-
channels that allow distinguishing between decryption failure
(the authentication tag is wrong) and a zeros-check failure.

Avoiding such timing channels will be difficult given cur-
rent cryptographic library interfaces. The natural implemen-
tation approach is to call a decryption API and only perform
the zeros check should that API call succeed. But this may
give rise to an observable timing difference, re-enabling the
attack: a splitting ciphertext Ĉ would pass the decryption API
and trigger a (failed) zeros check if fpw(Ĉ) = 1 while the zero
check would be skipped should fpw(Ĉ) = 0. We performed
an experiment to test such a side-channel in the context of a
modified OPAQUE implementation. While there was some
timing difference, the experiment was ultimately inconclusive.
We give more detail in the full version.

Side channels can be avoided if the zeros check happens
in decryption before checking the authentication tag. Current
APIs for AES-GCM and other schemes cannot partially de-
crypt a ciphertext (in other contexts this would be dangerous),
so libraries will need to be rewritten.

Moving to commiting AEAD. Unfortunately no current
standards specify a committing AEAD scheme, such as single-
key4 Encrypt-then-HMAC [29]. We therefore suggest stan-
dardizing suitable committing AEAD schemes, including
zeros-check variants of AES-GCM and XSalsa20/Poly1305.
For general purpose AEAD where the danger of partitioning
oracles or other non-committing vulnerabilities (e.g., [21])
cannot be a priori ruled out, we believe committing AEAD
should be the default. In particular, all password-based en-
cryption should use committing AEAD.

4Using a single key is important: a draft standard [57] for AES-CBC-then-
HMAC uses distinct AES and HMAC keys, making it non-committing [29].

7 Related Work

A PAKE protocol by Gentry, MacKenzie, and Ramzan [27]
introduced the use of password-based encryption to protect
protocol secrets in asymmetric PAKEs. Unlike OPAQUE,
which begins with an OPRF, their protocol begins with a
symmetric PAKE. The security of the symmetric PAKE rules
out a partitioning oracle attack.

Mackenzie [55] gave a PAKE relaxation where a bounded
number of guesses can be checked in each impersonation
and proved a SPEKE variant [37] allows testing only two
passwords per impersonation. This can be viewed as a formal
approach for allowing (limited) partitioning oracle attacks.

Two prior attacks on PAKE protocols are relevant to our
work. The first is the two-for-one attack [85] on an early ver-
sion of SRP, mentioned in Section 2. The attack allowed an
adversary to check two passwords with one server imperson-
ation. This can be viewed as a partitioning oracle attack, and
falls into the more general framework we introduce.

Dragonblood [80] is an attack on the Dragonfly PAKE
used in WPA3 [31]. Their attack uses side channels to recover
passwords against a WPA3 server, due to a non-constant-time
hash-to-curve algorithm that is applied to passwords. They
take (remote) measurements and then use that to refine an
offline brute force attack against the password, and do not use
an adaptive attacks with specially crafted protocol messages
to elicit certain behaviors. One could potentially turn the
Dragonfly side-channel into a partitioning oracle, which we
leave to future work.

Our attacks fall into a broader class of decryption error
oracles attacks, which also includes padding oracles attacks [6,
7, 17, 69, 81] and format oracle attacks [8, 26]. All these types
of attacks involve adaptive CCAs that enable speeding up
recovery of some secret data. Our attacks recover information
about decryption keys, rather than plaintexts.

Also related to our work are a series of password-recovery
attacks against APOP, an authentication protocol for email,
that showed that with server impersonation MD5 collisions
can be used to recover a user’s APOP password [50,70]. Their
techniques are specific to MD5.

Finally, our multicollision attacks against AES-GCM can
be seen as a generalization of the two-key multi-collision used
in the invisible salamander attack [21] against Facebook’s
message franking protocol (q.v., [29]). Our results show how
to collide more keys, and identify new places where non-
committing encryption leads to subtle vulnerabilities.

