
Automated Discovery of Denial-of-Service Vulnerabilities in Connected Vehicle
Protocols

Shengtuo Hu
University of Michigan

Qi Alfred Chen
UC Irvine

Jiachen Sun
University of Michigan

Yiheng Feng
University of Michigan

Z. Morley Mao
University of Michigan

Henry X. Liu
University of Michigan

Abstract
With the development of the emerging Connected Vehicle

(CV) technology, vehicles can wirelessly communicate with
traffic infrastructure and other vehicles to exchange safety and
mobility information in real time. However, the integrated
communication capability inevitably increases the attack sur-
face of vehicles, which can be exploited to cause safety hazard
on the road. Thus, it is highly desirable to systematically un-
derstand design-level flaws in the current CV network stack
as well as in CV applications, and the corresponding secu-
rity/safety consequences so that these flaws can be proactively
discovered and addressed before large-scale deployment.

In this paper, we design CVAnalyzer, a system for dis-
covering design-level flaws for availability violations of the
CV network stack, as well as quantifying the correspond-
ing security/safety consequences. To achieve this, CVAna-
lyzer combines the attack discovery capability of a general
model checker and the quantitative threat assessment capa-
bility of a probabilistic model checker. Using CVAnalyzer,
we successfully uncovered 4 new DoS (Denial-of-Service)
vulnerabilities of the latest CV network protocols and 14 new
DoS vulnerabilities of two CV platoon management protocols.
Our quantification results show that these attacks can have as
high as 99% success rates, and in the worst case can at least
double the delay in packet processing, violating the latency
requirement in CV communication. We implemented and vali-
dated all attacks in a real-world testbed, and also analyzed the
fundamental causes to propose potential solutions. We have
reported our findings in the CV network protocols to the IEEE
1609 Working Group, and the group has acknowledged the
discovered vulnerabilities and plans to adopt our solutions.

1 Introduction
With the emerging Connected Vehicle (CV) technology [64],
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
wireless communication enables vehicles to exchange impor-
tant safety and mobility information with other entities in
real time. In September 2016, the U.S. Department of Trans-
portation (USDOT) launched the CV Pilot Program in three

sites, New York City, Wyoming, and Tampa, to spur early CV
technology deployment and test CV safety applications in the
real world. As of Fall 2018, the program has entered the third
phase, which requires at least 18-month period for long-term
operation and key performance measurements [66].

While CV technology can greatly benefit transportation
mobility and safety, such dramatically increased connectiv-
ity inevitably increases the attack surface of both vehicles
and the transportation infrastructure. For example, if the CV
communication protocol stack is not sufficiently secure, at-
tackers can directly cause safety hazard to human drivers on
the road [1, 13, 45]. Thus, it is imperative to understand the
potential security vulnerabilities in the CV network stack as
early as possible so that they can be proactively addressed be-
fore large-scale deployment. To achieve this, it is necessary to
start with a systematic study of potential design-level security
flaws in the CV network stack, since both the discovery and
defense solutions of such flaws can most generally affect the
security of their corresponding implementation instances.

Existing work on the analysis of Vehicular Ad-Hoc Net-
work (VANET) or CV security [1, 4, 10, 28, 29, 44, 55, 55,
73] generally suffer from three limitations:

(L1): they lack systematic approaches and rely on manual
inspection to identify potential threats [1, 44, 55, 73], which
is both insufficient and inefficient. It is also hard to automate
the risk assessment of identified threats in these works. For
example, Laurendeau et al. [44] use ETSI’s threat analysis
methodology [24], which relies on human to qualitatively
rank the risks of the threats. Similarly, Petit et al. [55] manu-
ally characterized threats in the automated vehicle (e.g., the
cooperative automated vehicle with V2X communication),
only annotated the qualitative risk.

(L2): The threats to the availability of the higher-layer
protocols (i.e., IEEE 1609 protocols [32, 34] and CV applica-
tions), which can prevent legitimate protocol participants from
accessing critical services in the network, are largely under
explored [4, 12, 28, 54, 65]. Although USDOT and the proto-
col designers have already employed security mechanisms to
protect the integrity and confidentiality of CV network com-

Incoming
packets

Threat
assessment

Signature
verificationThreat level >

threshold

Threat level <=
threshold

Failed

Success

Threat
ignored

Threat
discarded

Driver
notification

Figure 1: Verify-on-Demand [4, 41]: a connected vehicle will
only verify the signatures of incoming packets, if packets
result in a safety threat level above the threshold.

munication [4, 65], the protocol stack may still suffer from
availability issues. For instance, as shown in Figure 1, if an
incoming packet that may result in a safety threat cannot pass
the verification, it will be discarded without triggering any
warnings, and the application will not be able to process any
incoming packets. To the best of our knowledge, only one
prior work inspected the threats to availability [73], but it
suffers from the third limitation below.

(L3): Previous works mostly target prior generations of the
protocols, ignoring the analysis of CV applications, or are
conducted before the standardization of IEEE 1609 protocol
family, and hence some discovered vulnerabilities do not exist
in the latest CV network stack design [4, 10, 29, 44, 55, 73].
For instance, the latest version of IEEE 1609.31 has integrated
WAVE Service Advertisement (WSA) security considerations
[73], in which Whyte et al. identify threats to availability of
WSA in IEEE 1606.3-2010 [31] due to misconfigurations or
malicious WSA access parameters.

In this paper, we perform the first rigorous security analysis
to automate the discovery of availability or DoS (Denial of
Service) vulnerabilities, in (1) the latest version of the IEEE
1609 protocol family and (2) Cooperative Adaptive Cruise
Control (CACC) applications. To address L1 (i.e., manual
analysis), we formulate the analysis as a model-checking prob-
lem and design a novel system, CVAnalyzer, that leverages
(1) a general model checker (MC) [75] and (2) a probabilistic
model checker (PMC) [42] to automate both the attack dis-
covery and the attack assessment. Either model checker alone
cannot achieve our analysis goal [8]. MC [16, 21, 27, 75] is
useful for the attack discovery [9, 22, 26, 30, 48, 50]; while,
for tractability reasons, PMC (e.g., PRISM [42]) has limited
support in finding vulnerabilities and mainly focuses on quan-
titative property verification. Therefore, we utilize MC and
PMC to verify availability-related properties and quantitative
properties respectively.

To address L2 (i.e., no availability threat analysis), we de-
fine security properties to cover both availability-related prop-
erties (e.g., “all CV devices should eventually learn unknown
certificates”) and quantitative properties (e.g., “what is the ex-
pected time delay of processing next packet?”). By verifying
these properties, we not only identify potential vulnerabilities
but also understand the corresponding security consequences.

To address L3, we inspect the latest specifications [67] of
the CV network protocols and one complicated CV applica-

1In the following text, without specific notations, “IEEE 1609.*” repre-
sents the latest version (e.g., “IEEE 1609.2” and “IEEE 1609.3” stands for
“IEEE 1609.2-2016” and “IEEE 1609.3-2016” respectively).

tion (i.e., CACC). For the former, we focus on newly added
CV-specific features (e.g., P2PCD); for the latter, we pick two
platoon management protcols (PMPs) (VENTOS [5, 69] and
PLEXE [56, 60]), which are widely used by researchers, prac-
titioners, and developers. We choose to study PMP because
(1) high importance, since it can directly control vehicles and
thus impact safety [1, 23], and (2) high demand for systematic
verification, since it involves distributed collaboration among
multiple vehicles and thus highly difficult to effectively an-
alyze using only manual efforts. We abstract the CV proto-
cols as multiple finite state machines (FSMs). In the abstract
model, each FSM represents a protocol participant, and all
participants communicate with each other through adversary-
controlled public communication channels. Notably, such
abstract model ignores the low-level implementation details,
which is suitable for finding design flaws.

By design, CVAnalyzer does not trigger any false positives,
aiming to guarantee soundness. That is, if we report a prop-
erty violation, it is indeed a violation; we cannot, however,
detect all violations. Like existing works on model checking
security protocols [26, 30, 48], our analysis is parameterized
by the number of protocol participants. Given a specific num-
ber of protocol participants and a set of properties, model
checking guarantees to exhaustively enumerate all reachable
states. Therefore, a model checker should also have complete-
ness, i.e., if the model checker does not report any property
violations, then the model is proved to be correct. However,
due to the undecidability of parameterized system verification
problem [6], achieving both soundness and completeness is
impossible, and we cannot enumerate all possible number of
protocol participants. In this case, we follow the conventional
method of aiming for soundness instead of completeness.

In model checking, the model size (i.e., the total number of
reachable states) grows exponentially with the number of state
variables and the number of protocol participants. To alleviate
the state explosion [18] problem in applying model checking
to complex network protocols, we propose an abstraction
approach (§ 4), which reduces unnecessary state variables
and merges a large data domain into a small equivalent data
domain. We ensure that our state reduction approach does not
introduce wrong property violations (i.e., false positives).

Overall, our contributions are summarized as follows:
• We perform the first rigorous security analysis to find

DoS attacks in the latest version of IEEE 1609 protocol
family and two PMPs via the model checking technique.
To achieve this goal, our analysis methodology design
aims at providing soundness without triggering any false
positives. To alleviate the state explosion problem, we
propose a novel abstraction approach, which does not
generate any false positives and can also achieve com-
plete model coverage.
• Using CVAnalyzer, we are able to discover 4 new DoS

vulnerabilities in P2PCD, which can block the certificate
learning process and can further prevent the application

layer from processing incoming packets, and 15 vulnera-
bilities (14 of 15 are new) in PMPs, which can block the
communication among platoon members. Our quantifi-
cation results show that their exploits can have as high
as 99% success rates, and can double the delay in packet
processing, which violates the latency requirement of
CV communication.
• For these newly-discovered vulnerabilities, we have con-

structed practical exploits and validated them in a real-
world testbed. We have also reported to and received
confirmations for P2PCD attacks from IEEE 1609 Work-
ing Group [35]. Besides, our case studies demonstrate
that P2PCD attacks can lead to traffic accidents, and
PMP attacks can affect the speed stability of the victim
vehicle. These results thus concretely demonstrate the
effectiveness of CVAnalyzer.
• For the identified vulnerabilities, we discuss the fun-

damental reasons and propose effective mitigation solu-
tions, including avoiding using truncated hash value (e.g.,
3-byte hash value), mandating verification for P2PCD
learning responses, and requiring P2PCD learning re-
quests to be broadcast (§7). After our discussion with
the IEEE 1609 Working Group [35], mitigation solutions
against P2PCD attacks are planned to be integrated into
the next version of IEEE 1609.2.

2 Technical Background
In this section, we introduce the necessary technical back-
ground about the CV network stack and the platoon manage-
ment protocols (PMPs).

2.1 CV Technology & Network Stack
CV network provides connectivity in support of mobile and
stationary CV applications, which offers users greater situa-
tional awareness of events, potential threats, and imminent
hazards, with the goal of enhancing the safety, mobility, and
convenience of everyday transportation [36]. In the CV net-
work, there are two basic types of devices: (1) On-Board Unit
(OBU) in a roaming vehicle and (2) stationary Road-Side Unit
(RSU) along the road. Usually, the communication pattern
of the CV network is individual messages that are broadcast
without response [34].

IEEE 802.11p [37] and its extension IEEE 1609.4 [33]
together define the basis of the CV network stack, in which
IEEE 802.11p disables the authentication, association, and
data confidentiality services at the MAC layer to minimize
the message latency. Above them, IEEE 1609.3 [34] defines
the WAVE Short Message Protocol (WSMP), which is op-
timized to minimize communication overhead. The Basic
Safety Message (BSM, a.k.a., the beacon message) defined
in SAE J2735 is used by a variety of applications, such as
Forward Collision Warning (FCW), Cooperative Adaptive
Cruise Control (CACC), to exchange safety data regarding
vehicle state (e.g., location and speed). The transmission rate
of BSM is typically set to 10 times per second [2, 3, 25].

