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Abstract
Localized adversarial patches aim to induce misclassification
in machine learning models by arbitrarily modifying pixels
within a restricted region of an image. Such attacks can be
realized in the physical world by attaching the adversarial
patch to the object to be misclassified, and defending against
such attacks is an unsolved/open problem. In this paper, we
propose a general defense framework called PatchGuard that
can achieve high provable robustness while maintaining high
clean accuracy against localized adversarial patches. The cor-
nerstone of PatchGuard involves the use of CNNs with small
receptive fields to impose a bound on the number of features
corrupted by an adversarial patch. Given a bounded number
of corrupted features, the problem of designing an adversarial
patch defense reduces to that of designing a secure feature
aggregation mechanism. Towards this end, we present our
robust masking defense that robustly detects and masks cor-
rupted features to recover the correct prediction. Notably, we
can prove the robustness of our defense against any adver-
sary within our threat model. Our extensive evaluation on
ImageNet, ImageNette (a 10-class subset of ImageNet), and
CIFAR-10 datasets demonstrates that our defense achieves
state-of-the-art performance in terms of both provable robust
accuracy and clean accuracy.1

1 Introduction

Machine learning models are vulnerable to evasion attacks,
where an adversary introduces a small perturbation to a test
example for inducing model misclassification [17, 50]. Many
prior attacks and defenses focus on the classic setting of ad-
versarial examples that have a small Lp distance to the benign
example [2, 7, 8, 17, 33, 35, 36, 41, 42, 50, 52, 56]. However, in
the physical world, the classic Lp setting may require global
perturbations to an object, which is not always practical. In
this paper, we focus on the threat of localized adversarial

1Our code is available at https://github.com/inspire-group/
PatchGuard for the purpose of reproducibility.

patches, in which the adversary can arbitrarily modify pixels
within a small restricted area such that the perturbation can
be realized by attaching an adversarial patch to the victim
object. Several effective patch attacks have been shown: 1)
Brown et al. [6] generate physical adversarial patches that can
force model predictions to be a target class of the attacker’s
choice; 2) Karmon et al. [22] propose the LaVAN attack in
the digital domain; 3) Eykholt et al. [15] demonstrate a robust
physical-world attack that attaches small stickers to a stop
sign for fooling traffic sign recognition.

The success of practical localized adversarial patches has
inspired several defenses. Digital Watermark (DW) [20] aims
to detect and remove the adversarial patch while Local Gradi-
ent Smoothing (LGS) [39] proposes smoothing the suspicious
region of pixels to neutralize the adversarial patch. How-
ever, these empirical defenses are heuristic approaches and
lack robustness against a strong adaptive attacker [9]. This
has led to the development of several certifiably robust de-
fenses. Chiang et al. [9] propose the first certified defense
against adversarial patches via Interval Bound Propagation
(IBP) [18, 38]. Zhang et al. [59] use a clipped BagNet (CBN)
to achieve provable robustness while Levine et al. [28] pro-
pose De-randomized Smoothing (DS) to further improve prov-
able robustness. These works have taken important steps to-
wards provably robust models. However, their performance
is still limited in terms of provable robustness and standard
classification accuracy (i.e., clean accuracy), leaving defenses
against adversarial patches an unsolved/open problem.

1.1 Contributions

In this paper, we propose a general defense framework called
PatchGuard that achieves substantial state-of-the-art provable
robustness while maintaining high clean accuracy against
localized adversarial patches.

Insight: Leverage CNNs with Small Receptive Fields.
The cornerstone of our defense framework involves the use of
Convolutional Neural Networks (CNNs) with small receptive
fields to impose a bound on the number of features that can

https://github.com/inspire-group/PatchGuard
https://github.com/inspire-group/PatchGuard


Figure 1: Overview of defense. The small receptive field bounds the number of corrupted features (one out of three vectors in this example).
The one corrupted feature (red vector) in this example has an abnormally large element that dominates the insecure aggregation (Σ) but also
leads to a distinct pattern from clean features. Our robust masking aggregation detects and masks the corrupted feature, recovering the correct
prediction from the remaining features. We note that robust masking can have false positives (FP) and incorrectly mask benign features, but we
show in Section 5 that our defense retains high clean accuracy and provable robust accuracy.

be corrupted due to an adversarial patch. The receptive field
of a CNN is the region of an input image that a particular
feature is influenced by, and model prediction is based on
the aggregation of features extracted from different regions
of an image. An example of the receptive field is shown as
the red box on the image in Figure 1. Our case study in Sec-
tion 3.1 demonstrates that a large receptive field makes CNNs
more vulnerable to adversarial patch attacks. For a model
with a large receptive field of 483×483 (ResNet-50 [21])
on ImageNet images [12], a small patch is present in the re-
ceptive field of most extracted features and can thus easily
change model prediction. A small receptive field, on the other
hand, limits the number of corrupted features, and we use it
as the fundamental building block of robust classifiers. We
note that a small receptive field is not a barrier to achieving
high clean accuracy. A ResNet-like architecture with a small
17×17 receptive field can achieve an AlexNet-level accuracy
for ImageNet top-5 classification [5]. The potential robust-
ness improvement, as well as the moderate accuracy drop,
motivates the use of small receptive fields in PatchGuard.

Insight: Leveraging Secure Aggregation & Robust
Masking. However, a small receptive field alone is not
enough for robust prediction since conventional models use
insecure feature aggregation mechanisms such as mean. The
use of small receptive fields turns the problem of designing an
adversarial patch defense into a secure aggregation problem,
and we propose robust masking as an effective instance of
secure feature aggregation mechanism. Figure 1 provides an
overview of our defense. The small receptive field ensures that
only a small fraction of extracted features are corrupted due to
an adversarial patch. The small number of corrupted features
forces the adversary to create abnormally large feature values
to dominate the final prediction, and robust masking aims to
detect and mask these abnormal features. Our empirical anal-
ysis demonstrates that removing a small number of features of
a clean image is unlikely to change model prediction. There-
fore, robust masking recovers the correct prediction with high
probability if all the corrupted features are masked.

Provable Robustness. Robust masking introduces a fun-
damental dilemma for the adversary: either to generate con-
spicuous malicious features that will be detected and masked
by our defense or to do with stealthy but ineffective adver-
sarial patches. In Section 4, we show that this dilemma leads
to a proof of provable robustness for our defense, provid-
ing the guarantee that the model can always recover correct
predictions on certified images against any adversarial patch
within the threat model. This is a stronger notion of robust-
ness compared with defenses that only detect the adversarial
attack [34, 35, 56]. We also show that PatchGuard subsumes
several existing defenses [28, 59] (as shown in Section 6.1),
and outperforms them due to the use of robust masking.

State-of-the-art Performance. We consider the strongest
adversarial patch attacker, who can place the adversarial patch
on any part of the image, including on top of salient objects.
We evaluate our provable defense against any patch attacker
on ImageNet [12], ImageNette [16], CIFAR-10 [23], and
shows that our defense achieves state-of-the-art performance
in terms of provable robustness and clean accuracy compared
to previous defenses [9, 28, 59]. Our main contributions can
be summarized as follows:

1. We demonstrate the use of a small receptive field as
a fundamental building block for robustness and lever-
age it to develop our general defense framework called
PatchGuard. PatchGuard is flexible and general as it is
compatible with any CNN with small receptive fields
and any secure aggregation mechanism.

2. We present robust masking as an instance of the secure
aggregation mechanism that leads to provable robust-
ness and recovers correct predictions for certified images
against any attacker within the threat model.

3. We comprehensively evaluate our defense across Ima-
geNet [12], ImageNette [16], CIFAR-10 [23] datasets,
and demonstrate state-of-the-art provable robust accu-
racy and clean accuracy of our defense.



2 Problem Formulation

In this section, we first introduce the image classification
model, followed by the adversarial patch attack and defense
formulation. Finally, we present important terminology used
in PatchGuard. Table 1 provides a summary of our notation.

2.1 Image Classification Model
We focus on Fully Convolutional Neural Networks (FCNNs)
such as ResNet [21], which use convolutional layers for fea-
ture extraction and only one additional fully-connected layer
for the final classification. This structure is widely used in
state-of-the-art image classification models [21, 47–49].

We use X ⊂ [0,1]W×H×C to denote the image space where
each image has width W , height H, number of channels C, and
the pixels are re-scaled to [0,1]. We take Y = {0,1, · · · ,N−
1} as the label space, where the number of classes is N. We
use M (x) : X → Y to denote the model that takes an image
x∈X as input and predicts the class label y∈Y . We let F (x) :
X →U be the feature extractor that outputs the feature tensor
u ∈U ⊂ RW ′×H ′×C′ , where W ′, H ′, C′ are the width, height,
and number of channels in this feature map, respectively.