8 Conclusion

We introduced partitioning oracle attacks, which exploit a
new type of decryption error oracle to learn information
about secret keys. We showed how to build AES-GCM ci-
phertexts that decrypt under a large number of keys, what we

call a key multi-collision attack. We gave more limited at-
tacks against XSalsa20/Poly1305, ChaCha20/Poly1305, and
AES-GCM-SIV. In case studies of ShadowSocks and early,
non-compliant implementations of the OPAQUE protocol, we
demonstrate partitioning oracle attacks that can efficiently re-
cover passwords. We responsibly disclosed the vulnerabilities,
and helped practitioners with mitigations.

The non-committing AEAD schemes exploited by our at-
tacks are in wide use, and more tools and protocols are likely
to have vulnerabilities. Looking ahead, our results suggest
that future work should design, standardize, and add to li-
braries schemes designed to be committing. A starting point
would be to improve the performance of, and work towards
standardizing, existing committing AEAD designs [21, 29].

Acknowledgements

The authors thank Hugo Krawczyk for helping us design an
early version of the partitioning oracle attack in Section 5 and
giving extensive feedback on early drafts of the paper. We also
thank Mihir Bellare, Scott Fluhrer, David McGrew, Kenny
Paterson, and Chris Wood for helpful feedback on early drafts.

References

[1] opaque. https://github.com/gustin/opaque,
2019.

[2] opaque. https://github.com/noisat-labs/
opaque, 2019.

[3] age: mitigate multi-key attacks on ChaCha20Poly1305.
https://github.com/FiloSottile/age/commit/
2194f6962c8bb3bca8a55f313d5b9302596b593b,
2020.

[4] opaque-rs. https://github.com/Lldenaurois/
opaque-rs, 2020.

[5] Michel Abdalla, Mihir Bellare, and Gregory Neven. Ro-
bust encryption. In TCC, 2010.

[6] Nadhem J Al Fardan and Kenneth G Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In IEEE S&P, 2013.

[7] Martin R Albrecht and Kenneth G Paterson. Lucky
microseconds: a timing attack on amazon’s s2n imple-
mentation of tls. In EUROCRYPT, 2016.

[8] Martin R Albrecht, Kenneth G Paterson, and Gaven J
Watson. Plaintext recovery attacks against SSH. In
IEEE S&P, 2009.

[9] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G.
Paterson, Bertram Poettering, and Jacob C. N. Schuldt.

On the security of RC4 in TLS. In USENIX Security,
2013.

[10] R.L. Barnes, K. Bhargavan, and C. Wood. Hybrid pub-
lic key encryption, 2020. https://tools.ietf.org/
html/draft-irtf-cfrg-hpke-04.

[11] Here come the ⊕ ninjas. https://tlseminar.
github.io/docs/beast.pdf, 2011. ekoparty.

[12] Gabrielle Beck, Maximilian Zinkus, and Matthew Green.
Automating the development of chosen ciphertext at-
tacks. In USENIX Security, 2020.

[13] Daniel J. Bernstein. The Poly1305-AES Message-
Authentication Code. In IACR FSE, 2005.

[14] Daniel J Bernstein. ChaCha, a variant of Salsa20. In
Workshop Record of SASC, volume 8, pages 3–5, 2008.

[15] Daniel J. Bernstein. The Salsa20 Family of Stream
Ciphers. In New Stream Cipher Designs - The eSTREAM
Finalists. 2008.

[16] Daniel J Bernstein, Tanja Lange, and Peter Schwabe.
The security impact of a new cryptographic library. In
LATINCRYPT, 2012.

[17] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption standard
PKCS# 1. In CRYPTO, 1998.

[18] Wieb Bosma, John Cannon, and Catherine Playoust. The
Magma algebra system. I. The user language. J. Sym-
bolic Comput., 1997.

[19] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja
Lehmann, Gregory Neven, and Jiayu Xu. Password-
authenticated public-key encryption. In ACNS, 2019.

[20] Julio Casal. 1.4 Billion Clear Text Credentials Discov-
ered in a Single Database. 2017.

[21] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and
Joanne Woodage. Fast message franking: From invisible
salamanders to encryptment. In CRYPTO, 2018.