Due to the safety-critical nature of CV applications, IEEE
1609.2 [32] specifies security mechanisms to provide confi-
dentiality, authenticity, integrity, and non-repudiation. It intro-
duces digital certificates to enable digital signature (ECDSA),
with the support of a Public-Key Infrastructure (PKI) system
called Security Credential Management System (SCMS) [12].
Also, SCMS supports the misbehavior detection and certifi-
cate revocation to prevent malicious vehicles from communi-
cating with others, while the development of the misbehavior
detection algorithms is still ongoing.

In particular, IEEE 1609.2 specifies a unique feature called
Peer-to-Peer Certificate Distribution (P2PCD) that helps a
CV device to learn unknown certificates. When a device re-
ceives a signed secured protocol data unit (SPDU), it will
construct a certificate chain for the signing certificate within
the SPDU. The certificate chain links the signing certificate
to a known trust anchor, which usually refers to the root cer-
tificates shared by all CV devices, so the incoming SPDU
can be trusted by the receiver. However, the CV device may
be unable to construct such a certificate chain due to not
recognizing the issuer of the signing certificate. In this case,
the received SPDU is referred to as a trigger SPDU, and the
CV device will attach P2PCD learning request field in the
next outgoing SPDU to request peer devices to provide the
necessary certificates to complete the chain. P2PCD learning
responses, which contains requested certificates, will be sent
back through WSMP by peer devices. Note that, a P2PCD
learning response is sent as a protocol data unit (PDU) rather
than an SPDU. That is, the P2PCD learning response itself
does not carry the digital signature. The current IEEE 1609.2
does not mention the verification for the payload of the learn-
ing response (cf. IEEE 1609.2-2016, Clause 8.2.4.1 c)). Be-
sides, the P2PCD example in IEEE 1609.2 (cf. 1609.2-2016
Clause D.4.3.6) only considers VerifyCertificate primi-
tive as an optional step before AddCertificate primitive.

2.2 Platoon Management Protocol (PMP)
CVs form a platoon with minimal following distances to
improve traffic density and fuel economy. The PMP is an es-
sential component for platoon applications to control platoon
maneuvers. Typically, vehicles in a platoon exchange speed,
location, platoon ID, platoon depth by broadcasting beacon
messages periodically. The platoon leader has a depth of 0,
and it increases as we go farther. The leader acts as the co-
ordinator and controls platoon decisions such as join/merge,
split, leave, and dissolve. In this paper, We study two PMPs;
since PLEXE [56] only specifies the join-at-tail maneuver
that is the same as Join/Merge maneuver in VENTOS, we
thus mainly follow the description of PMP in VENTOS [69].

Join/Merge Maneuver Two platoons, traveling in the
same lane, can initiate a merge maneuver to form a bigger
platoon. The leader of the rear platoon will send a MERGE_REQ
to the front platoon leader, if it observes that the combined
platoon size is no greater than the optimal platoon size by

inspecting the beacon message from front vehicles. Upon
receiving a MERGE_ACCEPT from the front leader, the rear pla-
toon leader will speed up to reduce the front spacing. Then,
the rear leader sends CHANGE_PL to notify its followers to
change the platoon leader to the front leader. Meanwhile,
the rear leader switches to the follower role after sending a
MERGE_DONE to the front platoon leader.

Split Maneuver To break the platoon into two smaller pla-
toons, a platoon leader can either actively initiate this maneu-
ver at a specific position, or passively trigger this maneuver
when the platoon size exceeds the optimal platoon size. A
platoon leader first sends a SPLIT_REQ to the splitting vehicle
where the split should occur. After receiving a SPLIT_ACCEPT,
the platoon leader sends a CHANGE_PL to make the splitting
vehicle a potential leader. Besides, the platoon leader needs
to inform followers behind the splitting vehicle, if any, to
change their leader to the splitting vehicle. After that, the
platoon leader sends a SPLIT_DONE to the splitting vehicle,
which then switches to the leader role.

Leave Maneuver A platoon member may initiate a leave
maneuver, when approaching the destination. For the leader
leave, the leader will send a VOTE_LEADER to all followers
to vote on the new platoon leader. The newly elected pla-
toon leader needs to send a ELECTED_LEADER to the current
leader. Then, the leader splits at the position of the elected
leader by initiating the split maneuver, and thus hands over
the leadership to the elected leader. For the follower leave, the
follower will send a LEAVE_REQ to the leader and wait for a
LEAVE_ACCEPT. The leader needs to split at both the succeed-
ing vehicle, if any, of the follower, and the follower to make it
a free agent, defined as a one-vehicle platoon. At this time, the
follower can slow down. Once there exists enough space for
the follower to change the lane, it will send a GAP_CREATED
to the old leader and finally leave the platoon.

Dissolve Maneuver This maneuver is only initiated by the
platoon leader, who broadcasts a DISSOLVE to all followers.
Upon receiving all ACK messages, all platoon members act as
free agents and are free to leave.

3 Threat Model
CV communication capability. In our work, we assume that
the attacker can compromise OBUs on her own vehicles or
others’ vehicles, which follows recent works on CV secu-
rity [14, 15, 74]. This assumption is reasonable, as previous
works [13, 39] have already shown that in-vehicle systems
can be compromised physically or remotely. In this case, the
attacker can send malicious packets to other vehicles through
compromised CV devices. All malicious packets should com-
ply with protocol specifications. Notably, the attacker is al-
lowed to unicast malicious packets to a specific vehicle (cf.
IEEE 1609.3, Subclause 5.5.1).

Passive monitoring. The attacker can passively eavesdrop
and capture all network traffic in her wireless communication
range under the promiscuous mode of the wireless adapters.

Cryptography operations. We assume that cryptography
operations used in CV protocols (e.g., signing, verification,
and hash) are secure. The attacker thus cannot forge digital
signatures used for packet authentications but can use valid
certificates installed in compromised vehicles to sign outgoing
packets. However, the attacker can still (1) passively collect
valid certificates by sniffing the CV network traffic, and (2)
construct local certificates, which are not signed by trusted
anchors.

4 Analysis Methodology
In this section, we first present our how we construct each
component in the model, including the adversary model and
each protocol state machine. We then describe how we reduce
the state space and document how we implement CVAnalyzer.

Model construction

Protocol state
machines

Network, timersEnvironment

Events

General
model checker

Violations:
counterexamples

Availability
properties

Model checking

Counterexamples

Probabilistic
model checker

Domain
knowledge

OR

Result AssessmentAttack Validation

Testbed

Fixing model

Figure 2: CVAnalyzer overview. (Events: (1) incom-
ing/outgoing packets, (2) added/deleted/expired timers)

4.1 Model Construction
As shown in Figure 2, our model, consisting of the envi-
ronment and protocol state machines (P), is driven by net-
work and timer events. In general, the environment manages
packet/time events generated by protocol state machines. It
delivers triggered events (e.g., packet reception, timeout) to
protocol state machines.

Adversary-controlled communication environment.
We follow the design in prior works [59] and define three
sequential steps in a loop for the environment:

1. Retrieve: the environment picks one of many different
packet/time events if such an event is available.

2. Process: the protocol state machine processes an event.
3. PostProcess: after processing a given event, the proto-

col state machine either sends a new packet, adds a new
timer, cancels an existing timer, or does nothing. The
environment needs to update its internal states and keeps
track of newly added events.

Our threat model (§ 3) assumes that the attacker has communi-
cation and eavesdropping capabilities. Thus, we add one more
step for the attacker to send and receive arbitrary packets:

4. Attack: the attacker is able to monitor all packets in the
environment. If needed, she can inject arbitrary pack-
ets into the environment, which allows a protocol state
machine to process all possible packet events.

To model the network, we construct the communication
channel C = {chi, j|i, j ∈ [1,n], i 6= j}, where chi, j is a FIFO
queue from Pi to P j. In this case, the packet sending and
reception are abstracted as enqueue and dequeue operations
on chi, j. Notably, we do not consider network factors for vul-
nerability discovery, such as network latency and packet loss,
because the lossy and erroneous network weakens the attack’s
capability and increases the complexity of the model. Placing
the attacker in her best position can help us uncover all po-
tential attacks. On the other hand, to model timers, we do not
keep track of the absolute time but only care about the tempo-
ral ordering of events, which is a common practice in model
checking distributed system [43]. For progress advancing, all
timers will count down simultaneously if there are no active
events that should be delivered to protocol state machines.

Protocol state machine. All protocol participants (Pi, i ∈
[1,n]) are identical; therefore, each of them can be represented
as the same finite-state machine (FSM). Then, our model M
can be defined as a concurrent system M = C ||i∈[1,n]Pi, in-
cluding an adversary-controlled environment C and n isomor-
phic processes Pi, where || is commutative and associative.

In our analysis, we abstract the higher-layer protocols in
the CV network stack: (1) the communication model defined
in networking services and message sublayer, (2) security
services, and (3) PMP described in [5, 56, 60, 69]. We follow
their specifications or codebases to define packet and timer
handlers, which update the internal states of Pi while pro-
cessing packets and timeouts delivered by the environment.
Our model excludes the handler of certificate revocation in
security services, because it relies on an external public key
infrastructure (PKI) like SCMS [12] to revoke certificates,
which is out of the scope of the network stack itself. We will
discuss how SCMS affects identified vulnerabilities in § 8.

For the security services, we first abstract away crypto-
graphic constructs because we assume that the cryptography
operations in CV protocols are secure. Then, we model both
packet type and packet header data, as they are required by the
internal security mechanisms. In CV network, each protocol
participant will have a batch of unique end-entity certificates
(a.k.a., signing certificates). To trigger all internal security
mechanisms, for the certificate configuration, we assume that
the issuer of each batch of signing certificates is different from
each other and is attached with packets in transmission.

Probabilities. Network protocol involves many concurrent
events (e.g., packet transmission), leading to concurrent tran-
sitions in state machines. While building probabilistic models,
we develop a discrete-time Markov chain (DTMC) model that
assigns uniform probabilities to concurrent state transitions,
originating from the same state (§ 4.2).

State reduction. We now show how we abstract the model
to reduce states through a concrete example. For ease of
exposition, we rely on a simplified example (Figure 3) derived
from N4 (§ 5.1.3). Our goal is to reduce unnecessary states
to get an abstracted model. Also, we want to ensure that

the counterexample found in the abstracted model is a valid
counterexample in the original model.

1 h(x)
∆
= x%M h(x) = x mod M

2 EventRange
∆
= (0 . . (N − 1))

3 TimerIndexRange
∆
= (0 . . (M − 1))

4 Init
∆
= Initial state

5 ∧ event ∈ EventRange
6 ∧ timer = [i ∈ TimerIndexRange 7→ None]
7 Next

∆
= Specify how to update states

8 ∧ event ′ ∈ EventRange
9 ∧ timer ′ = [i ∈ TimerIndexRange 7→

10 if h(event) = i then TIMEOUT initialize the timer

11 else if timer [i] = None then timer [i] not initialized

12 else if timer [i] > 0 then timer [i]− 1 count down

13 else None] expire

14 Property
∆
=

15 ∀ i ∈ TimerIndexRange :
16 (timer [i] = TIMEOUT) ; (timer [i] = 0)

Figure 3: A simplified example derived from N4 (N: the total
number of events; M: the total number of timers; TIMEOUT: the
maximum value of the timeout).

In the example, we develop a simplified protocol, in which
the model updates the timer according to the event (Line
9-13), in which the function h(x) abstracts the hash truncation
operation in P2PCD. Assuming that, without the attacker, the
range of event is [0,X−1], where X < M ≤ N. The attacker
in the environment can trigger all possible events [0,N−1].

For a given event, if h(event) equals to i, then timer[i] will
be initialized (Line 10). For other unmatched timers, a timer
will (1) remain unchanged if timer[i] is not initialized (None),
(2) count down if it has been initialized, or (3) set as unini-
tialized if it expires. To capture the attacker’s behavior, for
each Next step in Figure 3, we randomly select a value in
EventRange as the next event (Line 8). Notably, events within
[X ,N− 1] are triggered by the attacker and can lead to the
initialization of all timers. Last, to find counterexamples, we
specify a liveness property (Line 14-16) that all timers should
eventually expire if it has been initialized.