2.2 Attack Formulation
Attack objective. We focus on evasion attacks against an
image classification model. Given a deep learning model M ,
an image x, and its true class label y, the goal of the attacker is
to find an image x′ ∈A(x)⊂ X satisfying a constraint A such
that M (x′) 6= y. The constraint A is defined by the attacker’s
threat model, which we will describe below. We note that the
attack objective of inducing misclassification into any wrong
class is referred to as an untargeted attack. In contrast, when
the goal is to misclassify the image to a particular target class
y′ 6= y, it is called a targeted attack. The untargeted attack is
easier to launch and thus more difficult to defend against. In
this paper, we focus on defenses against the untargeted attack.
Attacker capability. The attacker can arbitrarily modify pix-
els within a restricted region, and this region can be anywhere
on the image, even over the salient object. We assume that
all manipulated pixels are within a contiguous region, and
the defender has a conservative estimate (i.e., upper bound)
of the region size. We note that this matches the strongest
threat model used in the existing literature on certified de-
fenses against adversarial patches [9, 28, 59].2 Formally, we
use a binary pixel block p ∈ P ⊂ {0,1}W×H to represent
the restricted region, where the pixels within the region are
set to 1. Then, the constraint set A(x) can be expressed as
{x′=(1−p)�x+p�x′′|x,x′ ∈X ,x′′ ∈ [0,1]W×H×C,p∈P},
where � refers to the element-wise product operator, and x′′

2A high-performance provable defense against a single patch is currently
an open/unsolved problem and is thus the focus of our threat model. We will
discuss our defense extension for multiple patches in Appendix E.

Table 1: Table of notation

Notation Description

X ⊂ [0,1]W×H×C Image space
Y = {0,1, · · · ,N−1} Label space
U ⊂ RW ′×H ′×C′ Feature space
M (x) : X → Y Model predictor from x ∈ X
F (x) : X →U Local feature extractor for all classes
F (x, l) : X ×Y →U Local feature extractor for class l
P⊂ {0,1}W×H Set of binary pixel blocks in the image space
W ⊂ {0,1}W ′×H ′ Set of binary windows in the feature space

is the content of the adversarial patch. In this paper, we pri-
marily focus on the case where p represents one square region.
Our defense can generalize to other shapes and we defer ex-
perimental results for this to our technical report [55].

2.3 Defense Formulation
Defense objective. The goal of our defense is to design a
defended model D such that D(x) = D(x′) = y for any clean
data point (x,y) ∈ X ×Y and any adversarial example x′ ∈
A(x), where A(x) is the adversarial constraint introduced in
Section 2.2. Note that we aim to recover the correct prediction,
which is harder than merely detecting an attack.
Provable robustness. Previous works [7, 9, 52] have shown
that empirical defenses are usually vulnerable to an adaptive
white-box attacker who has full knowledge of the defense
algorithm, model architecture, and model weights; therefore,
we design PatchGuard as a provably robust defense [9, 10, 18,
28,38,59] to provide the strongest robustness. The evaluation
of provable defense is agnostic to attack algorithms and its
result holds for any attack considered in the threat model.

2.4 PatchGuard Terminology
Local feature and its receptive field. Recall that we use F
to extract feature map as u ∈ RW ′×H ′×C′ . We refer to each
1×1×C′-dimensional feature in tensor u as a local feature
since it is only extracted from part of the input image as
opposed to the entire image. We define the receptive field of
a local feature to be a subset of image pixels that the feature
ũ ∈ R1×1×C′ is looking at, or affected by. Formally, if we
represent the input image x as a set of pixels, the receptive
field of a particular local feature ũ is a subset of pixels for
which the gradient of ũ is non-zero, i.e., {r ∈ x|∇rũ 6= 0}. For
simplicity, we use the phrase “receptive field of a CNN" to
refer to “receptive field of a particular feature of a CNN".
Global feature and global logits. When the local feature
tensor u is the output of the last convolutional layer, conven-
tional CNNs use an element-wise linear aggregation (e.g.,
mean) over all local features to obtain the global feature in
RC′ . The global feature will then go through the last fully-
connected layer (i.e., classification layer) and yield the global
logits vector in RN for the final prediction (top of Figure 2).



Figure 2: Two equivalent ways of computing the global logits vector
(top: used in conventional CNNs; bottom: used in our defense).

Local logits. Similar to computing the global logits from the
global feature, we can feed each local feature (in R1×1×C′ ) to
the fully-connected layer to get the local logits (in R1×1×N).
Each local logits vector is the classification output based on
each local feature; thus, they share the same receptive field.
Concatenating all W ′ ·H ′ local logits vectors gives the local
logits tensor, and applying the element-wise linear aggrega-
tion gives the same global logits (bottom of Figure 2).
Local confidence, local prediction, and class evidence.
Based on local logits, we can derive the concept of local con-
fidence and local prediction tensor by feeding the local logits
tensor to a softmax layer and an argmax layer, respectively.
In the remainder of this paper, we specialize the concept of
feature by considering it to refer to either a logits tensor, a
confidence tensor, or a prediction tensor. In this case, we have
C′ = N. We also sometimes abuse the notation by letting
F (x, l) : X ×Y → RW ′×H ′ denote the slice of the feature
corresponding to class l. We call the elements of F (x, l) the
class evidence for class l.

3 PatchGuard

In this section, we first use an empirical case study to motivate
the use of small receptive fields and secure feature aggrega-
tion (i.e., robust masking). Next, we will give an overview of
our general PatchGuard framework, followed by our use of
networks with small receptive fields and details of our robust
masking based secure aggregation. The provable robustness of
this defense will be demonstrated and analyzed in Section 4.

3.1 Why are adversarial patches effective?

Previous work [6, 22] on adversarial patches, surprisingly,
shows that model prediction can be manipulated by patches
that occupy a very small portion of input images. In this sub-
section, we provide a case study for ResNet-50 [21] trained
on ImageNet [12], ImageNette (a 10-class subset of Ima-
geNet) [16], and CIFAR-10 [23] datasets and identify two
critical reasons for the model vulnerability. These will then
motivate the development and discussion of our defense.
Experiment setup. We take 5000 random ImageNet valida-
tion images and the entire validation sets of ImageNette and

Table 2: Percentage of incorrect predictions of ResNet-50

Dataset ImageNet ImageNette CIFAR-10
Patch size 3% pixels 3% pixels 3% pixels

Incorrect local pred. (attacked) 84.4% 56.4% 67.0%
Incorrect local pred. (original) 59.9% 15.3% 27.0%

Incorrect local pred. (difference) 24.5% 41.1% 40.0%
Incorrect global predictions 99.9% 99.1% 95.5%

Figure 3: Histogram of large local logits values for ImageNet adver-
sarial images (only positive values larger than 20 are shown).

CIFAR-10 for the case study. We use a patch consisting of
3% of the image pixels for an empirical attack. Further de-
tails about the attack setup and datasets are covered in our
technical report [55]. We extract the local logits (as defined
in Section 2.4) from adversarial images for further analysis.
Vulnerability I: the small adversarial patch appears in
the large receptive fields of most local features and is able
to manipulate the local predictions. In Table 2, we report
the percentage of incorrect local predictions of the adversarial
images (attacked) and clean images (original) as well as their
percentage difference. We can see that a small patch that
only takes up 3% of the image pixels can corrupt 24.5%
additional local predictions for ImageNet images, 41.1% for
ImageNette, and 40.0% for CIFAR-10. As shown in the table,
the large portion of incorrect local predictions finally leads
to a high percentage of incorrect global predictions. This
vulnerability mainly stems from the large receptive field of
ResNet-50. Each local feature of ResNet-50 is influenced
by a 483×483 pixel region in the input space (with zero
padding) [1]; therefore, even if the adversarial patch only
appears in a small restricted area, it is still within the receptive
field of many local features and can manipulate the local
predictions.3 This observation motivates the use of small
receptive fields: if the receptive field is small, it ensures that
only a limited number of local features can be corrupted by
an adversarial patch, and robust prediction may be possible.
Vulnerability II: the adversarial patch creates large ma-
licious local feature values and makes linear feature ag-
gregation insecure. In Figure 3, we plot the histogram of

3We note that a patch appearing in the receptive field of a local feature
does not necessarily indicate a successful local feature corruption. Each local
feature focuses exponentially more on the center of its receptive field (further
details are in Appendix B). When the adversarial patch is far away from the
center of the receptive field, its influence on the feature is greatly limited.



class evidence of the true class and the malicious class of the
adversarial images from ImageNet (we report similar results
for other two datasets in our technical report [55]). As we can
see from Figure 3, the adversarial patch tends to create ex-
tremely large malicious class evidence to increase the chance
of a successful attack. Conventional CNNs use simple linear
operations such as average pooling to aggregate all local fea-
tures, and thus are vulnerable to these large malicious feature
values. This observation motivates our development of robust
masking as a secure feature aggregation mechanism.