[22] Pooya Farshim, Benoît Libert, Kenneth G Paterson, and
Elizabeth A Quaglia. Robust encryption, revisited. In
PKC, 2013.

[23] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Se-
curity of symmetric primitives under incorrect usage of
keys. In IACR FSE, 2017.

[24] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam
Czubak, and Marcin Szymanek. The dangers of key
reuse: practical attacks on IPsec IKE. In USENIX Secu-
rity, 2018.

https://github.com/gustin/opaque
https://github.com/noisat-labs/opaque
https://github.com/noisat-labs/opaque
https://github.com/FiloSottile/age/commit/2194f6962c8bb3bca8a55f313d5b9302596b593b
https://github.com/FiloSottile/age/commit/2194f6962c8bb3bca8a55f313d5b9302596b593b
https://github.com/Lldenaurois/opaque-rs
https://github.com/Lldenaurois/opaque-rs
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04
https://tlseminar.github.io/docs/beast.pdf
https://tlseminar.github.io/docs/beast.pdf

[25] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC, 2005.

[26] Christina Garman, Matthew Green, Gabriel Kaptchuk,
Ian Miers, and Michael Rushanan. Dancing on the lip of
the volcano: Chosen ciphertext attacks on Apple iMes-
sage. In USENIX Security, 2016.

[27] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan.
A method for making password-based key exchange
resilient to server compromise. In CRYPTO, 2006.

[28] go-shadowsocks2. https://github.com/
shadowsocks/go-shadowsocks2, 2020.

[29] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryption.
In CRYPTO, 2017.

[30] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-
GCM-SIV: Nonce Misuse-Resistant Authenticated En-
cryption. RFC, 8452, 2019.

[31] Dan Harkins. Dragonfly key exchange (rfc 7664), 2015.
https://tools.ietf.org/html/rfc7664.

[32] Dan Harkins, Dave Carrel, et al. The internet key ex-
change (IKE). Technical report, RFC 2409, november,
1998.

[33] S Hartman and L Zhu. A generalized framework for
Kerberos pre-authentication. In RFC 6113, 2011.

[34] Heimdal. https://github.com/heimdal/heimdal,
2020.

[35] L. Howard. AEAD encryption types for Ker-
beros 5. https://tools.ietf.org/html/
draft-howard-gssapi-aead-00, 2015.

[36] L. Howard. AEAD modes for Kerberos
GSS-API. https://tools.ietf.org/html/
draft-howard-gssapi-aead-00, 2015.

[37] David P Jablon. Strong password-only authenticated key
exchange. ACM SIGCOMM Computer Communication
Review, 26(5):5–26, 1996.

[38] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu.
OPAQUE: an asymmetric PAKE protocol secure against
pre-computation attacks. In EUROCRYPT, 2018.

[39] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious
pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In TCC,
2009.

[40] Michael Jones and Joe Hildebrand. JSON web encryp-
tion (JWE). Internet Requests for Comments, RFC, 7516,
2015.

[41] Antoine Joux. Multicollisions in iterated hash functions.
application to cascaded constructions. In CRYPTO,
2004.

[42] Burt Kaliski. Pkcs5: Password-based cryptography spec-
ification version 2.0. Technical report, IETF, 2000.

[43] Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Eronen,
and Tero Kivinen. Internet key exchange protocol ver-
sion 2 (IKEv2). Technical report, RFC 5996, September,
2010.

[44] Richard E. Korf. A Complete Anytime Algorithm for
Number Partitioning. Artif. Intell., 106(2):181–203,
1998.

[45] Hugo Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In CRYPTO, 2010.

[46] Hugo Krawczyk. The OPAQUE asymmetric PAKE pro-
tocol. Technical report, Internet-Draft draft-krawczyk-
cfrg-opaque-03. Internet Engineering Task Force, 2019.

[47] Hugo Krawczyk. The OPAQUE asymmetric PAKE pro-
tocol. Technical report, Internet-Draft draft-krawczyk-
cfrg-opaque-05. Internet Engineering Task Force, 2019.

[48] Fredrik Kuivinen. opaque. https://github.com/
frekui/opaque, 2018.