Obviously, the state space of the model depends on N and
M, which can be arbitrarily large. For example, the timer
index range in P2PCD would be [0,224− 1] (i.e., M = 224).
The number of events N can be 2256. Unfortunately, the model
checker cannot handle such large state space.

By analyzing the model, we observe that we do not need to
track all timer[i], as the protocol only updates a small set of
timers when no attacker is presented. As stated before, with-
out the attacker, the range of event is [0,X−1]; the model thus
only updates timer[i], where i ∈ [0,X−1]. Usually, the proto-
col instance does not care whether other timers can eventually
expire. Therefore, apart from reducing TimerIndexRange to
[0,X−1], we also derive a weakened property, P̂rop:

∀i ∈ [0,X−1] : (timer[i] = T IMEOUT) (timer[i] = 0)

Since ¬P̂rop⇒¬Prop, our decision ensures that if the iden-
tified counterexample violates P̂rop, it also violates Prop and
is a valid counterexample in the original model.

On the other hand, we observe that many events triggers
the same update on timer. For example, both event = 0 and

event = M leads to the initialization of timer[0]. Thus, we
decide to keep a small set of EventRange. We first partition
EventRange into several equivalence classes:

EventRangei = { j ∈ EventRange|h(j) = i}, i ∈ [0,M−1]
where every event in EventRangei triggers the same update
on timer[i]. For each equivalence class EventRangei, we then
pick one value, EventRangei = {i}, so that we can trigger
all updates on timer. In this case, we reduce EventRange
to [0,M − 1]. However, among this range, only events in
[X ,M− 1] is triggered by the attacker, meaning that the at-
tacker itself cannot trigger all updates on timer. We thus en-
large [X ,M−1] to [X ,2M−1] so that the attacker itself can
trigger the initialization of all timers. Finally, we derive a
small ̂EventRange = [0,2M−1] and a mapping function:

f (x) =
{

x, x ∈ [0,M−1]
M+ i, x ∈ { j ·M+ i| j ∈ [1,d N

M e−1]} (i ∈ [0,M−1])

Moreover, f is a surjective function; thereby, for every x̂ in
[0,2M− 1], we can always find at least one x in [0,N− 1]
such that x̂ = f (x). In another word, for every identified coun-
terexample in the abstracted model, we can always find at
least one corresponding counterexample in the original model
by applying the inverse function f−1 on event.

By combining the aforementioned two strategies together,
we can successfully reduce the state space of the example
and ensure no wrong property violations. In particular, we
reduce TimerIndexRange and EventRange to [0,X −1] and
[0,2X−1] respectively.

4.2 Model Checking
The goal of using the general model checker is for vulnera-
bility discovery. Given a model M and security properties,
once the model violates a property, the general MC will gen-
erate a counterexample, an execution trace leading to the
violation. Formally, a model can be defined as consisting in a
finite set of states S, initial states I ⊆ S, the transition relation
T ⊆ S×S, and a labeling function from states to a finite set of
atomic propositions L : S→ 2AP [17]. Table 1 summarizes the
high-level properties to analyze P2PCD and PMPs. For each
property, we first refine ϕi to get a new property ϕi′ such that
ϕi⇒ ϕi′ and ¬ϕi′ ⇒ ¬ϕi. For example, a refinement over ϕ1
would be at least one CV device should eventually broadcast
a learning request after observing an unknown certificate.
Then, MC is used to find property violations. By analyzing
the counterexample, we can formulate the attack procedure
(§ 5) and analyze the fundamental reasons for identified at-
tacks, which is helpful for the mitigation design (§ 7). Last,
we patch the model to ensure that the general MC will not
generate the same type of violations later.

PMC aims at avoiding manual risk assessment and does
not discard identified vulnerabilities from the general MC.
It helps assess the severity of the exposed vulnerabilities
and thus allows the protocol designers to prioritize the so-
lution design. Unlike the general MC, PMC assigns proba-
bilities for each state transition T : S× S→ [0,1] such that

Table 1: Availability properties used by CVAnalyzer.

ID Availability properties

ϕ1
The application layer should be always able to con-
sume valid incoming packets.

ϕ2
Refinement over ϕ1: All CV devices should eventu-
ally learn unknown certificates.

ϕ3
Refinement over ϕ1: All platoon members should
eventually switch to idle state.

∀s ∈ S : Σs′∈ST (s,s′) = 1. Since we assign uniform probabili-
ties to concurrent state transitions, for all reachable successor
states of s in Succs = {s′ ∈ S|T (s,s′)> 0}, the transition prob-
ability between s and any s′ is 1

|Succs| . A transition matrix can
be derived from the transition probabilities. Thus, PMC can
calculate the likelihood of transitioning from initial states
to any target states. If we can formalize the states of the at-
tack success, PMC can help us generate the attack success
rate. Apart from the probability, PMC can also assign “time”
costs for state transitions, which can be used to quantify time-
related properties. In § 5, we leverage PMC to quantify the
severity of non-deterministic attacks N1-4, which are defined
as attacks that may not always succeed per attempt. We ob-
serve that, P2PCD attacks can succeed, only if malicious
packets are delivered to the victim vehicle exactly within the
attack time window. However, the attacker cannot precisely
infer the start and end of the time window, but only roughly
predict the start time. Thus, we use PMC to quantify their
severity based on the success rate and the time delay.

4.3 Implementation
Following the proposed approach, to instantiate CVAnalyzer,
we use TLC [75] as the general model checker due to its ex-
pressiveness of constructing the model, and pick PRISM [42]
as our probabilistic model checker. As the prior step of model
checking, we manually extract the abstract model of the IEEE
1609 protocol family [67] and PMPs [56, 69]. The abstract
model includes two (i.e., n = 2) legitimate vehicles and one
malicious vehicle (i.e., the attacker). Then, we need to im-
plement concrete models in the modeling languages used by
TLC and PRISM. As the supported maneuvers of PLEXE is
a subset of VENTOS, we merge them together as one model.
The properties that we want to verify in this paper are shown
in Table 1 and Table 3, covering availability and quantitative
properties respectively.

5 Analysis Results
In this section, we describe 4 DoS attacks in P2PCD and 15
attacks in VENTOS [69] and PLEXE [56] in detail (Table 2).
Then, we analyze the security implications of identified at-
tacks, and quantify the success rate and the average time delay
in packet processing of those non-deterministic attacks.

5.1 P2PCD Vulnerabilities
In summary, CVAnalyzer finds 4 new DoS attacks that can
compromise the availability of CV network. All 4 vulnerabili-
ties come from P2PCD [32], which prevents victim vehicles
from learning unknown certificates (see Figure 4). Without

Table 2: Summary of attacks found in the CV protocols. (N: CV network protocol, P2PCD. A: CV application, PMP)
ID Name Assumption New? Implications

N1 Response Mute
Known response threshold,
optional response verification,
enough computing power

Yes Stop the CV device from sending learning responses; result in traffic accidents (§ 6.2.1)

N2 Request Mute
Optional response verification,
enough computing power Yes Stop the CV device from sending learning requests; result in traffic accidents (§ 6.2.1)

N3 Known MAC address
N4 Numb Known MAC address Yes Stop the CV device from recording unknown certificates; result in traffic accidents (§ 6.2.1)

A1, A2 (Prerequisites) Available platoon space A1: No [1].
A2: Yes Cause traffic collision [1], lead to A3-15

A3, A4 Split Trigger Centralized platoon coordination Yes Interfere the traffic flow stability, decrease efficiency and safety (§ 6.2.2)
A5-14 PMP Block - Yes Prevent platoon members from performing any maneuvers
A15 Inconsistency Inappropriate validity check Yes Lead to failures of the split maneuver and the leader/follower leave maneuver

knowing necessary certificates, the victim vehicles cannot
verify incoming packets; the CV network stack thus cannot
deliver data to the application layer. Besides, we discuss the
fundamental reasons for these vulnerabilities. Also, we assess
their security consequences.

Recv.
SPDU

Record
unknown cert.

Send
learning req.

Recv.
learning req.

Send
learning res.

Recv.
learning res.

Store
cert.

Peer
CV device

CV
Device

N1
N2, N3N4

Figure 4: Four P2PCD attacks can break the whole pipeline
of P2PCD learning process to prevent the CV device from
learning/storing the unknown certificate.

In the following descriptions, two CV devices, Vehicle
1 (V1) and Vehicle 2 (V2), broadcast SPDUs every 100 ms.
However, V2 cannot verify packets sent by V1 because V2 does
not know the issuer ca1 of the signing certificate ee1 used by
V1. V2 thus wants to learn the unknown certificate ca1. For
each attack presented below, V1 first sends a trigger SPDU
to V2. In the normal case without the attacker, after receiving
the trigger SPDU, V2 initializes P2PCD learning process and
attaches learning request information in the next outgoing
SPDU. V1 will construct and send the learning response after
receiving the learning request.

5.1.1 Response Mute Attack

N1 can prevent a peer CV device from sending the learn-
ing response. This attack exploits the optional verification of
learning responses and the throttling mechanism of P2PCD
that limits the number of responses to a single request. The
attacker intentionally interact with V1 by sending multiple ma-
licious learning responses to ensure that the response counter
of V1 exceeds the response threshold. As a consequence, V1
choose not to send the learning response, and V2 fails in learn-
ing the unknown certificate ca1.
Assumptions. For successfully carrying out this attack, the
attacker needs to know the exact value of the response thresh-
old. For example, the response threshold of BSM is 3 [20]. We
assume that V1 does not mandate the verification for incoming
learning responses, which is consistent with the current pro-
tocol specification (§ 2.1). Also, we assume that the attacker
has enough computing power to efficiently construct learning

responses that can cause partial hash collision (e.g., low-order
3 bytes collision).

Before sending a
learning response

Learning responses:
- h3(certs[0]) == h3(ca1)

Attacker

Learning request

Vehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

Response
available

Wait for
timeout

resCount(h3(ca1))
<= threshold

Discard
response

N

After initializing
the timer

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3(): get low-order 3-byte hash of the input
- h8(): get low-order 8-byte hash of the input

Count
responses

Figure 5: N1: the attacker can stop V1 from sending learn-
ing responses to V2 by sending multiple malicious learning
responses.

Attack steps. Figure 5 illustrates the attack steps in detail. V1
first sends a trigger SPDU to V2. Instead of immediately send-
ing the learning request, V2 stores the HashedId8 value of
the unknown certificate ca1 in a queue (cf. IEEE 1609.2 [32],
Subclause D.4.2.1.1). V2 attaches the HashedId3 value of
ca1 in the learning request field of its next outgoing SPDU. In
P2PCD, HashedId8 and HashedId3 stands for the low-order
8-byte and 3-byte hash of a certificate respectively. After re-
ceiving the learning request, V1 starts to prepare a learning
response. Based on the throttling mechanism, V1 initializes
the response backoff timer and the response counter for the
requested certificate.

However, the attacker can observe the trigger SPDU and
the learning request, so she can determine that V2 wants to
learn an unknown certificate from V1. The attacker thus de-
liberately constructs multiple learning responses, in which
the HashedId3 value of the first certificate in the payload
matches with the unknown certificate ca1. The attacker then
sends out these malicious packets to saturate V1’s response
counter (i.e., making it no less than the response threshold).
On receiving malicious learning responses, V1 wrongly up-
dates its response counter (via AddCertificate primitive
defined in IEEE 1609.2). When the response backoff timer
expires, V1 checks whether the response counter is less than

or equal to the response threshold. Obviously, based on the
current status of the response counter, V1 decides to discard
the response at this time.
Discussion. The reason for N1 can be attributed to the use of
truncated hash. By design, the hash function should be resis-
tant to collision attacks. However, the use of truncated hash
value compromises the security provided by the hash func-
tion. For example, for HashedId3 used in CV network (i.e.,
three-byte hash), collision could be found in the brute-force
number of 224. Most importantly, the response counter uses
HashedId3 as the identifier, which means that the attacker
can manipulate the response counter if she constructs certifi-
cates leading to the partial hash collision. On the other hand,
as introduced in § 2.1, IEEE 1609.2 does not mandate the
verification for the learning response. Thus, it is still possible
that some poorly implemented CV protocols may not verify
the incoming learning response but just store certificates in
the payload. Even if the CV device mandates the verification,
the attacker can collect certificates with the attacker-desired
hash values offline (§ 7). Note that, since P2PCD learning
responses do not carry digital signatures, the attacker does not
need to possess a legitimate certificate to launch N1, making
the attack much more stealthy.