3.2 Overview of PatchGuard

In Section 3.1, we identified the large receptive field and
insecure aggregation of conventional CNNs as two major
sources of model vulnerability. In this subsection, we provide
an overview of our defense that tackles both problems.

Recall that Figure 1 provides an overview of our defense
framework. We consider a CNN M with small receptive fields.
The feature extractor F (x) produces the local feature tensor
u extracted from the input image x, where u can be any one of
the logits, confidence, or model prediction tensor. Our defense
framework is compatible with any CNN with small receptive
fields, and we will present two general ways of building such
networks in Section 3.3. The small receptive field ensures that
only a small fraction of features are corrupted by a localized
adversarial patch. However, the insecure aggregation of these
features via average pooling or summation might still result in
a misclassification. To address this vulnerability, we propose
a robust masking algorithm for secure feature aggregation.

In robust masking, we detect and mask the corrupted fea-
tures in the local feature tensor u = F (x). Since the number
of corrupted local features is limited due to the small receptive
field, the adversary is forced to create large feature values to
dominate the global prediction. These large feature values
lead to a distinct pattern and enable our detection of corrupted
features. Further, we empirically find that that model predic-
tions are generally invariant to the removal of partial features
(Section 5.3.1). Therefore, once the corrupted features are
masked, we are likely to recover the correct prediction y with
the remaining local features (right part of Figure 1). This
defense introduces a dilemma for the adversary: either to gen-
erate conspicuous malicious features that will be detected and
masked by our defense or to use stealthy but ineffective adver-
sarial patches. This fundamental dilemma enables provable
robustness. We will introduce the details of robust masking
in Section 3.4, and perform its provable analysis in Section 4.

3.3 CNNs with Small Receptive Fields

Our defense framework is compatible with any CNN with
small receptive fields.4 In this subsection, we discuss two

4The receptive field should be small compared with the input image size.

Figure 4: Effect of the convolution kernel size on the output receptive
field size (left: two convolutions with a kernel size of 3; right: two
convolutions with a kernel size of 1 and 3, respectively).

general ways to build such CNNs; our goal is to reduce the
number of image pixels that can affect a particular feature.
Building an ensemble model. One approach to design a net-
work with small receptive fields is to divide the original image
into multiple small pixel patches and feed each pixel patch to
a base model for separate classification. We can then build
an ensemble model aggregating the output of base models.
In this ensemble model, a local feature is the base model
output, which can be logits, confidence, or prediction. Since
the base model only takes a small pixel patch as input, each
local feature is only affected by a small number of pixels, and
thus the ensemble model has a small receptive field. We note
that as the image resolution becomes higher, the number of
all possible pixel patches increases greatly, which leads to a
huge training and testing computation cost of the ensemble
model. A natural approach to reduce the computation cost is
to do inference on a sub-sampled set of small pixel patches.
Using small convolution kernels. A more efficient approach
is to use small convolution kernels in conventional CNN ar-
chitectures. In Figure 4, we provide an illustration for 1-D
convolution computation with different kernel sizes. As we
can see, the output cell is affected by all 5 input cells when
using two convolutions with a kernel size of 3 (left) while
each output cell is only affected by 3 input cells when re-
ducing the size of one kernel to 1 (right). This logic extends
directly to the large CNNs used in practice by replacing large
convolution kernels with small kernels. Moreover, we can use
a convolution stride to skip a portion of small pixel patches
to reduce the computation cost. The modified CNN can be
regarded as an ensemble model from a subset of all possi-
ble pixel patches. With this formulation, we can efficiently
extract all local features with one-time model feed-forward
computation. In Section 5, we will instantiate both approaches
by adapting the implementation from Levine et al. [27] and
Brendel et al. [4] and compare their performance.
Remark: translation from images into features. The use
of CNNs with small receptive fields translates the adversarial
patch defense problem from the image space to the feature
space. That is, the problem becomes one of performing robust
prediction from the feature space where a limited-size con-
tiguous region is corrupted (due to a limited-size contiguous
adversarial patch in the image space). The security analysis in
the feature space (i.e., local logits, confidence, or prediction
tensor) is simplified due to the use of linear aggregation, in



contrast with the high non-linearity of CNN models if we di-
rectly analyze the input image. This observation enables our
robust masking technique as well as our provable analysis.

3.4 Robust Masking
Given that an adversarial patch can only corrupt a limited
number of local features with small receptive fields, the ad-
versary is forced to create a small region of abnormally high
feature values to induce misclassification. In order to detect
this corrupted region, we clip the feature values and use a slid-
ing window to find the region with the highest class evidence
for each of the classes. We then apply a mask to the suspected
region for each class so that the final classification is not in-
fluenced by the adversarial features. The defense algorithm is
shown in Algorithm 1.
Clipping. As shown in Algorithm 1, our defense will iterate
over all possible classes in Y . For each class ȳ, we first get
its corresponding clipped local feature tensor ûȳ from the
undefended model. We set the default values of the clipping
bounds to cl = 0,ch = ∞ for all feature types and datasets.
When the feature type is logits, we clip the negative values
to zero since our empirical analysis in Section 5.3.1 shows
that they contribute little to the correct prediction of clean
images but can be abused by the adversary to reduce the class
evidence of the true class. If the feature is a confidence tensor
or one-hot encoded prediction, it is unaffected by clipping,
since its values are already bounded in [0,1].
Feature windows. We use a sliding window to detect and
mask the abnormal region in the feature space. A window
is a binary mask in the feature space whose size matches
the upper bound of the number of local features that can be
corrupted by the adversarial patch. Formally, let p be the
upper bound of patch size in the threat model, r be the size
of receptive field, and s be the stride of receptive field, which
is the pixel distance between two adjacent receptive centers.
We can compute the optimal window size w as

w= d(p+r−1)/se (1)

This equation can be derived by considering the worst-case
patch location and counting the maximum number of cor-
rupted local features. A detailed derivation is in Appendix B.
We note that the window size is a tunable security parameter
and we use a conservative window size (computed with the
upper bound of the patch size) to make robust masking agnos-
tic to the actual patch size used in an attack. The implications
of using an overly conservative window size are discussed in
Section 5.3.2 and Appendix C. We represent each window
w with a binary feature map in {0,1}W ′×H ′ , where features
within the window have values of one.
Detection. We use the subprocedure DETECT to examine
the clipped local feature tensor ûȳ and detect the suspicious
region. DETECT takes the feature tensor ûȳ, the normalized
detection threshold T ∈ [0,1], and a set of sliding windows W

Algorithm 1 Robust masking

Input: Image x, label space Y , feature extractor F of model
M , clipping bound [cl ,ch], the set of sliding windows
W , and detection threshold T ∈ [0,1]. Default setting:
cl = 0,ch = ∞,T = 0.

Output: Robust prediction y∗

1: procedure ROBUSTMASKING
2: for each ȳ ∈ Y do
3: uȳ← F (x, ȳ) . Local feature for class ȳ
4: ûȳ← CLIP(uȳ,cl ,ch) . Clipped local features
5: w∗ȳ ← DETECT(ûȳ,T,W ) . Detected window
6: sȳ← SUM(ûȳ� (1−w∗ȳ)) . Applying the mask
7: end for
8: y∗← argmaxȳ∈Y (sȳ)
9: return y∗

10: end procedure

11: procedure DETECT(ûȳ,T,W )
12: w∗ȳ ← argmaxw∈W SUM(w� ûȳ) . Detection
13: b← SUM(w∗ȳ� ûȳ)/SUM(ûȳ) . Normalization
14: if b≤ T then
15: w∗ȳ ← 0 . An empty mask returned
16: end if
17: return w∗ȳ
18: end procedure

as inputs. To detect the malicious region, DETECT calculates
the sum of feature values (i.e., the class evidence) for class
ȳ within every possible window and identifies the window
with the highest sum of class evidence. If the normalized
highest class evidence exceeds the threshold T , we return the
corresponding window w∗ȳ as the suspicious window for that
class; otherwise, we return an empty window 0.
Masking. If we detect a suspicious window in the local fea-
ture space, we mask the features within the suspicious area
and calculate the sum of class evidence from the remaining
features as sȳ = SUM(ûȳ� (1−w∗ȳ)). After we calculate the
masked class evidence sȳ for all possible classes in Y , the
defense outputs the prediction as the class with largest class
evidence, i.e., y∗ = argmaxȳ∈Y (sȳ).