[49] Marcus Leech, Matt Ganis, Y Lee, Ron Kuris, David
Koblas, and L Jones. RFC1928: Socks protocol version
5, 1996.

[50] Gaëtan Leurent. Message freedom in MD4 and MD5
collisions: Application to APOP. In FSE, 2007.

[51] Kevin Lewi and François Garillot. opaque-ke. https:
//github.com/novifinancial/opaque-ke, 2020.

[52] Libsodium. https://github.com/jedisct1/
libsodium, 2020.

[53] George Lyon. Opaque. https://github.com/
GeorgeLyon/Opaque, 2019.

[54] Gordon Fyodor Lyon. Nmap Network Scanning: The
Official Nmap Project Guide to Network Discovery and
Security Scanning. Insecure, 2009.

[55] Philip MacKenzie. On the security of the SPEKE
password-authenticated key exchange protocol. IACR
eprint, 2001. https://eprint.iacr.org/2001/057.

[56] Stefan Marsiske. libsphinx. https://github.com/
stef/libsphinx, 2018.

https://github.com/shadowsocks/go-shadowsocks2
https://github.com/shadowsocks/go-shadowsocks2
https://tools.ietf.org/html/rfc7664
https://github.com/heimdal/heimdal
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://tools.ietf.org/html/draft-howard-gssapi-aead-00
https://github.com/frekui/opaque
https://github.com/frekui/opaque
https://github.com/novifinancial/opaque-ke
https://github.com/novifinancial/opaque-ke
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://github.com/GeorgeLyon/Opaque
https://github.com/GeorgeLyon/Opaque
https://eprint.iacr.org/2001/057
https://github.com/stef/libsphinx
https://github.com/stef/libsphinx

[57] David McGrew and Kenny Paterson. Authenticated
Encryption with AES-CBC and HMAC-SHA. Technical
report, Internet-Draft draft-mcgrew-aead-aes-cbc-hmac-
sha2-05. Internet Engineering Task Force, 2014.

[58] David McGrew and John Viega. The Galois/Counter
mode of operation (GCM). submission to NIST Modes
of Operation Process, 20, 2004.

[59] David A. McGrew and John Viega. The security and
performance of the Galois/Counter Mode (GCM) of
Operation. In INDOCRYPT, 2004.

[60] Payman Mohassel. A closer look at anonymity and ro-
bustness in encryption schemes. In ASIACRYPT, 2010.

[61] M. Ember Mou. Opaque. https://github.com/
mmou/threshold-OPAQUE/, 2019.

[62] Jigsaw Outline Shadowsocks server. https://
getoutline.org/en/home, 2020.

[63] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond credential stuffing: Password sim-
ilarity models using neural networks. In IEEE S& P,
2019.

[64] PyCryptodome. https://pypi.org/project/
pycryptodome/.

[65] Martin Raab and Angelika Steger. “Balls into bins”—a
simple and tight analysis. In RANDOM, 1998.

[66] Chad Retz. gopaque. https://github.com/cretz/
gopaque, 2019.

[67] Phillip Rogaway. Nonce-based symmetric encryption.
In FSE, 2004.

[68] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In Serge
Vaudenay, editor, EUROCRYPT, 2006.

[69] Eyal Ronen, Kenneth G Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, 2018.

[70] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro.
Security of MD5 challenge and response: Extension of
APOP password recovery attack. In CT-RSA, 2008.

[71] Sophie Schmieg. Invisible salamanders in aes-
gcm-siv. https://keymaterial.net/2020/09/07/
invisible-salamanders-in-aes-gcm-siv/, 2020.

[72] Shadowsocks server. https://github.com/
shadowsocks/shadowsocks, 2020.

[73] Shadowsocks. https://shadowsocks.org/en/
index.html, 2020.

[74] SIP004: Support for AEADs implemented by large
libraries. https://github.com/shadowsocks/
shadowsocks-org/issues/30, 2017.

[75] SIP006: Getting rid of key derivation once and
for all. https://github.com/shadowsocks/
shadowsocks-org/issues/35, 2017.