5.1.2 Request Mute Attack
Both N2 and N3 can stop CV device from sending learning
requests. Similar to N1, N2 exploits the hash collision issue.
Readers can refer to §A for more details.

N3 exploits the unicast capability and injects a mali-
cious SPDU with the same learning request field (i.e., the
HashedId3 value of ca1) as what V2 intends to send. As a
result, V2 can observe the malicious learning request and de-
cides not to send its own learning request. V2 hence fails in
learning unknown certificate ca1 because V1 does not receive
any learning requests.
Assumptions. To successfully launch this attack, the only
requirement is that the attacker needs to know the MAC ad-
dress of the victim vehicle V2. This is reasonable because
the attacker can monitor all traffic in the network; it can thus
observe V2’s MAC address from packets sent by V2.
Attack steps. As presented in Figure 6, V2 initializes P2PCD
after receiving a trigger SPDU from V1. V2 stores the
HashedId8 value of the unknown certificate ca1 in a queue.
Meanwhile, since the attacker can observe the trigger SPDU,
she constructs a malicious learning request, in which the learn-
ing request field m.lr equals to the HashedId3 value of the
unknown certificate ca1. In P2PCD, after receiving a learn-
ing request, V2 removes any matching HashedId8 entries in
the queue. Therefore, V2 removes the entry of the unknown
certificate h8(ca1) in the queue, where h8 is a function to
get the low-order eight-byte hash of the input. As the queue
becomes empty, V2 decides not to attach the learning request
information in the next outgoing SPDU. Consequently, V2 is
unable to learn the correct unknown certificate.

Discussion. The fundamental reason for N3 is that once a
vehicle observes an active P2PCD learning request, it will not
send the learning request for the same unknown certificate.
In the normal case, this mechanism is helpful to reduce the
number of simultaneous learning requests in the fly. However,
the attacker can unicast the learning request to the victim
vehicle. Notably, the attacker should not send such learning
request to the owner of the unknown certificate (i.e., V1 in
Figure 6). This attack misleads the victim vehicle to believe
that some other legitimate vehicles are requesting the same
unknown certificate. The protocol designers do not consider
the use of unicast in P2PCD, which makes the victim vehicle
vulnerable to N3. On the other hand, N3 does not require the
attacker to possess a legitimate certificate to sign the learning
request but only uses self-generated certificates. As long as the
digital signature of the learning request is valid, the vehicles
will process the learning request field in the packet header.
In this case, the signing certificate of the malicious learning
request will be treated as an unknown certificate and will
trigger another P2PCD learning process. Therefore, even if
the certificates used by the attacker is revoked, the attacker
can always generate new certificates for future use.

5.1.3 Numb Attack
First, like N3, this attack exploits the unicast capability and
injects a malicious SPDU with the same learning request
field (i.e., the HashedId3 value of ca1) as what V2 intends to
send. This causes the same consequence as N3, in which V2
chooses not to send the learning request and thus cannot learn
the unknown certificate. Then, due to the request active timer
(e.g., reqActiveTimer), V2 still thinks that there should be
an active request in the fly. Therefore, while receiving the next
trigger SPDU, V2 chooses not to add the HashedId8 value of
the unknown certificate ca1 into the queue and keeps waiting
for learning responses.
Attack steps. As described in Figure 6, this attack is similar
to N3, but the attacker has different attack goal that it tries
to prevent the victim vehicle V2 from recording unknown
certificates. Since V1 broadcasts BSMs every 100 ms, V2 will
receive a trigger SPDU again in a few milliseconds. At this
time, V2 still cannot verify the incoming packet. However,
because the request active timer has been initialized in the
last communication round, and the timer is usually set to
250 ms [20], V2 believes that there is still an active learning
request in the fly. Thus, V2 does not add anything into the
queue, which means that it will not attach any learning request
information in the next outgoing SPDU. V2 cannot recover
from this malicious state until the request active timer expires.
Discussion. N4 has the same fundamental reasons as N3. The
only difference is that the request active timer blocks the
victim vehicle from recording unknown certificates in that
the initial value (i.e., 250 ms) of the timer is around 3 times
larger than the broadcast interval (i.e., 100 ms). Fortunately,
P2PCD allows the user to configure the parameters for the

Learning request:
- m.lr == h3(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

If m.lr is unknown:
- reqActiveTimer(m.lr).init(...)
- isReqActive(m.lr) = true
- For h in q, if h contains m.lr
 - q.delete(h)

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3: get loworder 3-byte hash of the input
- h8: get loworder 8-byte hash of the input
- m: an SPDU
- m.lr: learning request field of m

q.add(h8(ca1))

Trigger SPDU:
- Signer: certA
- (Issuer: ca1)

isReqActive(h3(ca1))?
N

N3
happens!

N4
happens!

Figure 6: N3 can stop V2 from sending learning requests to
V1 by sending a malicious learning request.. N4 can stop V2
from recording unknown certificates by sending one or more
malicious learning requests.

initial value of timers.

Table 3: Quantitative properties used by CVAnalyzer to quan-
tify the security consequences of N1-4

ID Quantitative properties

ψ1 What is the success rate of the attack?
ψ2 What is the expected time delay of processing next SPDU?

5.1.4 Assessment
We observe that, N1-4 can succeed, only if the attacker deliv-
ers the malicious packets to the victim vehicle exactly within
the attack time window. However, one challenge for the at-
tacker is that she cannot precisely determine the start or end of
the attack time window but can only roughly estimate the time
window. Thus, we are motivated to quantify the probability
of successfully launching the attack by using the probabilistic
model checker in CVAnalyzer.

Table 4: Attack assessment results of N1-4.

ID Attack
packet

Attack time
window

Succ.
Rate Time delay (ms)

N1 RES-H3 0-250 ms 99.47% 580 (280+300)
N2 RES-H8 ≤ 100 ms 99.99% 370 (280+90)

N3&4 LR-H3 ≤ 100 ms 99.99% 570 (280+290)

Table 4 summarizes the quantification results. Since N3 and
N4 use the same type of packet to attack the victim vehicles,
and the attack time window of them are the same, we merge
these two attacks together and quantify the probability results
based on the type of attack packet.

For N1, the success rate is 99.47%. We set the response
threshold as 3 in our experiments. To successfully launch
one attack, the attacker has at least send 4 malicious learning
responses, while the rest attacks only need to send one ma-
licious packet. This is why the success rate of N1 is slightly
lower than other three attacks. For N2-4, the success rates
are 99.99%. If V2 is able to send the learning request before

receiving the malicious packet, the attacker will fail. However,
this is unlikely to happen based on our results.

Figure 7: The success rate of N1-4 under packet loss.

To have a deeper understanding how the network factor will
affect the success rate, we leverage packet loss to demonstrate
the capability of PMC. Figure 7 show that the success rate of
N1 decays much more than the other three attacks, because the
attacker of N1 needs to successfully send at least 4 malicious
packets to ensure success. As N2-4 target the same attack
time window, they have the same success rate. For N1-4, the
attacker should immediately launch the attack once the victim
vehicle enters her communication range. Bai et al. [7] show
that the packet loss rate (PLR) and the distance between two
CV devices are positively correlated in real-world settings. In
a freeway environment, the PLR is around 42% if two CV
devices are 450m apart, in which 450m is the longest commu-
nication distance presented in their study. Thus, we highlight
the success rate when the victim vehicle enters the attacker’s
communication range, which is the worst case for the attacker
(PLR: 42%). Although the packet loss decreases the attack
success rate, it also affects the transmission of normal packets,
leading to the loss of critical CV safety packets.

Besides, CV communication is time-sensitive [2, 3, 25], so
we would like to know the time delay caused by one round
of N1-4, which is defined as the time duration from waiting
for the trigger SPDU to successfully processing an SPDU
from other vehicles. By knowing this, we can infer how long
the CV network will recover from the attack if the attacker
terminates attacking.

Table 4 shows that three of them can at least double the time
delay in packet processing. During the experiments, we notice
that there still exists 280 ms time delay even if we disable the
attacker, which is one-time delay introduced by P2PCD itself.
For N2, the extra time delay introduced by the attacker is
90 ms, around one broadcast interval, because the malicious
learning response cancels out the learning request process
triggered by the SPDU from V1. V2 thus needs to wait for
next SPDU from V1, which takes one more round of broadcast
interval. For N1, N3, and N4, the extra time delay caused by
the attack is about 300 ms. If the attacker stops attacking at
some time, it takes around three broadcast intervals (i.e., 300
ms) for V2 to recover from DoS.

In N1, the extra time delay comes from the long processing
time of P2PCD, due to the long time interval of the response
backoff timer, with a random timeout value between 0 and
250 ms. As shown in Figure 5, the attacker sends malicious
learning responses to V1 right after V1 initializing the response
backoff timer. Since the attack occurs at a very late stage,
all the time before the transmission of the learning request

become useless. Also, a new P2PCD learning process to the
unknown certificate ca1 will not be initialized again until both
the response backoff timer of V1 and the request active timer
of V2 expire. After that, V2 needs to initialize P2PCD again;
thus, one round of N1 double the one-time delay of P2PCD. In
N3 and N4, V2 is unable to process incoming trigger SPDUs
until the request active timer expires. However, this timer is
usually set to 250 ms, which largely increase the time delay.

5.2 PMP Vulnerabilities
CVAnalyzer identifies 15 attacks in the PMPs of VEN-
TOS [69] and PLEXE [56] (see Table 2). Among identified
vulnerabilities, A1-4 are not directly related to availability
issues but are building blocks of other attacks. Although the
PMPs analyzed in this paper are academic prototypes, our
main contribution is the verification methodology, which can
be generally applied to future PMP protocols. Our results
demonstrate the necessity of such a systematic verification
methodology: using manual efforts, a very recent work [1]
can only uncover 1 vulnerability (A1). In contrast, using CV-
Analyzer for the same PMP implementation, we are able to
automatically uncover not only the same one but also 14 more
(A1-15), which demonstrates both substantially improved ef-
ficiency and effectiveness.

In the following descriptions, V1 and V2 still stand for vehi-
cles. V1 is a platoon leader, and V2 is usually a follower. Their
relative positions differ case by case.

5.2.1 PMP Attack Prerequisites
A1 and A2 allow the attacker to become a valid platoon leader
and follower. Abdo et al. [1] have demonstrated that A1 can
lead to the traffic collision and slow down the emergency
vehicle. Although they do not directly cause security or safety
breaches, we list A1 and A2 alone because they are prerequi-
sites of other attacks. As described in §2.2, a platoon leader
will send a merge request to a front platoon, if the combined
platoon size is no greater than the optimal platoon size. Thus,
the attacker can claim herself as a front platoon to take over
another platoon or initiate a merge maneuver to join a platoon,
leading to the success of A1 or A2 respectively.

5.2.2 Split Trigger Attacks

Both A3 and A4 (see §A for details on A4) can trigger the split
maneuver at any positions. Without sacrificing her own speed
stability, in A3, the attacker can further lead to a high-rate
of vehicles entering and exiting a platoon, which decreases
efficiency and safety [5].
Attack steps. In A3, the attacker first merges with V1 as a
malicious follower. Then, V2 sends a MERGE_REQ to V1 and
join the platoon. At this time, the attacker intentionally sends
a LEAVE_REQ with a wrong depth number of 2 to V1, in which
the depth number indicates the splitting vehicle is V2. V1 thus
wrongly initiates the split maneuver at the position of V2.
After the split process, V2 receives beacon messages from the

attacker and merges with the front platoon again, as described
in §2.2. By repeatedly triggering merge and split maneuver
of V2, the attacker downgrades the speed stability of V2.
Discussion. The reason for A3 is that the platoon leader
does not verify whether the platoon depth in the LEAVE_REQ
matches with the sender ID or not. Usually, if the sender ID
is related to unique signing certificates [32], it is difficult for
the attacker to falsify the identity. However, the design of
PMP uses the depth information as the identity, which can be
easily modified by the attacker. Thus, PMP opens a door for
the attacker to trigger the leave maneuver, leading to a split
maneuver at arbitrary positions.