4 Provable Robustness Analysis

In this section, we provide provable robustness analysis for
our robust masking defense. For any clean image x and a given
model M , we will determine whether any attacker, with the
knowledge of our defense, can bypass the robust masking
defense. Recall that our threat model allows the adversarial
patches to be within one restricted region. Given this threat
model, all the corrupted features will also be within a small
window in the feature map space when using a CNN with
small receptive fields; we call this window malicious window.



Provable Robustness via an adversary dilemma. With the
robust masking defense, we put the adversary in a dilemma.
If the adversary wants to succeed in the attack, they need
to increase the class evidence of a wrong class. However,
increasing the class evidence will trigger our detection and
masking mechanism that reduces the class evidence. As a
result, this dilemma imposes an upper bound on the class
evidence of any class (sȳ in Line 6 of Algorithm 1), which
further enables provable robustness. In fact, we can first prove
the following lemma.

Lemma 1. Given a malicious window w ∈W , a class ȳ ∈ Y ,
the set of sliding windows W , the clipped and masked class
evidence of class ȳ (i.e., sȳ in Algorithm 1) can be no larger
than SUM(ûȳ� (1−w))/(1− T ) when setting cl = 0 and
T ∈ [0,1).

Proof. The goal of the adversary is to modify the content
within the malicious window w to bypass our defense. Let e be
the amount of class evidence within w and t = SUM(ûȳ�(1−
w)) be the class evidence outside w. Note that the adversary
has control over the value e but not t, and that the total class
evidence of the modified malicious feature tensor is now t +
e. Next, the subprocedure DETECT will take the malicious
feature tensor as input and detect a suspicious window w∗ȳ .
Finally, a mask is applied and the class evidence is reduced
to sȳ = t + e− e′, where e′ is the class evidence within the
detected window w∗ȳ . To obtain the upper bound of sȳ given a
specific malicious window w, we will determine the ranges
of e,e′ in four possible cases of the detected window w∗ȳ , as
illustrated in Figure 5.

1. Case I: the malicious window is perfectly detected. In
this case, we have w = w∗ȳ and thus e = e′. The class
evidence sȳ = t + e− e′ = t.

2. Case II: a benign window is incorrectly detected. In this
case, we have e′ = SUM(ûȳ�w∗ȳ). The adversary has the
constraint that e≤ e′; otherwise, the malicious window
w instead of w∗ȳ will be detected. Therefore, we have
sȳ = t + e− e′ ≤ t.

3. Case III: the malicious window is partially detected.
Let r1 = w∗ȳ � (1−w) be the detected benign region,
r2 = w∗ȳ�w be the detected malicious region, and r3 =
(1−w∗ȳ)�w be the undetected malicious region. Let
q1,q2,q3 be the class evidence within region r1,r2,r3,
respectively. We have e = q2+q3 and e′ = q1+q2. Simi-
lar to Case II, the adversary has the constraint that e≤ e′,
or q3 ≤ q1; otherwise, w instead of w∗ȳ will be detected.
Therefore, we have sȳ = t + e− e′ = t +q3−q1 ≤ t.

4. Case IV: no suspicious window detected. This case hap-
pens when the largest sum within every possible win-
dow does not exceed the detection threshold. We have
e/(e+ t) ≤ T , which yields e ≤ tT/(1− T ). We also

Figure 5: Illustrations for four cases of detected window w∗ȳ . The
clipped and masked class evidence satisfies sȳ = t +e−e′. For Case
I, II, III, we have e≤ e′ and therefore sȳ ≤ t. For Case IV, we have
e≤ tT/(1−T ),e′ = 0 and therefore sȳ ≤ t/(1−T ).

have e′ = 0 since no mask is applied. Therefore, the
class evidence satisfies sȳ = t + e ≤ t/(1− T ), where
T ∈ [0,1].

Combining the above four cases, we have the upper bound
of the target class evidence to be t/(1−T ) = SUM(ûȳ� (1−
w))/(1−T ).

Provable analysis. Lemma 1 shows that robust masking lim-
its the adversary’s ability to increase the malicious class evi-
dence. If the upper bound of malicious class evidence is not
large enough to dominate the lower bound of the true class
evidence, we can certify the robustness of our defense on a
given clean image. The pseudocode of our provable analysis
is provided in Algorithm 2. Next, we will explain our analysis
by proving the following theorem.

Theorem 1. Let cl = 0, T ∈ [0,1), w ∈W denote the sliding
windows whose sizes are determined by Equation 1, and A(x)
denote the adversary’s constraint as defined in Section 2.2. If
Algorithm 2 returns True for a given image x, our defense
in Algorithm 1 can always make a correct prediction on any
adversarial image x′ ∈ A(x).

Proof. Our provable analysis in Algorithm 2 iterates over
all possible windows w ∈W and all possible target classes
y′ ∈ Y ′ = Y \ {y} to derive provable robustness for the un-
targeted attack with a patch at any location. For each possi-
ble malicious window w, Algorithm 2 determines the upper
bound of the class evidence of each target class (Line 3-6)
and the lower bound of the class evidence of the true class
(Line 7-9).

For each target class y′, we can apply Lemma 1 and get the
upper bound sy′ = SUM(ûy′ � (1−w))/(1−T ).

For the true class y, the optimal attacking strategy is to
set all true class evidence within the malicious window w to
cl = 0. Note that the true class evidence within the detected
window w∗y (if any) will be masked. Therefore, the lower
bound sy is equivalent to removing class evidence within w
and w∗y , i.e., sy = SUM(ûy� (1−w)� (1−w∗y)).

The final step is to compare the upper bound of target class
evidence sy′ with the lower bound of true class evidence sy.



Algorithm 2 Provable analysis of robust masking

Input: Image x, true class y, wrong label set Y ′ = Y \{y},
feature extractor F of model M , clipping upper bound
ch, the set of sliding windows W , detection threshold T .

Output: Whether the image x has provable robustness
1: procedure PROVABLEANALYSISMASKING
2: for each w ∈W do

. Upper bound of target class evidence
3: for each y′ ∈ Y ′ do
4: ûy′ ← CLIP(F (x,y′),0,ch)
5: sy′ ← SUM(ûy′ � (1−w))/(1−T )
6: end for

. Lower bound of true class evidence
7: ûy← CLIP(F (x,y),0,ch)
8: w∗y ← DETECT(ûy� (1−w),W ,T )
9: sy← SUM(ûy� (1−w)� (1−w∗y))

. Feasibility of an attack
10: if maxy′∈Y ′(sy′)> sy then
11: return False
12: end if
13: end for
14: return True
15: end procedure

If the condition maxy′∈Y ′(sy′) > sy is satisfied, we assume
an attack is possible and the algorithm returns False. On
the other hand, if Algorithm 2 checks all possible malicious
windows w ∈W for all possible target classes y′ ∈ Y ′ and
does not return False in any case, this means our defense on
this clean image has provable robustness against any possible
patch and can always make a correct prediction.

Provable adversarial training. We note that our provable
analysis can be incorporated into the training process to im-
prove provable robustness. We call this “provable adversarial
training" and will discuss its details in Appendix A.

5 Evaluation

In this section, we provide a comprehensive evaluation of
PatchGuard. We report the provable robust accuracy of our
defense (obtained from Algorithm 2 and Theorem 1) on the
ImageNet [12], ImageNette [16], and CIFAR-10 [23] datasets
for various patch sizes. We instantiate our defense with mul-
tiple different CNNs with small receptive fields and com-
pare their performance with previous provably robust de-
fenses [9, 28, 59]. We also provide a detailed analysis of our
defense performance with different settings.

5.1 Experiment Setup
Datasets. We report our main provable robustness results on
the 1000-class ImageNet [12], 10-class ImageNette [16], and

10-class CIFAR-10 [23] datasets. ImageNet and ImageNette
images have a high resolution and were resized and cropped to
224×224 or 299×299 before being fed into different models
while CIFAR-10 images have a lower resolution of 32×32.
CIFAR-10 images are rescaled to 192×192 before being fed
to BagNet. Further details are in our technical report [55].