[76] Nick Sullivan, Hugo Krawczyk, Owen Friel, and
Richard Barnes. Usage of OPAQUE with tls 1.3. Tech-
nical report, Internet-Draft draft-sullivan-tls-opaque-00.
Internet Engineering Task Force, 2019.

[77] The Sage Developers. SageMath, the Sage Math-
ematics Software System (Version 9.0), 2020.
https://www.sagemath.org.

[78] Meltem Sönmez Turan, Elaine Barker, William Burr,
and Lily Chen. Recommendation for password-based
key derivation part 1: Storage applications. NIST Special
Publication, 800(132), 2010.

[79] Filippo Valsorda and Ben Cartwright-Cox. age. https:
//github.com/FiloSottile/age, 2019.

[80] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the Dragonfly handshake of WPA3 and EAP-pwd.
In IEEE S&P, 2020.

[81] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In EU-
ROCRYPT, 2002.

[82] Mark N. Wegman and Larry Carter. New hash func-
tions and their use in authentication and set equality. J.
Comput. Syst. Sci., 22(3):265–279, 1981.

[83] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is Blocking Tor. In USENIX FOCI,
2012.

[84] Thomas D Wu. The secure remote password protocol.
In NDSS, 1998.

[85] Tim Wu. SRP-6: Improvements and refinements to
the secure remote password protocol. Technical report,
Submission to the IEEE P1363 Working Group, 2002.

https://github.com/mmou/threshold-OPAQUE/
https://github.com/mmou/threshold-OPAQUE/
https://getoutline.org/en/home
https://getoutline.org/en/home
https://pypi.org/project/pycryptodome/
https://pypi.org/project/pycryptodome/
https://github.com/cretz/gopaque
https://github.com/cretz/gopaque
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://github.com/shadowsocks/shadowsocks
https://github.com/shadowsocks/shadowsocks
https://shadowsocks.org/en/index.html
https://shadowsocks.org/en/index.html
https://github.com/shadowsocks/shadowsocks-org/issues/30
https://github.com/shadowsocks/shadowsocks-org/issues/30
https://github.com/shadowsocks/shadowsocks-org/issues/35
https://github.com/shadowsocks/shadowsocks-org/issues/35
https://github.com/FiloSottile/age
https://github.com/FiloSottile/age

A More (Possible) Partitioning Oracles

We survey several other protocols that may be vulnerable to
partitioning oracle attacks. Actual exploitability will depend
on implementation and deployment details.

A.1 Password-based and Hybrid Encryption

Kerberos. Two recent internet-drafts suggested the inclu-
sion of AES-GCM and ChaCha20/Poly1305 as available en-
cryption types in Kerberos [35] and GSS-API [36]. They do
not appear to have been adopted as RFCs, but the Heimdal
library [34] implemented the GSS-API draft. Using these
non-committing AE schemes in Kerberos would enable a
partitioning oracle attack on Kerberos’s encrypted timestamp
preauthentication [33], leading to client password recovery.
For space reasons, we defer the details to the full version.

Age file encryption tool. Age is a file encryption CLI
tool [79] that has a password-based encryption mode. The
mode is a KEM-DEM scheme: it uses a password-derived
key with ChaCha20/Poly1305 to encapsulate a file key, then
computes an HMAC over the KEM (and some metadata) with
a key derived from the file key, and then encrypts the plaintext
using the file key with ChaCha20/Poly1305. The ciphertext
is the KEM and metadata, then the HMAC, then the DEM.

This scheme could be vulnerable to a partitioning oracle
attack. Observe that there are three ways for decryption to fail:
(1) KEM decryption fails, (2) the HMAC check fails, or (3)
DEM decryption fails. If failures (1) and (2) are distinguish-
able, using a multi-colliding ChaCha20/Poly1305 ciphertext
as a KEM could let an attacker check multiple passwords in
one decryption. Before we reported this issue, the age imple-
mentation did not limit the KEM ciphertext length, thereby
allowing key multi-collisions for large key sets.