5.2.3 PMP Block Attacks
This is the most common type of vulnerabilities (A5-14) in
the current PMP design of both VENTOS and PLEXE, which
misleads the victim vehicle to stay at a busy state. We only
describe A7 here. Please refer to §A for more details on others.
Attack steps. In A7, the attacker first joins the platoon by
launching A2 and aims at blocking the split maneuver. Usu-
ally, only the platoon leader can initiate the split maneuver,
but the platoon follower cannot. However, the attacker can
leverage A3 and A4 to mislead the platoon leader to send
a SPLIT_REQ to any specified platoon members. In A7, the
attacker receives a SPLIT_REQ from V1 but chooses not to
reply with a SPLIT_ACCEPT. Thereby, the platoon leader will
keep waiting for the split reply. At this time, if V2, which is
ahead of the attacker, approaches the destination and wants to
leave the platoon, the leader V1 will not be able to process the
leave request or manage the split process to create space for
V2. Without enough space at the front and rear of the vehicle,
it is dangerous for V2 to directly change the lane.
Discussion. The fundamental reason for A5-14 is the lack
of error recovery mechanism on communication failures. By
design, the CV network stack does not provide reliable com-
munication; it is the applications’ responsibility to handle
communication failures [34]. Researchers have already dis-
cussed the impact of communication failures on the CACC
controller [5, 47], but do not pay much attention to communi-
cation failures on PMP. Also, we observe that PMPs in both
VENTOS and PLEXE do not consider “offline” platoon mem-
bers; thus, they do not design any error recovery mechanisms
to reset the vehicle’s state. Although we understand the PMPs
of VENTOS and PLEXE are research prototypes, identified
PMP block attacks still emphasize the importance of error
recovery mechanisms in CV application design.

5.2.4 Inconsistency Attack
This attack aims at assigning a wrong depth number to a
victim follower, which is inconsistent with the index in the
platoon member list. The platoon depth is used in the split ma-
neuver, so the inconsistent depth number can lead to failures
of the split maneuver and the leader/follower leave maneuver.
Attack steps. In this attack, the attacker first joins V1’s pla-
toon as a follower. Then, the attacker slows down to create

large gap (e.g., 100 m) between herself and V1. At this time,
V2 change its lane and drives behind V1. V2 receives the bea-
con message from V1 and sends a MERGE_REQ to V1. After
merging with V1, V1 updates its local state by appending V2’s
ID to the platoon member list, indicating the real platoon
depth of V2 is 2. However, V2 only receives a beacon message
with the depth of 0 from the front vehicle V1; V2 thus wrongly
sets its platoon depth to 1. At this time, the attacker sends a
LEAVE_REQ to V1. Since, V1 thinks that the attacker is a middle
follower, and V2 is behind the attacker, it sends a SPLIT_REQ
to V2 to create rear space for the attacker. In VENTOS, we
observe that CHANGE_PL does not present the absolute depth
but carries the relative change of depth information, because
it is convenient for the platoon leader to send all followers one
CHANGE_PL rather than multiple different CHANGE_PL. During
the split maneuver, V2 receives a CHANGE_PL from V1 with the
depth change of −2. While updating the depth information
locally, PMP of V2 throws an error for the invalid new depth:
1−2 =−1, which may compromise the availability of PMP,
as well as terminates the split maneuver.
Discussion. The reason for A15 can be attributed to the in-
consistent platoon view on the platoon leader and follower.
When joining a platoon, the vehicle relies on the depth infor-
mation in the beacon message from the front vehicle to set its
own depth number, while the platoon leader simply appends a
new member to the platoon member list without checking the
relative location information. If the front vehicle is a benign
last follower, no inconsistency will appear; otherwise, any
CHANGE_PL from the leader to the victim vehicle will lead to
a wrong new depth number. However, the attacker can either
create a large gap for the victim vehicle (A11), or can send a
beacon message with a wrong depth number if the attacker is
the last follower.

6 Evaluation
In this section, we conduct extensive experiments and answer
the following three research questions:
• RQ1: Are identified vulnerabilities practical in a real-

world setting?
• RQ2: What are the security/safety impact of identified

vulnerabilities?
• RQ3: What is the runtime performance of CVAnalyzer?

6.1 RQ1: Practicality of Identified Attacks
We implement and validate all attacks from both P2PCD and
PMP, detected by CVAnalyzer, in a real-world testbed, which
thus concretely demonstrates the effectiveness of CVAnalyzer.
Interestingly, we also find some poor implementation details
in real-world CV devices that actually make our attacks easier.

6.1.1 Testbed Setup and Tool Preparation
As shown in Figure 8, we set up a CV network using three
Cohda OBUs [19] in our lab. Among these three OBUs, de-
noted as OBU 1, 2, and 3 respectively, OBU 1 and 2 are used
as victim CV devices, and OBU 3 is used as the attack device.

To control the experiments, we connect a laptop with three
OBUs via Ethernet connections.

OBU 3

Attacker

OBU 1 OBU 2

Ethernet
connections

Victim CV devices

Controller

OBU

Antenna

Figure 8: Testbed setup for attack validation.

The Cohda OBU that we use in our experiments is an
ARM embedded device running Ubuntu 16.04. It implements
the latest version of the CV network stack, which conforms
with IEEE 802.11p [37, 38], IEEE 1609-2016 [32–34], and
SAE J2735-2016 [20]. Notably, the implementation of IEEE
1609.2, called Aerolink, is developed by OnBoard Secu-
rity [52] and closed source.

Victim OBU setup. To implement the CV communication
model, both victim OBUs run a simple program that period-
ically broadcasts a correctly-signed SPDU. This broadcast-
based communication also allows the attacker to observe all
network traffic. For P2PCD, we place random data in the
SPDU. For PMP, the SPDU stands for the beacon message,
which contains the platoon ID and depth. Besides, both OBUs
run PMP programs that are extracted from the source codes
of VENTOS [69] and PLEXE [56].

For two different protocols (i.e., P2PCD, PMP), we assign
different roles to OBU 1 and 2. In P2PCD attacks (i.e., N1-4),
following the same assumption in §5.1, OBU 2 cannot verify
packets sent by OBU 1 due to a missing certificate, so OBU
2 wants to initialize P2PCD to learn the unknown certificate
from OBU 1. In PMP attacks (i.e., A1-15), by default, OBU
1 and 2 belong to the same platoon. OBU 1 and 2 are the
platoon leader and the platoon follower respectively.

Tool preparation. To launch the attacks, we need to pre-
pare tools that allow us to (1) parse and construct arbitrary
packets and certificates, and (2) sign and verify CV network
packets correctly. For (1), we use asn1c [71] to extract C data
structures used by CV network services from ASN.1 modules
in protocol specifications, and port platoon message types
from the source codes of VENTOS and PLEXE. For (2), we
follow IEEE 1609.2 to implement the signing and verifica-
tion functionalities. We start from ECDSA APIs provided by
OpenSSL 1.1.0j [53]. The elliptic curve and the hash func-
tion that we use with ECDSA is NIST P-256 and SHA-256,
respectively. We cross-validate the correctness of our tools
using APIs of Cohda CV network stack. The Cohda CV net-
work stack can process packets and certificates generated by
our tool without throwing any errors.

Certificate configurations. As N1-4 require triggering
P2PCD, we need to configure the pre-installed certificates
in both victim OBUs to ensure that OBU 2 cannot construct
a certificate chain while verifying packets sent by OBU 1.
Both OBU 1 and 2 can correctly verify packets from OBU 3

(attacker). First, we use our certificate generator to construct
a Root CV certificate, referred as root, which is trusted by
all three OBUs. Then, we use root to issue two interme-
diate Certificate Authority (CA) certificates: ca1 and ca2.
We add both ca1 and ca2 to the local certificate database
of OBU 1, but only add ca2 to the database of OBU 2. To
generate end-entity certificates for signing packets, we utilize
ieeeAcfGenerator in Cohda SDK to issue two batches of
certificates: batch1 for OBU 1 and batch2 for OBU 2. Each
batch is an Aerolink-specific file and contains 20 end-entities
certificates. Besides, we use ca2 to issue another end-entity
certificate ee3 for the attacker so that OBU 1&2 can construct
a valid certificate chain for packets sent by the attacker.

Apart from generating these normal certificates, we also
need to construct certificates that can cause hash collisions.
In N1 and N2, the first certificate in the malicious learning
response should match with the low-order 3-byte and 8-byte
hash value of the unknown certificate respectively. We there-
fore use our certificate generator to construct two CA cer-
tificates: ca1-h3 and ca1-h8, which can lead to 3-byte and
8-byte hash collision with ca1.

Attack programs. Following the attack processes in §5,
we implement different attack programs. For each attack pro-
gram, we set the start condition and the fail condition. The
attack programs will stop only if the fail conditions are satis-
fied; otherwise, they will keep running. For P2PCD attacks,
the attack fails if she observes any learning response from
OBU 1. For example, the attack program for N1 will send ma-
licious learning responses after observing a learning request
sent by OBU 2 (i.e., Vehicle 2 in Figure 5). If it observes
a learning response sent by OBU 1, the program will stop,
which means that the attack fails. For PMP attacks, the attack
fails if the victim platoon member can still finish the merge,
split, leave, or dissolve maneuver.

6.1.2 Validation Results
In the real-world experiments, we find that all attacks from
P2PCD and PMP are successfully validated. Interestingly, we
further find that some implementation details in Aerolink
can actually make P2PCD attacks, N1 and N2, even easier
and even block the CV communication indefinitely.

First, we observe that N1 and N2 can indefinitely block the
P2PCD learning process. Based on our model-checking find-
ings in §5.1, once the adversary stops sending malicious learn-
ing responses, the victim devices should eventually be able to
recover from DoS. However, in our real-world experiments,
we find that even after the attack program terminates, OBU 2
still cannot learn the correct unknown certificate from OBU 1.
After analyzing the execution log, we find that OBU 1 keeps
sending the fake certificate (i.e., ca1-h3), while OBU 2 sends
learning requests for the unknown certificate ca1 to OBU 1.
By design, a CV device responds to an incoming learning
request only if the learning request field matches with a sign-
ing certificate which is recently used by that device. With the

help of a binary disassembler called Hopper [11], we find that
Aerolink actually does not check whether the certificate used
for a learning response is indeed a recently used certificate.
For example, in N1, OBU 1 stores the fake certificate (i.e.,
ca1-h3) carried by the malicious learning response from the
attacker. Thus, during the preparation of the future learning
response, OBU 1 has two candidates, ca1 and ca1-h3, as
they have the same low-order three-byte hash. When receiv-
ing learning requests, OBU 1 always picks ca1-h3 and sends
it to OBU 2, which thus permanently prevents OBU 2 to learn
the correct certificate.

Second, to launch N1, we find that the attacker only needs
to send 3 malicious learning responses instead of 4. Be-
fore running real-world experiments, we first measure the
response threshold in Aerolink, and find that the threshold
set in Aerolink is actually 2 instead of 3 in the protocol speci-
fications. This finding is also confirmed using Hopper. In this
case, the attacker only needs to send 3 malicious responses
to succeed. Although this may not be a big improvement for
the attacker, it still uncovers an implementation choice in
Aerolink that is unexpectedly favorable to the attacker.

Third, we find that N2 only requires 3-byte hash collision
rather 8-byte hash collision, which largely lowers the bar of
launching N2. In P2PCD, by design, a CV device records an
unknown certificate by adding the identity of that certificate
(i.e., an 8-byte hash value) into a queue. If the 8-byte hash
of a certificate in an incoming learning response matches
with any entries in the queue, that entry will be removed. To
launch N2, the attacker has to intentionally cause the 8-byte
hash collision to let the victim CV device wrongly remove an
entry in the queue. However, according to our binary analysis
through Hopper, we find that Aerolink actually uses a 3-byte
hash of the unknown certificate to record its status. Therefore,
in our real-world experiments, we use ca1-h3 in N2, and the
results further validates this finding. Later in §7, we will show
why this small truncated hash (e.g., 3-byte hash) is not secure
enough. Although the protocol specification does not clearly
state how to record unknown certificates, Annex D in IEEE
1609.2 [32] gives an example of P2PCD implementation that
uses the 8-byte hash as the identity to record the unknown
certificate. Also, while recording the unknown certificate, the
most complete identity about the unknown certificate is the 8-
byte hash value. A CV network implementation should always
use complete information rather than truncated information.