Models. As discussed in Section 3.3, we have two general
ways to build a network with small receptive fields. In our
evaluation, we instantiate the ensemble approach using a
de-randomized smoothed ResNet (DS-ResNet) [28], and the
small convolution kernel approach using BagNet [5]. The
DS-ResNet [28] takes a rectangle pixel patch, or a pixel band,
as the input of its base model and uses prediction majority vot-
ing for the ensemble prediction. In contrast, our defense uses
robust masking for aggregation. The BagNet [5] architecture
replaces a fraction of 3×3 convolution kernels of ResNet-50
with 1×1 kernels to reduce the receptive field size. It was
originally proposed in the context of interpretable machine
learning while we use this model for provable robustness
against adversarial patch attacks.
We analyze performance of ResNet-50, BagNet-33, BagNet-
17, BagNet-9, and DS-25-ResNet-50. These 5 models have a
similar network structure but have different receptive fields
of 483×483, 33×33, 17×17, 9×9, and 25×299, respectively.
For CIFAR-10, we additionally include a DS-ResNet-18 with
a band size of 4 (DS-4-ResNet-18). Model training details are
in our technical report [55].

Defenses. We report the defense performance of our robust
masking defense with the BagNet (Mask-BN) and with the
DS-ResNet (Mask-DS). We also compare with the exist-
ing Clipped BagNet (CBN) [59], De-randomized Smoothing
(DS) [28] and Interval Bound Propagation based certified
defense (IBP) [9]. The default settings of our defense are
listed in Table 3. Note that for PatchGuard, we use the same
set of parameters (i.e., cl ,ch,T ) for all datasets and models.
For previous defenses, we use the optimal parameter settings
obtained from their respective papers.

Attack Patch Size. For ImageNet and ImageNette, we ana-
lyze our defense performance against a single square adver-
sarial patch that consists of up to 1%, 2%, or 3% pixels of
the images. For CIFAR-10, we report results for a patch con-
sisting of 0.4% or 2.4% of the image pixels. In Appendix F,
we analyze the defense performance against larger patches to
understand the limits of PatchGuard.

Table 3: Default defense settings for Mask-BN and Mask-DS

Setting Feature Parameters

Mask-BN on ImageNet(te) BagNet-17 logits
cl = 0
ch = ∞

T = 0

Mask-BN on CIFAR-10 BagNet-17 logits

Mask-DS on ImageNet(te) DS-25-ResNet-50 confidence
Mask-DS on CIFAR-10 DS-4-ResNet-18 confidence



Table 4: Clean and provable robust accuracy for different defenses

Dataset ImageNette ImageNet CIFAR-10

Patch size 1% pixels 2% pixels 3% pixels 1% pixels 2% pixels 3% pixels 0.4% pixels 2.4% pixels

Accuracy clean robust clean robust clean robust clean robust clean robust clean robust clean robust clean robust

Mask-BN 95.2 89.0 95.0 86.7 94.8 83.0 55.1 32.3 54.6 26.0 54.1 19.7 84.5 63.8 83.9 47.3
Mask-DS 92.3 83.1 92.1 79.9 92.1 76.8 44.1 19.7 43.6 15.7 43.0 12.5 84.7 69.2 84.6 57.7

IBP [9] computationally infeasible 65.8 51.9 47.8 30.8
CBN [59] 94.9 74.6 94.9 60.9 94.9 45.9 49.5 13.4 49.5 7.1 49.5 3.1 84.2 44.2 84.2 9.3
DS [28] 92.1 82.3 92.1 79.1 92.1 75.7 44.4 17.7 44.4 14.0 44.4 11.2 83.9 68.9 83.9 56.2

5.2 Provable Robustness Results

In this subsection, we present provable robustness results for
our defense (computed with Algorithm 2 and Theorem 1);
the results hold for any attack within the corresponding patch
size constrain. We also compare PatchGuard with previous
provably robust defenses [9, 28, 59].
PatchGuard achieves high provable robustness across dif-
ferent models and datasets. We report the provable robust
accuracy of PatchGuard across different models, patch sizes,
and datasets in Table 4. First, both Mask-BN and Mask-DS
achieve high provable robustness. For example, against a 1%
pixel patch on the 10-class ImageNette dataset, Mask-BN has
a provable robust accuracy of 89.0% while Mask-DS has that
of 83.1%. This implies that for 89.0% and 83.1% of the im-
ages from the respective test sets, no attack using a 1% pixel
patch can succeed. Second, PatchGuard has high provable
robustness across different datasets. Even for the extremely
challenging 1000-class ImageNet dataset, Mask-BN achieves
a non-trivial provable robust accuracy of 32.3% for the 1%
pixel patch. The provable robust accuracy increases to 54.8%
if we consider the top-5 classification task (more details for
the top-k analysis are in Appendix D).
PatchGuard also maintains high clean accuracy. As
shown in Table 4, PatchGuard retains high clean accuracy.
For a 1% pixel patch, Mask-BN has a 95.2% clean accuracy
on ImageNette and 55.1% on ImageNet. Mask-DS also has
a 92.3% clean accuracy on ImageNette and 44.1% on Ima-
geNet. For a 2.4% pixel patch on CIFAR-10, Mask-BN and
Mask-DS have a high clean accuracy of 83.9% and 84.6%, re-
spectively. In Table 5, we report the clean accuracy of ResNet
and BagNet. We can see that the clean accuracy drop of Mask-
BN and Mask-DS on ImageNette compared with undefended
ResNet is within 7.5%. The accuracy drop of Mask-BN from
the undefended BagNet is within 1%.5

We note that we use the optimal mask window sizes for
different estimated upper bounds of patch sizes, and there-
fore the clean accuracy for different patches varies slightly
in Table 4. We will show a similarly high performance of
our defense when using an over-conservatively large mask
window size in Section 5.3.2.

5BagNet alone does not have any provable robustness but acts as a build-
ing block for the provable defense of PatchGuard.

Table 5: Clean accuracy of ResNet and BagNet for different datasets

Dataset ImageNette ImageNet CIFAR-10

ResNet 99.6% 76.1% 97.0%
BagNet 95.9% 56.5% 85.4%

PatchGuard achieves higher provable robust accuracy
than all previous defenses. We compare our defense per-
formance with existing defenses across three datasets.

Comparison with IBP [9]. IBP is too computationally ex-
pensive and does not scale to high-resolution images like
ImageNette and ImageNet. We thus only compare its perfor-
mance with PatchGuard on CIFAR-10. As shown in Table 4,
both Mask-BN and Mask-DS significantly outperform IBP in
terms of provable robust accuracy and clean accuracy.

Comparison with CBN [59]. Table 4 shows that both Mask-
BN and Mask-DS have higher provable robust accuracy than
CBN across three datasets. The clean accuracy of Mask-BN is
higher or comparable with that of CBN, but its provable robust
accuracy is much higher. For example, against a 3% pixel
patch on ImageNette, Mask-BN (94.8%) has a similar clean
accuracy as CBN (94.9%), but its provable robust accuracy is
37.1% higher!

Comparison with DS [28]. Both Mask-BN and Mask-
DS have better defense performance than DS on the high-
resolution ImageNette and ImageNet datasets. For example,
against a 1% pixel patch on ImageNet, Mask-BN has a 10.7%
higher clean accuracy and a 14.6% higher provable robust
accuracy compared with DS. On CIFAR-10, Mask-DS out-
performs DS in terms of clean accuracy and provable robust
accuracy thanks to the robust masking defense.

Takeaways. Our evaluation shows the effectiveness of our
proposed defenses, achieving state-of-the-art provable robust-
ness on all three datasets. We find that BagNet-based defenses
(Mask-BN and CBN) perform well on ImageNette and Im-
ageNet but are fragile on CIFAR-10 due to the low image
resolution. Meanwhile, De-randomized Smoothing based de-
fenses (Mask-DS and DS) perform better on CIFAR-10. This
shows that while the robust masking defense always improves
robustness, the choice of which model to use (Mask-BN or
Mask-DS) depends on the dataset.



Table 6: Effect of logits clipping values on vanilla models

(cl ,ch) (−∞,∞) (0,∞) (0,50) (0,15) (0,5)

ResNet-50 99.6% 99.5% 99.5% 99.5% 99.0%
BagNet-33 97.2% 97.1% 97.0% 95.8% 94.1%
BagNet-17 95.9% 95.5% 94.7% 92.3% 87.9%
BagNet-9 92.5% 92.5% 91.4% 85.4% 73.8%

Table 7: Invariance of BagNet-17 predictions to feature masking

Window size 0×0 2×2 4×4 6×6 8×8

Masked accuracy 95.9% 95.9% 95.9% 95.8% 95.7%
% images 4.1% 5.1% 6.1% 7.3% 8.5%

% windows per image 0% 0.05% 0.2% 0.4% 0.7%

5.3 Detailed Analysis of PatchGuard
In this subsection, we analyze the behavior of vanilla (unde-
fended) models, PatchGuard with different parameters, and
defense efficiency on the ImageNette dataset. We will only
report results for Mask-BN when the observations from Mask-
BN and Mask-DS are very similar. A similar analysis for
CIFAR-10 is available in our technical report [55].