Javascript Object Signing and Encryption. JOSE is a set
of standards for encrypting and authenticating authorization
data, such as cookies and access control information. One
part of JOSE, the Java Web Encryption (JWE) standard [40],
specifies password-based encryption modes that may be vul-
nerable to an attack similar to the one on age described above.
We defer the details to the full version.

Hybrid Public-Key Encryption (HPKE). Recently, the
IETF has been evaluating a new standard for hybrid public-
key encryption, HPKE [10]. It uses an ECIES-like KEM to
derive a DEM key, which is used to encrypt the message.
HPKE only supports AES-GCM and ChaCha20/Poly1305
DEMs. It supports a pre-shared secret key (PSK) sender au-
thentication mode by mixing the PSK into the AEAD key
derivation. The draft permits short PSKs, but says the scheme
is not suitable for use with passwords. If decryption failures
are observable to the sender, a partitioning oracle attack can
recover the PSK. We defer the details to the full version.

A.2 Authenticated Key Exchange and PSKs

Many widely-used authenticated key exchange (AKE) proto-
cols support PSK authentication. Prominent examples include
TLS, the Internet Key Exchange (IKE) used in IPSec, WiFi
security protocols like WEP and WPA, WireGuard, and many
more. Support for low-entropy PSKs varies between proto-
cols, but none disallows them completely. Next we show that
partitioning oracle attacks resulting in PSK recovery could
arise on the legacy IKEv1 protocol. Our attack does not ex-
tend to more modern AKEs used in IPSec or TLS.

Internet Key Exchange (IKE) v1 PSK. IKEv1 [32] is the
first version of the IPSec protocol suite’s handshake protocol,
and is officially deprecated in favor of version 2 [43], but it is
still supported and used for compatibility with legacy devices.

The IKEv1 handshake has three full rounds between the
client (called the initiator in IKEv1 parlance) and the server
(responder), comprising six messages. After the first two
rounds, the client and server have established the shared DH
value for the session, but have not yet authenticated each other.
Authentication occurs in the fifth and sixth protocol messages;
these are the first to be encrypted. The fifth message authenti-
cates the client to the server.

In PSK mode, the client derives the encryption and authen-
tication keys Ke,Ka for the fifth message by computing a PRF,
keyed via the PSK, on the shared DH value. Then, it com-
putes the "authentication payload", a hash of the transcript
keyed with Ka, encrypts the payload with plain CBC and Ka,
and sends the resulting ciphertext to the server. The server
re-derives the keys using the shared DH value and the PSK,
decrypts the CBC ciphertext, and checks the authentication
payload. If this check passes, the server crafts and sends the
sixth message to authenticate itself to the client.

Because the server has to decrypt the client’s message with
a PSK-derived key before authenticating the client, a parti-
tioning oracle attack is theoretically possible. An adversary
can initiate an IKEv1 handshake and use the fifth protocol
message as a splitting value input to the oracle, and use the
server’s response as the oracle’s output. If the server’s re-
sponses are different for authentication payload check failure
versus other kinds of failures (e.g., packet parsing vulnerabili-
ties) PSK extraction is possible. We have not surveyed IKEv1
implementations or found examples of vulnerable servers; as
such, this attack is purely theoretical.

Other AKEs. IKEv1’s successor IKEv2 is not vulnerable
because of a change to the key schedule. If a PSK was reused
or correlated across both IKEv1 and IKEv2, a partitioning
oracle on IKEv1 would allow the IKEv2 PSK to be recovered.
We do not know of any settings where this happens, but prior
work showed that RSA keys were re-used across IKEv1 and
IKEv2 in many implementations [24]. We examined the new
PSK mode in TLS1.3; it is not vulnerable. For space reasons,
we defer an extended discussion to the full version.

	Introduction
	Partitioning Oracle Attacks
	Key Multi-Collision Attacks
	Key Multi-collisions for AES-GCM
	Other AEAD Schemes
	Passing Plaintext Format Checks

	Password Recovery for Shadowsocks
	Password-Authenticated Key Exchange
	Countermeasures
	Related Work
	Conclusion
	More (Possible) Partitioning Oracles
	Password-based and Hybrid Encryption
	Authenticated Key Exchange and PSKs