6.2 RQ2: Attack Impact
The following two case studies demonstrate the impact of
identified attacks: (1) P2PCD attacks can lead to traffic ac-
cidents, which eliminates the benefits of V2V safety appli-
cations (e.g., Forward Collision Warning (FCW)); (2) PMP
attacks can affect the speed stability of the victim vehicle.

Simulator setup. To evaluate the impact of identified at-
tacks, we use a simulator, VENTOS (VEhicular NeTwork
Open Simulator) [69], so that we can demonstrate the driv-

(a) No collision, FCW (b) Collision

Figure 9: Relative distance between the leading vehicle (V1)
and the following vehicle (V2).

ing behavior under attacks. VENTOS is built upon SUMO
road traffic simulator [62] and OMNeT++ [51]/Veins [61, 68]
network simulator. These simulators [51, 62, 68] have been
widely used in academia, industry, and the government. We
configure it to use the models for the IEEE 802.11p [37] proto-
col for CV communication. Based on our reverse engineering
and study on Aerolink (§ 6.1), we port the digital signature
and P2PCD in IEEE 1609.2 to the simulator to secure BSMs
and PMP commands. All secured packets are then transmit-
ted through Wave Short Message Protocol (WSMP) and are
directly sent to the data-link layer which uses continuous
channel access based on IEEE 1609.4 [33].

Table 5: Vehicle parameters in the rear-end collision scenario.

Vehicles Initial Speed Max. Speed Max. Decel. Length

Leader (V1) 30 m/s 30 m/s 5 m/s2 10 m
Follower (V2) 20 m/s 30 m/s 2 m/s2 5 m

6.2.1 Safety Impact
By design, the CV safety application promises to increase
personal safety [63]. However, our experiment results show
that P2PCD attacks can fully eliminate the benefits of CV ap-
plications (e.g., Forward Collision Warning (FCW)), violating
the original goal of CV applications.

Rear-end collision scenario w/ FCW. We first set up a
rear-end collision scenario and demonstrate that vehicles with
Forward Collision Warning (FCW), a V2V safety application,
can avoid the accident (Figure 9a). The rear-end collision sce-
nario includes a leading vehicle (V1) and a following vehicle
(V2) with the initial parameters in Table 5. FCW alerts the
driver in order to help avoid the severity of crashes into the
rear end of other vehicles on the road [63]. We follow the
FCW’s design in Cohda SDK to actively monitor the distance
between two vehicles. Once the distance is smaller than the
safe distance, FCW will warn the driver. As FCW does not
directly control the vehicle, after receiving FCW warnings,
we ask the simulated vehicle to maintain a safe speed. No-
tably, we leverage Krauss car-following model [40], which is
collision-free, to calculate the safe distance and safe speed.

During the simulation, both vehicles drive in the same lane.
By exchanging BSMs, they can monitor each other’s speed,
position, and acceleration. The initial distance between two
vehicles is 30 m, which is smaller than the safe distance at
that time, thus triggering FCW. After starting the simulation

(a) Before attack (b) After attack

Figure 10: Speed profiles in A3 (split trigger attack).

for 10 s, V1 suddenly stops at the maximum deceleration
(i.e., 5 m/s2). Figure 9a shows that, before 10 s, V2 keeps
increasing the distance to the leading vehicle due to the FCW.
Therefore, after the leading vehicle suddenly decelerates, V2
has enough space to slow down safely.

Vehicles w/ FCW under attacks. Then, we place an at-
tacker on the roadside who follows § 5.1 to launch P2PCD
attacks and aims at causing traffic accidents, leading to a rear-
end collision shown in Figure 9b. At the beginning of the
simulation, both vehicles launch P2PCD to exchange certifi-
cates so that they can verify and process following BSMs.
However, P2PCD attacks prevent them from learning certifi-
cates, meaning that they cannot process any BSMs from the
peer vehicle. During the simulation, we observe that FCW
is never triggered, so V2 accelerates to the maximum speed
and follow V1. At 10 s, V1 starts decelerating at the maximum
deceleration (i.e., 5 m/s2). Since two vehicles are too close to
each other (i.e., 54 m), and the maximum deceleration of the
V2 is 2 m/s2, V2 eventually collides into the rear end of V1.

6.2.2 Traffic Efficiency Impact

By design, CACC aims at increase traffic throughput and im-
prove traffic flow stability [46, 57, 72]. However, A3 and A4
can interfere with the traffic flow stability, even without sacri-
ficing her own speed stability, which violates the design goals
of CACC. We place V1, the attacker, and V2 sequentially in
the same lane and follow the attack steps of A3 to run the sim-
ulation for 100 seconds. Figure 10 presents the speed profiles
of V2, the victim platoon. In the normal case (Figure 10a),
all vehicles will eventually reach a stable speed of 20 m/s;
after launching the attack starting around time 27 seconds, we
increase the standard deviation of V2’s speed by 43%, further
disturbing the following traffic.

6.3 RQ3: Performance of CVAnalyzer

Table 6 presents the runtime performance of CVAnalyzer. We
run CVAnalyzer on a server with four 2.60GHz (8-core) CPUs
and 128G memory. CVAnalyzer first explores all reachable
states and then verifies given properties. Notably, without
applying the state reduction, these two model checking tasks
will take too long to explore reachable states. The results
highlight the importance and effectiveness of state reduction.

Table 6: Runtime statistics of CVAnalyzer.
Attacks Distinct States Model Checking Duration

P2PCD 2209351 16s
PMP 142133161 1h 35min

7 Defense Proposals
Based on the discussions from previous sections, we propose
defense solutions at the protocol design level:

1. Mandate verification for all learning responses;
2. Increase the truncated hash size for the issuer field in the

certificate and the learning request field in SPDU;
3. Disallow unicast learning requests;
4. Bind the sender identity with the CV certificate;
5. Track platoon configuration data locally or remotely;
6. Design and integrate an error recovery mechanism.

Defense against N1 and N2. Solution 1 and 2 are proposed
for N1 and N2. Solution 1 by nature prevents N1 and N2 with
local certificates. However, such solution can be evaded if at-
tackers are still able to collect legitimately signed certificates
with the attacker-desired hash values by sniffing CV network
traffic. As estimated in Table 7, as long as the attacker can
collect over 12000 different certificates, she can almost guar-
antee (>98% probability) that she can always have a certificate
ready for triggering a 3-byte hash collision, which thus allow
her to still launch N1 and N2 in real time. Collecting this
many different certificates is completely realistic, considering
that such collection process can be done offline. In addition,
the collection process can also be greatly accelerated since
the attacker can actively broadcast learning requests to trigger
surrounding vehicles to return certificates with desired hash
values, and also can place multiple attack devices in different
locations to parallelize the collection process.

Table 7: Number of hash values needed for hash values of
n-bits to cause a hash collision probability at p.

Number of hash values (k)
Prob. of hash
collision (p)

Number of bits of the hash value (n)
24 64 80 256 512

0.5 4823 5.069 1.2912 4.0138 1.3677

0.99 12431 1.3010 3.3412 1.0339 3.5177

Solution 2 aims at increasing the difficulty of causing a hash
collision, the key enabler for N1 and N2. As shown in Table 7,
it will be much more difficult for the attacker either to compute
or to gather proper malicious learning responses. However,
this will increase the DSRC packet size and thus may decrease
the network performance, e.g., increasing network latency. We
have reached out to the protocol developer, and confirmed
that it is indeed a design choice to reduce the DSRC packet
size. Thus, when applying Solution 2, the new size of the
truncated hash type needs to be carefully chosen to balance
such trade-off between security and protocol performance.

From our discussion above, neither solution 1 or 2 can
fully eliminate the attack possibilities for N1 and N2. Thus,
to maximize the chance of preventing the attack in practice,
the best choice would be using them jointly.

Defense against N3 and N4. Solution 3 is proposed for N3
and N4, which thwarts both attacks by making it impossible
to unicast the malicious learning request to block the P2PCD
process. However, the down side is that this may break de-
signed usage of unicast-based learning request. For example,
as specified in IEEE 1609.0-2019 [36], CV applications will
decide whether to use either unicast or broadcast, while re-
ceiving advertised services. Systematically understanding this
trade off requires surveying and quantifying the demands of
unicast-based learning requests at the CV application level,
which we leave as future work.

Defense against A3. Solution 4 can prevent the attacker
from triggering the split maneuver at arbitrary positions, but
cannot stop her splitting succeeding platoon members. The
certificate defined in IEEE 1609.2 [12, 32] provides a unique
identity for each CV device. Safety-critical CV applications
like PMP should always use unique and secure identities (e.g.,
certificates) rather than using self-defined identity (e.g., depth
number), which is easily spoofed by the attacker. However,
the attacker can still send a LEAVE_REQ to split at the succeed-
ing vehicle and herself, which is a designed follower-leave
behavior. The attacker can then join back to the platoon and
launch the attack repeatedly. To completely address A3, we
may require the assistant of misbehavior detection [12]. For
example, a vehicle that keeps leaving and joining a platoon
is highly suspicious. Designing an effective misbehavior de-
tection requires comprehensively characterizing malicious
behaviors, which we leave as future work.

Defense against A4 and A15. Solution 5 aims at elimi-
nating wrong and inconsistent platoon information caused
by A4 and A15. In centralized PMP, a platoon leader is re-
sponsible for passing platoon configuration data to the new
leader, when it leaves the platoon. The new leader can only
accept the information from the old leader because it does not
store any platoon configuration data. The design goal of the
centralized PMP is to improve coordination efficiency and to
enhance privacy because followers dynamically enter and exit
the platoon [5]. However, the centralized design sacrifices
the security, as a malicious leader can provide wrong pla-
toon configuration data. To address A4 and A15, on one hand,
the platoon members can maintain a local copy of platoon
configurations. On the other hand, RSUs can also provide ser-
vices to remotely assist platoon members for tracking platoon
configurations and guarding PMP commands [1]. As RSUs
are often deployed and managed by trustworthy authorities,
platoon members can rely on the infrastructures to correct
wrong or inconsistent information.

Defense against A5-14. Solution 6 is straightforward and
proposed for all PMP block attacks. As we mentioned before,
CV applications should design their own error recovery mech-
anisms. With the error recovery mechanism, PMP should be
able to recover from continuous packet loss. For example,
PMP can define the retransmission and timeout threshold to
avoid hanging at specific states. Apart from the classic solu-

tion to communication failures, it’s worthing noting that PMP
should also adjust the intra-platoon spacing between the “of-
fline” member and the trailing platoon members accordingly
to avoid traffic collision. If necessary, the platoon leader can
dissolve the platoon and falls back to ACC mode.

8 Related Work
CV security analysis. Since the idea of VANET (i.e., the
original idea of CV) has been around for more than ten years,
many researches have already studied general threats to CV
network [4, 28, 29, 44, 55, 55, 73]. However, as discussed
in §1, existing works generally suffer from three limitations:
(1) rely on manual inspection to identify potential threats
[44, 55, 73], as opposed to automatic discovery in our work,
(2) focus on security properties such as integrity, confidential-
ity, and privacy, as opposed to availability in our work, and
(3) focus on prior generations of protocols or are conducted
before the standardization of IEEE 1609 [4, 29, 44, 55, 73],
as opposed to the latest version studied in our work.