5.3.1 Analysis of Vanilla models

Recall that PatchGuard’s robust prediction relies on clipping
feature values as well as robust masking. Here, we show that
vanilla models only have a small performance loss due to
clipping and feature masking, which explains the high clean
accuracy retained by PatchGuard.
Clipping has a small impact on vanilla models. In this anal-
ysis, we vary the clipping value for the local logits for ResNet
and BagNet to determine how the clean accuracy changes,
and the results are shown in Table 6. We find that clipping
the negative values only slightly affects the clean accuracy
(cl = 0,ch = ∞ is our default setting). When we decrease the
positive clipping value ch, the clean accuracy of the model
also decreases. We notice that models with smaller receptive
fields are more sensitive to clipping. This is because models
with small receptive fields only have a small number of cor-
rect local predictions. The corresponding correctly predicted
local logits have to use large logits values to dominate the
global prediction, which leads to the sensitivity to clipping.
As shown in Figure 3, the logits of the adversarial images tend
to have large values. If we set ch to the largest clean logits
value, we will not affect the clean accuracy and can improve
the empirical robustness against the adversarial patch.
Vanilla models are generally prediction-invariant to fea-
ture masking. In our robust masking defense, we detect and
mask corrupted features. If the model can make correct pre-
dictions from the aggregation of the remaining features, we
can recover the correct prediction. We use BagNet-17, which
has 26 ·26 local features, to analyze the prediction invariance
of vanilla models to partial feature masking. We mask out all
class evidence within a set of sliding windows of different

Table 8: Effect of receptive field sizes on provable robust accuracy

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Mask-BN-33 96.5% 88.9% 96.3% 86.0% 96.3% 82.1%
Mask-BN-17 95.2% 89.0% 95.0% 86.7% 94.8% 83.0%
Mask-BN-9 92.1% 85.5% 91.8% 82.8% 91.5% 79.8%

Table 9: Effect of detection thresholds on Mask-BN-17

Clean accuracy Provable accuracy Detection FP

T-0.0 95.0% 86.7% 100%
T-0.2 94.2% 79.9% 22.9%
T-0.4 95.3% 68.0% 0.7%
T-0.6 95.5% 38.7% 0.05%
T-0.8 95.5% 6.2% 0%
T-1.0 95.5% 0% 0%

sizes and record the prediction from the remaining features.
We report the average accuracy over all possible masked fea-
ture tensors (masked accuracy), the percentage of images for
which at least one masked prediction is incorrect (% images),
and the averaged percentage of masks that will cause pre-
diction change for each image (% windows per image).6 As
shown in Table 7, the overall average masked accuracy is
high, and the percentage of images and windows for which
the prediction changes is low. Such a small fraction of images
with prediction changes enables us to achieve high provable
robustness and maintain clean accuracy.

5.3.2 PatchGuard with Different Parameters

The receptive field size balances the trade-off between
clean accuracy and provable robust accuracy of defended
models. We report clean accuracy and provable robust accu-
racy of our defense with BagNet-33, BagNet-17, and BagNet-
9, which have a receptive field of 33×33, 17×17, and 9×9,
respectively, against different patch sizes in Table 8. As shown
in the table, a model with a larger receptive field has better
clean accuracy. However, a larger receptive field results in
a larger fraction of corrupted features and thus a larger gap
between clean accuracy and provable robust accuracy. We can
see that though Mask-BN-33 has a higher clean accuracy than
Mask-BN-17, its gap between clean accuracy and provable
robust accuracy is larger, which results in a similar or slightly
poorer provable robust accuracy compared with Mask-BN-17.
The trade-off between the clean accuracy and the robustness
can be tuned with different receptive field sizes and should be
carefully balanced when deploying the defense.
A large detection threshold improves clean accuracy but
decreases provable robust accuracy of defended models.
We study the model performance of BagNet-17 against a 2%

6We note that “% images" presented in Table 7 is an upper bound for our
robust masking in Algorithm 1 because robust masking masks the window
with the highest class evidence for each class while this analysis only removed
wrong class evidence within the same window as the true class.



Table 10: Effect of feature types on Mask-BN-17

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Logits 95.2% 89.0% 95.0% 86.7% 94.8% 83.0%
Confidence 87.9% 80.5% 87.9% 77.9% 88.0% 74.4%
Prediction 85.7% 77.3% 85.8% 74.1% 85.9% 70.3%

Table 11: Effect of feature types on Mask-DS

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Logits 92.4% 76.9% 92.1% 68.9% 91.9% 61.6%
Confidence 92.3% 83.1% 92.1% 79.9% 92.1% 76.8%
Prediction 91.9% 82.5% 91.8% 79.4% 91.7% 76.4%

pixel patch as we change the detection threshold T from 0.0
to 1.0. A threshold of zero means our detection will always
return a suspicious window even if the input is a clean im-
age while a threshold of one means no detection at all. We
report the clean accuracy, provable robust accuracy, and false
positive (FP) rates for detection of suspicious windows on
clean images in Table 9. As we increase the detection thresh-
old T , we reduce the FP rate for clean images, at the cost of
making it easier for an adversarial patch to succeed via Case
IV (no suspicious window detected). However, we note that
false positives in the detection phase for clean images have
a minimal impact on the clean accuracy because our models
are generally invariant to feature masking, as already shown
in Table 7. Thus, we find T = 0 to be the best choice for this
dataset (even with an FP of 100%); it results in the highest
provable robust accuracy of 86.7% while only incurring a
0.5% clean accuracy drop compared to T = 1.
Different feature types greatly influence the performance
of defended models. In this analysis, we study the perfor-
mance of the robust masking defense when using different
types of features, namely logits, confidence values, and predic-
tions. The results for Mask-BN-17 with different features are
reported in Table 10. As shown in the table, using logits as the
feature type has much better performance than confidence and
prediction in terms of clean accuracy and provable accuracy.
The main reason for this observation is that BagNet is trained
with logits aggregation. Our additional analysis shows that
BagNet does not have high model performance when trained
with confidence or prediction aggregation; therefore, we use
logits as our default feature type for Mask-BN. Interestingly,
Mask-DS exhibits a different behavior. As shown in Table 11,
Mask-DS works better when we use prediction or confidence
as feature types due to its different training objectives. In
conclusion, the performance of different feature types largely
depends on the training objective of the network with small
receptive fields, and should be appropriately optimized to
determine the best defense setting.
Over-conservatively large masks only have a small im-
pact on defended models. PatchGuard’s robust masking is

Table 12: Effect of over-conservatively large masks on Mask-BN-17

mask
patch clean 1% pixels 2% pixels 3% pixels

1% pixels 95.2% 89.0% – –
2% pixels 95.0% 88.2% 86.7% –
3% pixels 94.8% 87.1% 85.3% 83.0%

4.5% pixels 94.6% 86.0% 84.1% 81.8%

CBN [59] 94.9% 74.6% 60.9% 45.9%
DS [28] 92.1% 82.3% 79.1% 75.7%

Table 13: Per-image inference time of different models

Model ResNet-50 BagNet-17 DS-25-ResNet Mask-BN Mask-DS

Time 11.8ms 12.1ms 387.9ms 16.6ms 404.4ms

deployed in a manner that is agnostic to the patch size by
selecting a large mask window size that matches the upper
bound of the patch size. In this analysis, we study the model
performance when an over-conservatively large mask is used.
Note that the provable robustness obtained with a larger mask
for a larger patch can be directly applied to a smaller patch
(e.g., an image that is robust against a 3% pixel patch is also
robust against a 1% pixel patch). However, we can certify
the robustness for more images when the actual patch size is
smaller than the mask size (Appendix C).

We report the provable robust accuracy and clean accu-
racy of Mask-BN-17 with different patch sizes and attack-
agnostic mask sizes in Table 12. First, robust masking with
a larger mask can have a tighter provable robustness bound
for a smaller patch. For example, when using a 3% pixel
mask, the provable analysis in Algorithm 2 can only certify
the robustness of 83.0% of test images for any patch size
smaller than 3%. In contrast, the tighter provable analysis
from Appendix C leads to a provable robust accuracy of
87.1% (4.1% improvement) for a 1% pixel patch. Second,
over-conservatively using a larger mask size only leads to a
slight drop in clean accuracy and provable robust accuracy.
As we increase the mask size, the clean accuracy for 1% pixel
patch only drops from 95.2% to 94.6% and the provable ro-
bust accuracy drops from 89.0% to 86.0%. We note that even
when the mismatch is large (a 4.5% pixel mask for a 1% pixel
patch), our defense still outperforms DS [28].

5.3.3 Defense Efficiency

Robust masking only introduces a small defense over-
head. In Table 13, we report the per-image inference time of
different models on the ImageNette validation set. As shown
in the table, the inference time of Mask-BN (16.6ms) is close
to that of BagNet-17 (12.1ms). We have a similar observation
for Mask-DS (404.4ms) and DS-25-ResNet (387.9ms).
BagNet-like models (e.g., Mask-BN) are more efficient
than DS-like models (e.g., DS and Mask-DS). As discussed
in Section 3.3, using an ensemble model (e.g., DS-ResNet) is



computationally expensive compared with using small convo-
lution kernels in conventional CNNs (e.g., BagNet). From Ta-
ble 13, we can see the inference time of BagNet-17 (12.1ms)
much smaller than that of DS-25-ResNet (387.9ms). This
difference leads to a huge efficiency gap between Mask-BN
(16.6ms) and Mask-DS (404.4ms) as well as DS (387.9ms).
Therefore, we suggest using small convolution kernels to build
models with small receptive fields when the two approaches
have similar defense performance.

6 Discussion

6.1 Generalization of Related Defenses
In this subsection, we will show that our defense framework
is a generalization of other provably robust defenses such as
Clipped BagNet [59], De-randomized Smoothing [28].
Clipped BagNet (CBN). CBN [59] proposes clipping the
local logits tensor with function CLIP(u) = tanh(0.05 ·u−1)
to improve the robustness of BagNet [5]. Since the range
of tanh(·) is bounded by (−1,1), the adversary can achieve
at most 2k difference in clipped logits values between the
true class and any other class, where k is the number of cor-
rupted local logits due to the adversarial patch. In its provable
analysis, CBN calculates the difference between the sum of
unaffected logits values for the predicted class and the second
predicted class as δ; if δ > 2k, CBN certifies the robustness
of the input clean image. To reduce our Mask-BN defense
to CBN, we can set our feature type to logits, the detection
threshold to T = 1 (i.e., no detection), and adjust the clip-
ping values cl and ch or the clipping function CLIP(·). Our
evaluation shows that our defense significantly outperforms
CBN across three different datasets. There are two major
reasons for this performance difference: 1) CBN retains the
malicious feature values while PatchGuard detects and masks
them; 2) CBN uses conventional training while PatchGuard
uses provable adversarial training (Appendix A).
De-randomized Smoothing (DS). DS [28] trains a
‘smoothed’ classifier on image pixel patches and computes the
predicted class as the class with the majority vote among local
predictions made from all pixel patches. The provable robust-
ness analysis of DS only considers the largest and second-
largest counts of local predictions. If the gap between the two
largest counts is larger than 2k, where k is the upper bound of
the number of corrupted predictions, DS certifies the robust-
ness of the image. When we set the feature type to prediction
and detection threshold to T = 1 (i.e., no detection), we can
reduce Mask-DS to DS. Note that averaging all one-hot en-
coded local predictions gives the same global prediction as
majority voting. The major cause of the relatively poor per-
formance of DS is that its certification process discards the
spatial information of each prediction while our robust mask-
ing defense utilizes the spatial information that all corrupted
features are within a small window in the feature space.

We note that two defenses (BagCert [37] and Randomized
Cropping [29]) appeared after the initial release of our paper
preprint [55]; both of them can be regarded as instances of our
PatchGuard framework, i.e., using CNNs with small receptive
fields (modified BagNet [37]; image cropping [29]) and secure
aggregation (majority voting [29, 37]). These two followup
works further demonstrate the generality of PatchGuard.

6.2 Limitations and Future Work
While PatchGuard achieves state-of-the-art provable robust-
ness and has higher or comparable clean accuracy compared
with previous defenses, there is still a drop in clean accuracy
compared with undefended models. We note that PatchGuard
is compatible with any small-receptive-field CNN and secure
aggregation mechanism, and we expect the trade-off between
provable robustness and clean accuracy to be mitigated further
given any progress in these two directions.
CNNs with small receptive fields. The use of small receptive
fields provides substantial provable robustness but incurs a
non-negligible clean accuracy drop for the two architectures
(i.e., BagNet [5] and DS-ResNet [28]) used in this paper.
In future work, we aim to explore better architectures and
training methods for CNNs with small receptive fields in order
to provide robustness against patch attacks while maintaining
state-of-the-art clean accuracy. Any progress on this front will
directly boost our defense performance since PatchGuard is
compatible with any CNN with small receptive fields.
Secure feature aggregation. We present robust masking to
compute robust predictions from partially corrupted features.
Robust masking works in a manner that is agnostic to the
patch size by using a large mask, but a completely parameter-
free defense may be more desirable. To this end, we observe
that PatchGuard turns the problem of designing an adversarial
patch defense into a robust aggregation problem, i.e., how
can we make a robust prediction from a partially corrupted
feature tensor? Thus, techniques from robust statistics such
as median, truncated mean, as well as differential privacy [14]
can also be incorporated in our framework, some of which
admit a parameter-free defense. We also plan to explore the
design of custom secure aggregation mechanisms in future
work that can further improve provable robustness.

7 Related Work

7.1 Localized Adversarial Perturbations
Most adversarial example research focuses on global Lp-norm
bounded perturbations while localized adversaries have re-
ceived much less attention. The adversarial patch attack was
introduced by Brown et al. [6] and focused on physical and
universal patches to induce targeted misclassification. Attacks
in the real-world can be realized by attaching a patch to the
victim object. A follow-up paper on Localized and Visible



Adversarial Noise (LaVAN) attack [22] aimed at inducing
targeted misclassification in the digital domain.

Localized patch attacks against object detection [30, 51],
semantic segmentation models [46] as well as training-time
poisoning attacks using localized triggers [19, 31] have been
proposed. Our threat model in this paper focuses on attacks
against image classification models at test time; how to gener-
alize our defense to the above settings can be an interesting
future direction to study.

7.2 Adversarial Patch Defenses
Empirical defenses like Digital Watermark (DW) [20] and
Local Gradient Smoothing (LGS) [39] were first proposed
to detect and neutralize adversarial patch. However, these
heuristic defenses are vulnerable to adaptive attackers with
knowledge of the defense.

Observing the ineffectiveness of DW and LGS, Chiang et
al. [9] proposed the first provable defense against adversarial
patches via Interval Bound Propagation (IBP) [18, 38]. De-
spite its important theoretical contribution, the IBP defense
has poor clean and provable robust accuracy, as shown in Ta-
ble 4. Zhang et al. [59] proposed clipped BagNet (CBN) for
provable robustness and Levine et al. [28] proposed building
a ‘smoothed’ classifier (DS) that outputs the class with the
largest count from local predictions on all small pixel patches.
We have shown that CBN and DS are instances of our general
defense framework (Section 6.1), and PatchGuard has better
performance due to the use of robust masking (Section 5.2).
The Minority Report (MR) [34] defense was proposed in con-
current work, where the defender puts a mask at all possible
locations and extracts patterns from model predictions. This
defense can only provably detect an attack while PatchGuard
also guarantees the recovery of the correct prediction. More-
over, MR performs masking in the image space which is com-
putationally expensive and cannot scale to high-resolution
images. However, if we can tolerate attack detection, MR has
an advantage on low-resolution images (90.6% clean accu-
racy and 62.1% provable accuracy for 2.4%-pixel patch on
CIFAR-10; compared to our 84.6% clean accuracy and 57.7%
provable accuracy). How to extend PatchGuard for attack
detection is an interesting direction of future work.

Another concurrent line of research has been on adversarial
patch training [44, 54]. However, these works focus on empir-
ical robustness and do not provide any provable guarantees.

7.3 Receptive Fields of CNNs
A number of papers have studied the influence of the receptive
field [1, 5, 25, 32] on model performance in order to better
understand the model behavior. BagNet [5] adopted the struc-
ture of ResNet-50 [21] but reduced the receptive field size
by replacing 3×3 kernels with 1×1 kernels. BagNet-17 can
achieve similar top-5 validation accuracy as AlexNet [24]

on ImageNet [12] dataset when each feature only looks at a
17×17 pixel region. The small receptive field was used for
better interpretability of model decisions in the original Bag-
Net paper. In this work, we use the reduced receptive field
size to create models robust to adversarial patch attacks.