Model checking security protocols. Model checking is a
mature formal verification technique for finite state concurrent
systems, and has been applied to several complex network
protocols [22, 26, 30, 48, 50]. These works aim at expos-
ing vulnerabilities in network protocols but does not consider
quantitative assessments. CVAnalyzer can finish the attack dis-
covery and the quantitative threat assessment without touch-
ing implementation details. Therefore, CVAnalyzer can be
used by the protocol designer to evaluate the correctness of the
protocol and also understand the severity of identified attacks,
which can further guide the design of mitigation solutions.
Also, this can largely minimize the cost to fix vulnerabilities,
as all problems can be solved at the early stage.

Secure membership management. For a wireless ad-hoc
network, a secure membership management system is nec-
essary. Usually, network nodes form a peer group to share
data with each other [49, 58, 76], and a group leader or other
trusted entity is responsible for membership management.
Wagner et al. [70] designed a decentralized blockchain-based
system membership management for the platoon, in which
each platoon member maintains a local copy of the blockchain,
storing platoon information; however, it has scalability issues.

Due to the high mobility, the latest CV network does not
form different communication groups, but adopts the digi-
tal signature (ECDSA), with the support of a PKI system,
SCMS [12], to secure the communication. Any CV devices
with valid certificates can broadcast data to others. To manage
membership, the recently deployed SCMS [12] introduces
misbehavior detection to identify malicious or malfunction-
ing members and then revoke their certificates. For our attacks,
the certificate revocation in existing SCMS cannot prevent
P2PCD attacks but can mitigate PMP attacks. The learning re-
sponse in N1 and N2 does not require any signing certificates,
so the certificate revocation cannot prevent the attacker from
launching these two attacks. In N3 and N4, the attacker can

always generate new syntax-valid certificates for the learning
request (i.e., an SPDU). Since the vehicle cannot distinguish
the self-generated certificates with unknown certificates, the
learning request field will still be processed. Unless the vehi-
cle can always connect to the PKI (through RSU) to check the
validity of unknown certificates, it is impossible to prevent the
attacker from using self-generated certificates in the current
CV network stack. Unfortunately, communication with the in-
frastructure may not always be present due to the deployment
difficulties. We admit that if the PKI supports the online cer-
tificate status check, with the infrastructure coverage increase,
the impact of P2PCD attacks will be diminished.

9 Conclusion
In this paper, we presents CVAnalyzer that harnesses the at-
tack discovery capability of the general model checker and
the quantitative threat assessment of the probabilistic model
checker to automate the analysis. CVAnalyzer successfully
detects 4 new DoS attacks in P2PCD and 15 attacks in PMP;
also, we construct practical exploits and validate them in a
real-world testbed. We have reported 4 P2PCD attacks to
IEEE 1609 Working Group [35] and received confirmations.
Also, we discuss the fundamental reasons for these vulnera-
bilities and propose effective mitigation solutions.

Future work. In the future, we would like to extend CVAn-
alyzer to verify more security properties, such as unlinkability.
Though we only inspect the availability property in this pa-
per, CVAnalyzer is actually general and can be extended to
improve the verification capabilities. On the other hand, CV-
Analyzer can be also extended to support other protocols in
the context of CV (e.g., SCMS [12]). Also, we would like to
improve the usability of CVAnalyzer. For example, we can
introduce an intermediate representation for the model that
can be automatically converted into the modeling language
used by different model checkers. Therefore, we do not need
to write the model twice for two different model checkers.

Acknowledgments
We would like to thank Yulong Cao, David Ke Hong, Yuru
Shao, and the anonymous reviewers for providing valuable
feedback on our work. This research was supported in part
by an award from Mcity at University of Michigan, and by
the National Science Foundation under grant CNS-1930041,
CNS-1526455, CNS-1850533 and CNS-1929771.

References

[1] A. Abdo, S. M. B. Malek, Z. Qian, Q. Zhu, M. Barth, and N. B. Abu-
Ghazaleh. Application level attacks on connected vehicle protocols. In
Proc. RAID, 2019.

[2] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle safety communications–
applications (vsc-a) final report. Technical report, 2011.

[3] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle Safety Communications–

Applications (VSC-A) Final Report: Appendix Volume 1 System De-
sign and Objective Test. Technical report, 2011.

[4] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Bro-
vold, G. Brown, L. Caminiti, et al. Vehicle Safety Communications–
Applications (VSC-A) Final Report: Appendix Volume 3 Security.
Technical report, 2011.

[5] M. Amoozadeh, H. Deng, C. Chuah, H. M. Zhang, and D. Ghosal.
Platoon management with cooperative adaptive cruise control enabled
by VANET. Vehicular Communications, 2015.

[6] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. Inf. Process. Lett., 1986.

[7] F. Bai and H. Krishnan. Reliability analysis of DSRC wireless commu-
nication for vehicle safety applications. In IEEE ITSC, 2006.

[8] D. A. Basin, C. Cremers, and C. A. Meadows. Model checking security
protocols. In Handbook of Model Checking. 2018.

[9] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stet-
tler. A formal analysis of 5g authentication. In Proc. ACM CCS, 2018.

[10] J. Bellardo and S. Savage. 802.11 denial-of-service attacks: Real
vulnerabilities and practical solutions. In Proc USENIX Security, 2003.

[11] V. Bénony. Hopper. https://www.hopperapp.com/, 2019.

[12] B. Brecht, D. Therriault, A. Weimerskirch, W. Whyte, V. Kumar,
T. Hehn, and R. Goudy. A security credential management system
for V2X communications. IEEE Trans. Intelligent Transportation
Systems, 2018.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
experimental analyses of automotive attack surfaces. In Proc. USENIX
Security, 2011.

[14] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Exposing
congestion attack on emerging connected vehicle based traffic signal
control. In Proc. NDSS, 2018.

[15] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Vulnerability
of Traffic Control System Under Cyber-Attacks Using Falsified Data.
In Transportation Research Board 2018 Annual Meeting (TRB), 2018.

[16] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In Proc. CAV, 2002.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on
the state explosion problem in model checking. In Informatics, 2001.

[18] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking
and the state explosion problem. In LASER Summer School on Software
Engineering, 2011.

[19] Cohda Wireless. Mk5 obu. https://tinyurl.com/y6qepj6h, 2019.

[20] C.-C. T. Committee. Dedicated short range communications (dsrc)
message set dictionaryTM set. SAE International, Mar. 2016.

[21] D. L. Dill. The murphi verification system. In Proc. CAV, 1996.

[22] M. Eian and S. F. Mjølsnes. A formal analysis of IEEE 802.11w
deadlock vulnerabilities. In Proc. IEEE INFOCOM, 2012.

[23] J. Erickson, S. Chen, M. Savich, S. Hu, and Z. M. Mao. Commpact:
Evaluating the feasibility of autonomous vehicle contracts. In Proc.
IEEE VNC, 2018.

[24] ETSI. Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON) Release 4; Protocol Framework Definition; Meth-
ods and Protocols for Security; Part 1: Threat Analysis. Technical
Specification ETSI, 2003.

[25] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade,
M. Lukuc, J. Simons, and J. Wang. Vehicle-to-Vehicle Communica-
tions: Readiness of V2V Technology for Application. Technical report,
2014.

[26] C. He and J. C. Mitchell. Analysis of the 802.11i 4-way handshake. In

Proc. WiSec, 2004.

[27] G. J. Holzmann. The model checker SPIN. Trans. Software Eng., 1997.

[28] H. Hsiao, A. Studer, C. Chen, A. Perrig, F. Bai, B. Bellur, and A. Iyer.
Flooding-resilient broadcast authentication for VANETs. In Proc. Mo-
biCom, 2011.

[29] Y. Hu, A. Perrig, and D. B. Johnson. Packet leashes: A defense against
wormhole attacks in wireless networks. In Proc. INFOCOM, 2003.

[30] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. Lteinspector:
A systematic approach for adversarial testing of 4g lte. In Proc NDSS,
2018.

[31] IEEE 1609 WG. Ieee standard for wireless access in vehicular environ-
ments (wave) - networking services. IEEE Std 1609.3-2010 (Revision
of IEEE Std 1609.3-2007), 2010.

[32] IEEE 1609 WG. IEEE Standard for Wireless Access in Vehicular
Environments–Security Services for Applications and Management
Messages. IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013),
2016.

[33] IEEE 1609 WG. Ieee standard for wireless access in vehicular envi-
ronments (wave) – multi-channel operation. IEEE Std 1609.4-2016
(Revision of IEEE Std 1609.4-2010), 2016.

[34] IEEE 1609 WG. Ieee standard for wireless access in vehicular environ-
ments (wave) – networking services. IEEE Std 1609.3-2016 (Revision
of IEEE Std 1609.3-2010), 2016.

[35] IEEE 1609 WG. 1609 WG - DSRC Working Group. https://
tinyurl.com/y2qju2t5, 2017.

[36] IEEE 1609 WG. Ieee guide for wireless access in vehicular environ-
ments (wave) architecture. IEEE Std 1609.0-2019 (Revision of IEEE
Std 1609.0-2013), 2019.

[37] IEEE 802.11 WG. Ieee standard for information technology– local and
metropolitan area networks– specific requirements– part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifications
amendment 6: Wireless access in vehicular environments. IEEE Std
802.11p-2010 (Amendment to IEEE Std 802.11-2007), 2010.

[38] IEEE 802.11 WG. Ieee standard for information technology–
telecommunications and information exchange between systems local
and metropolitan area networks–specific requirements part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifica-
tions. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007),
2012.

[39] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Ex-
perimental security analysis of a modern automobile. In Proc. IEEE
S&P, 2010.

[40] S. Krauß. Towards a unified view of microscopic traffic flow theories.
IFAC Proceedings Volumes, 1997.

[41] H. Krishnan and A. Weimerskirch. “verify-on-demand”-a practi-
cal and scalable approach for broadcast authentication in vehicle-to-
vehicle communication. SAE International Journal of Passenger Cars-
Mechanical Systems, 2011.

[42] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In Proc. CAV, 2011.

[43] L. Lamport. Real time is really simple. Microsoft Research, 2005.

[44] C. Laurendeau and M. Barbeau. Threats to security in DSRC/WAVE.
In Proc. ADHOC-NOW, 2006.

[45] J. Liu, D. Ma, A. Weimerskirch, and H. Zhu. Secure and Safe Auto-
mated Vehicle Platooning. IEEE Reliability Society, 2016.

[46] H. Mahmassani, H. Rakha, E. Hubbard, D. Lukasik, et al. Concept
development and needs identification for intelligent network flow op-
timization (inflo) : assessment of relevant prior and ongoing research.
Technical report, 2012.

https://www.hopperapp.com/
https://tinyurl.com/y6qepj6h
https://tinyurl.com/y2qju2t5
https://tinyurl.com/y2qju2t5

[47] H. Mahmassani, H. Rakha, E. Hubbard, D. Lukasik, et al. Concept
development and needs identification for intelligent network flow opti-
mization (inflo) : concept of operations. Technical report, 2012.

[48] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL
3.0. In Proc. USENIX Security, 1998.

[49] S. Mäki, T. Aura, and M. Hietalahti. Robust membership management
for ad-hoc groups. 2000.

[50] P. Narayana, R. Chen, Y. Zhao, Y. Chen, Z. Fu, and H. Zhou. Automatic
vulnerability checking of ieee 802.16 WiMAX protocols through TLA+.
In Proc. IEEE Workshop on NPSec, 2006.

[51] OMNeT++. Omnet++ simulator. https://omnetpp.org/, 2020.

[52] OnBoard Security. Aerolink secure vehicle communication. https:
//tinyurl.com/yaklyx47, 2019.

[53] OpenSSL. Openssl. https://www.openssl.org/, 2019.

[54] J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes in
vehicular networks: A survey. IEEE Comm. Surveys & Tutorials, 2015.

[55] J. Petit and S. E. Shladover. Potential cyberattacks on automated
vehicles. IEEE Trans. Intelligent Transportation Systems, 2015.

[56] PLEXE. The platooning extension for veins. plexe.car2x.org, 2019.

[57] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw, and H. Ni-
jmeijer. Design and experimental evaluation of cooperative adaptive
cruise control. In Proc. ITSC, 2011.

[58] M. K. Reiter, K. P. Birman, and L. Gong. Integrating security in a
group oriented distributed system. In Proc. IEEE S&P, 1992.

[59] S. Resch and M. Paulitsch. Using TLA+ in the development of a
safety-critical fault-tolerant middleware. In Proc. ISSRE, 2017.

[60] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R. L.
Cigno. Plexe: A platooning extension for veins. In Proc. VNC, 2014.

[61] C. Sommer, R. German, and F. Dressler. Bidirectionally coupled net-
work and road traffic simulation for improved IVC analysis. IEEE
Trans. Mob. Comput., 2011.

[62] SUMO. Simulation of Urban MObility. https://sumo.dlr.de, 2020.

[63] USDOT. Connected Vehicle Pilot Deployment Program. https:
//tinyurl.com/y29u9czy, 2019.

[64] USDOT. Intelligent Transportation Systems - Connected Vehicle Ba-
sics. https://tinyurl.com/yxjj98vr, 2019.

[65] USDOT. Intelligent Transportation Systems - Connected Vehicle Ba-
sics - DSRC. https://tinyurl.com/y5spr5cb, 2019.

[66] USDOT. Intelligent Transportation Systems - Connected Vehicle Pilot
Deployment Program. https://tinyurl.com/yy5u7am6, 2019.

[67] USDOT. ITS Standards Program | Standards Group. https://
tinyurl.com/yyzb8n4g, 2019.

[68] Veins. Vehicles in network simulation. https://veins.car2x.org/.

[69] VENTOS. Vehicular network open simulator. http://maniam.
github.io/VENTOS/, 2019.

[70] M. Wagner and B. McMillin. Cyber-physical transactions: A method
for securing vanets with blockchains. In IEEE PRDC, 2018.

[71] L. Walkin. ASN.1 Compiler. http://lionet.info/asn1c/, 2019.

[72] Z. Wang, G. Wu, and M. J. Barth. A review on cooperative adaptive
cruise control (CACC) systems: Architectures, controls, and applica-
tions. In Proc. ITSC, 2018.

[73] W. Whyte, J. Petit, V. Kumar, J. Moring, and R. Roy. Threat and
countermeasures analysis for WAVE service advertisement. In Proc.
IEEE ITSC, 2015.

[74] W. Wong, S. Huang, Y. Feng, Q. A. Chen, Z. M. Mao, and H. X. Liu.
Trajectory-Based Hierarchical Defense Model to Detect Cyber-Attacks
on Transportation Infrastructure. In Transportation Research Board
2018 Annual Meeting (TRB), 2019.

[75] Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifica-
tions. In Proc. CHARME, 1999.

[76] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE network,
1999.

A Attack Summary
N2 Request Mute Attack: This attack injects a malicious

learning response with the same HashedId8 value of ca1.
Thus, V2 chooses to remove the matching entry with the
HashedId8 value of ca1. V2 fails in sending a learning re-
quest because V2 wrongly thinks she has learned the unknown
certificate but not.

Learning response:
- h8(certs[0]) == h8(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

For cert in certs:
q.delete(h8(cert))

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack
Attack time

window

Notes:
- q: missing certificate queue
- h8(): get low-order 8-byte hash of the input

Figure 11: N2: the attacker can stop V2 from sending learning
requests to V1 by sending a malicious learning requests.

Assumptions. Similar to N1, we assume that V1 does not man-
date the verification for incoming learning responses. Also,
we assume that the attacker has enough computing power to
efficiently construct a learning response that can cause partial
hash collision (e.g., low-order 8 bytes collision).
Attack steps. As shown in Figure 11, V2 initializes P2PCD
after receiving a trigger SPDU from V1. V2 stores the
HashedId8 value of the unknown certificate ca1 in a queue.
Meanwhile, since the attacker can observe the trigger SPDU,
she constructs a malicious learning response, in which the
HashedId8 value of the first certificate in the payload matches
with the unknown certificate ca1. As defined in P2PCD, after
receiving a learning response, V2 extracts all certificates in the
learning response and stores them via AddCertificate. At
this time, V2 wrongly thinks that it has successfully learned
the unknown certificate but actually not. Thus, V2 removes the
entry of the unknown certificate h8(ca1) in the queue, where
h8 is a function to get the low-order eight-byte hash of the in-
put. As the queue becomes empty, V2 decides not to attach the
learning request in the next outgoing SPDU. Consequently,
V2 is unable to learn the correct unknown certificate.
Discussion. Similar to N1, N2 is also caused by the use of
truncated hash, and the attacker does not need to possess a
legitimate certificate. In IEEE 1609.2, the issuer field in a
certificate is a HashedId8 value. Therefore, on receiving the
trigger SPDU, the vehicle can only store the truncated hash
value in the queue. This opens a door for the partial hash col-
lision attack. Although HashedId8 is larger than HashedId3
and makes the attacker harder to find a hash collision, a re-
sourceful attacker (e.g., nation-states, terrorists) can always
have enough computing power to efficiently find the hash col-
lision. The attacker can even prepare these malicious learning

https://omnetpp.org/
https://tinyurl.com/yaklyx47
https://tinyurl.com/yaklyx47
https://www.openssl.org/
http://plexe.car2x.org
https://sumo.dlr.de
https://tinyurl.com/y29u9czy
https://tinyurl.com/y29u9czy
https://tinyurl.com/yxjj98vr
https://tinyurl.com/y5spr5cb
https://tinyurl.com/yy5u7am6
https://tinyurl.com/yyzb8n4g
https://tinyurl.com/yyzb8n4g
https://veins.car2x.org/
http://maniam.github.io/VENTOS/
http://maniam.github.io/VENTOS/
http://lionet.info/asn1c/

responses in an offline way. On the other hand, due to the
optional verfication of the learning response, it is still possible
that some poorly implemented CV protocols may not verify
the incoming learning response but just store them.

A4 Split Trigger Attack
Assumptions. We assume that the leader keeps the configura-
tions (e.g., platoon size, members) hidden from followers [5].
Attack steps. A4 requires the attacker to be the leader of the
victim platoon, which is consist of V1 and V2 sequentially.
After becoming the leader, the attacker immediately sends a
SPLIT_REQ to V1. At the last step of the split maneuver, the
attacker sends a SPLIT_DONE to V1, which contains necessary
platoon configuration data. Notably, the attacker can control
the optimal platoon size in SPLIT_DONE and sets it to 1. Since
V1, as a follower, does not store any platoon configurations, it
can only trust the attacker. However, the platoon size exceeds
the optimal platoon size; V1 thus initiates the split maneuver.
Most importantly, A4 leads to a chain reaction that V1 will
pass the wrong configuration to the last member in the victim
platoon (i.e., V2 in this case). Moreover, V1 and V2 will not
able to merge into other platoons or accept any incoming
merge requests, because there is no available space.

A5, A6 Merge Disruption Attack: The attacker initiates a
merge maneuver but does not faithfully complete the whole
procedure, so the victim platoon leader V1 is trapped at the
busy state and cannot switch back to the idle state. Therefore,
V1 cannot process any incoming messages.
Attack steps. In A5, the attacker first sends a MERGE_REQ to
V1. Since there exists available space in the victim platoon,
V1 will accept the request and send a MERGE_ACCEPT to the at-
tacker. In the normal case, V1 will wait for a MERGE_DONE
from the merge request initiator. However, the attacker
chooses not to send a MERGE_DONE; thus, V1 will keep waiting.

In A6, the attacker first utilizes A2 to join the victim pla-
toon. If V1 initiates a merge maneuver to join a front platoon
and receives a MERGE_ACCEPT, V1 will inform all the follow-
ers, including the attacker, to change their platoon leader by
sending CHANGE_PL to them. The attacker can either passively
wait for the happening of the merge maneuver or intentionally
trigger the merge maneuver of V1 by conducting the platoon
takeover attack (A1). As a malicious follower of V1, after
receiving a CHANGE_PL from V1, the attacker chooses not to
reply with an ACK. According to the merge FSM in [5], V1
will keep sending CHANGE_PL to the attacker if V1 does not
receive the corresponding ACK.

A8-9 Split Disruption Attack: A8 and A9 have the same
goal and consequence as A5 and A6, but have different attack
targets. They focus on vulnerabilities of the split maneuver.
Attack steps. In A8 and A9, the attacker first joins the pla-
toon, which is consist of V1 (leader) and V2 sequentially, by
launching A2 and acts as a malicious follower. In A8, V1 sends
a SPLIT_REQ to the attacker. After accepting the request, the
attacker does not respond to the following CHANGE_PL sent
by V1. Therefore, V1 will not be able to switch back to the

idle state. Differently, in A9, V1 sends a SPLIT_REQ to V2,
the splitting vehicle. After V2 accepting the split request and
acknowledging CHANGE_PL, V1 needs to inform the follower
behind the attacker to change the platoon leader. The attacker
can remain silent, keeping both V1 and V2 at the busy state.

A10 Follower Block Attack: This attack is the immediate
consequence of A1 and is more powerful than A5-9, because
this attack can block all vehicles in the victim platoon rather
than one or two of them. All members in the victim platoon
will be unable to respond any incoming platoon messages.
Attack steps. The attacker first takes over the victim pla-
toon. Then, she sends SPLIT_REQ to all her followers (i.e.,
V1 and V2). V1 and V2 accept the split request and reply with
SPLIT_ACCEPT. Following the protocol, the attacker sends
CHANGE_PL to V1 and V2. After that, the attacker can drive
away or keep silence; all followers thus will never receive
SPLIT_DONE from the attacker and keep sending ACK.

A11 Gap Attack: The basic idea of this idea is to prevent
the vehicle from “creating” enough space in the front of the
splitting vehicle during the leader/follower leave maneuver.
Attack steps. The attacker is the last follower in the victim
platoon and initiates a follower leave maneuver. V1 approves
the leave request sent by the attacker. Then, the attacker faith-
fully respond to SPLIT_REQ and CHANGE_PL from V1. To
make the attacker a free agent, V1 sends a SPLIT_DONE to
the attacker. Before the completion of the leave maneuver, V1
has to guarantee that there exists enough space at the front of
the attacker to perform lane change. If the attacker does not
send a GAP_CREATED, V1 will keep busy as it wrongly thinks
the leave maneuver is still on-going.

A12, A13 Leave Disruption Attack: A12 and A13 exploit
timers in the leader leave maneuver and the follower leave
maneuver respectively.
Attack steps. In A12, when the leader wants to leave the pla-
toon, its followers have to elect a new leader. The elected
leader then sends a ELECTED_LEADER to the old leader who
then hands over the leadership to the elected leader, by initi-
ating the leader leave maneuver and safely leave the platoon.
However, if the attacker is one of the followers (A2) and be-
comes the elected leader, she can choose not to respond. As
well, A10 can be used to mislead all followers to a busy state
in advance, so no followers can send ELECTED_LEADER to the
leader, blocking the leader leave maneuver.

In A13, a follower wants to leave the platoon and sends
a LEAVE_REQ to the leader; if no response is received from
the leader, the follower is unable to finish the follower leave
maneuver. The attacker can place herself at the position of
the leader through A1, and keep silent. On the other hand,
the attacker can utilize A5-9 to prevent the benign leader
from communicating with other followers. Thus, the victim
follower cannot finish the follower leave maneuver.

A14 Dissolve Disruption Attack: To make a follower un-
available, the attacker can either use A10 to block all followers
or join the victim platoon as a silent follower through A2.

	Introduction
	Technical Background
	CV Technology & Network Stack
	Platoon Management Protocol (PMP)

	Threat Model
	Analysis Methodology
	Model Construction
	Model Checking
	Implementation

	Analysis Results
	P2PCD Vulnerabilities
	Response Mute Attack
	Request Mute Attack
	Numb Attack
	Assessment

	PMP Vulnerabilities
	PMP Attack Prerequisites
	Split Trigger Attacks
	PMP Block Attacks
	Inconsistency Attack

	Evaluation
	RQ1: Practicality of Identified Attacks
	Testbed Setup and Tool Preparation
	Validation Results

	RQ2: Attack Impact
	Safety Impact
	Traffic Efficiency Impact

	RQ3: Performance of CVAnalyzer

	Defense Proposals
	Related Work
	Conclusion
	Attack Summary