7.4 Other Adversarial Example Attacks and
Defenses

The development of adversarial example-based attacks and
defenses has been an extremely active research area over the
past few years. Conventional adversarial attacks [8,17,41,50]
craft adversarial examples that have a small Lp distance to
clean examples but induce model misclassification. Many em-
pirical defenses [35,36,42,56] have been proposed to address
the adversarial example vulnerability, but most of them can
be easily bypassed by strong adaptive attackers [2, 7, 52].
The fragility of the empirical defenses has inspired prov-
able or certified defenses [10, 18, 26, 38, 43, 53] as well as
work on learning-theoretic bounds in the presence of adver-
saries [3, 11, 13, 45, 57]. In contrast, the focus of this paper
is on localized adversarial patch attacks, and we refer inter-
ested readers to survey papers [40, 58] for a more detailed
background on adversarial examples.

8 Conclusion

In this paper, we propose a general provable defense frame-
work called PatchGuard that mitigates localized adversarial
patch attacks. We identify large receptive fields and insecure
aggregation mechanisms in conventional CNNs as the key
sources of vulnerability to adversarial patches. To address
these two problems, our defense proposes the use of models
with small receptive fields to limit the number of features
corrupted by the adversary which are then augmented with
a robust masking defense to detect and mask the corrupted
features to ensure secure feature aggregation. Our defense
achieves state-of-the-art provable robust accuracy on Ima-
geNet, ImageNette, and CIFAR-10 datasets. We hope that our
general defense framework inspires further research to fully
mitigate adversarial patch attacks.

Acknowledgements

We are grateful to David Wagner for shepherding the pa-
per and anonymous reviewers at USENIX Security for their
valuable feedback. This work was supported in part by the
National Science Foundation under grants CNS-1553437 and
CNS-1704105, the ARL’s Army Artificial Intelligence Inno-
vation Institute (A2I2), the Office of Naval Research Young
Investigator Award, the Army Research Office Young Investi-
gator Prize, Faculty research award from Facebook, Schmidt
DataX award, and Princeton E-ffiliates Award.



References

[1] Andre Araujo, Wade Norris, and Jack Sim. Computing
receptive fields of convolutional neural networks. Dis-
till, 2019. https://distill.pub/2019/computing-receptive-
fields.

[2] Anish Athalye, Nicholas Carlini, and David A. Wag-
ner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In
Proceedings of the 35th International Conference on
Machine Learning (ICML), pages 274–283, 2018.

[3] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal.
Lower bounds on adversarial robustness from optimal
transport. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 7496–7508, 2019.

[4] Wieland Brendel. Pretrained bag-of-
local-features neural networks. https:
//github.com/wielandbrendel/
bag-of-local-features-models, 2020.

[5] Wieland Brendel and Matthias Bethge. Approximating
CNNs with bag-of-local-features models works surpris-
ingly well on ImageNet. In 7th International Conference
on Learning Representations (ICLR), 2019.

[6] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín
Abadi, and Justin Gilmer. Adversarial patch. In Confer-
ence on Neural Information Processing Systems Work-
shops (NeurIPS Workshops), 2017.

[7] Nicholas Carlini and David A. Wagner. Adversarial ex-
amples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security (AISec@CCS), pages
3–14, 2017.

[8] Nicholas Carlini and David A. Wagner. Towards evalu-
ating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (S&P), pages 39–
57, 2017.

[9] Ping-Yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen
Zhu, Christoph Studor, and Tom Goldstein. Certified
defenses for adversarial patches. In 8th International
Conference on Learning Representations (ICLR), 2020.

[10] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter.
Certified adversarial robustness via randomized smooth-
ing. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pages 1310–1320, 2019.

[11] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mit-
tal. PAC-learning in the presence of adversaries. In
Conference on Neural Information Processing Systems
(NeurIPS), pages 230–241, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255, 2009.

[13] Elvis Dohmatob. Generalized no free lunch theorem
for adversarial robustness. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
pages 1646–1654, 2019.

[14] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 9(3-4):211–407, 2014.

[15] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Robust physical-
world attacks on deep learning visual classification. In
2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1625–1634, 2018.

[16] fast.ai. ImageNette: A smaller subset of 10 easily clas-
sified classes from imagenet. https://github.com/
fastai/imagenette, 2020.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. In 3rd International Conference on Learning
Representations (ICLR), 2015.

[18] Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja
Arandjelovic, Timothy Arthur Mann, and Pushmeet
Kohli. Scalable verified training for provably robust
image classification. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4841–
4850, 2019.

[19] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying vulnerabilities in the machine
learning model supply chain. In Machine Learning and
Computer Security Workshop (NeurIPS MLSec), 2017.

[20] Jamie Hayes. On visible adversarial perturbations &
digital watermarking. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPR Workshops), pages 1597–1604, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[22] Danny Karmon, Daniel Zoran, and Yoav Goldberg. La-
VAN: Localized and visible adversarial noise. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning (ICML), pages 2512–2520, 2018.

https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/wielandbrendel/bag-of-local-features-models
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette


[23] Alex Krizhevsky. Learning multiple layers of features
from tiny images. https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf, 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Conference on Neural Information
Processing Systems (NeurIPS), pages 1106–1114, 2012.

[25] Hung Le and Ali Borji. What are the receptive,
effective receptive, and projective fields of neurons
in convolutional neural networks? arXiv preprint
arXiv:1705.07049, 2017.

[26] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to
adversarial examples with differential privacy. In 2019
IEEE Symposium on Security and Privacy (S&P), pages
656–672, 2019.

[27] Alexander Levine and Soheil Feizi. Code for the
paper “(de)randomized smoothing for certifiable de-
fense against patch attacks". https://github.com/
alevine0/patchSmoothing, 2020.

[28] Alexander Levine and Soheil Feizi. (De)randomized
smoothing for certifiable defense against patch attacks.
In Conference on Neural Information Processing Sys-
tems, (NeurIPS), 2020.

[29] Wan-Yi Lin, Fatemeh Sheikholeslami, jinghao shi,
Leslie Rice, and J Zico Kolter. Certified robustness
against physically-realizable patch attack via random-
ized cropping, 2021.

[30] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Yi-
ran Chen, and Hai Li. DPATCH: an adversarial patch
attack on object detectors. In Workshop on Artificial
Intelligence Safety 2019 co-located with the 33rd AAAI
Conference on Artificial Intelligence 2019 (AAAI), vol-
ume 2301, 2019.

[31] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In 25th Annual Network
and Distributed System Security Symposium (NDSS),
2018.

[32] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in
deep convolutional neural networks. In Conference
on Neural Information Processing Systems (NeurIPS),
pages 4898–4906, 2016.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations (ICLR), 2018.

[34] Michael McCoyd, Won Park, Steven Chen, Neil Shah,
Ryan Roggenkemper, Minjune Hwang, Jason Xinyu Liu,
and David A. Wagner. Minority reports defense: De-
fending against adversarial patches. In Applied Cryptog-
raphy and Network Security Workshops (ACNS Work-
shops), volume 12418, pages 564–582. Springer, 2020.

[35] Dongyu Meng and Hao Chen. Magnet: A two-pronged
defense against adversarial examples. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 135–147, 2017.

[36] Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischoff. On detecting adversarial pertur-
bations. In 5th International Conference on Learning
Representations (ICLR), 2017.

[37] Jan Hendrik Metzen and Maksym Yatsura. Efficient
certified defenses against patch attacks on image clas-
sifiers. In 9th International Conference on Learning
Representations (ICLR), 2021.

[38] Matthew Mirman, Timon Gehr, and Martin T. Vechev.
Differentiable abstract interpretation for provably robust
neural networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), pages
3575–3583, 2018.

[39] Muzammal Naseer, Salman Khan, and Fatih Porikli. Lo-
cal gradients smoothing: Defense against localized ad-
versarial attacks. In IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 1300–1307,
2019.

[40] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P Wellman. Sok: Security and privacy in ma-
chine learning. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 399–414, 2018.

[41] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial
settings. In IEEE European Symposium on Security and
Privacy (EuroS&P), pages 372–387, 2016.

[42] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In IEEE Symposium on Security and Privacy (S&P),
pages 582–597, 2016.

[43] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang.
Certified defenses against adversarial examples. In 6th
International Conference on Learning Representations
(ICLR), 2018.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/alevine0/patchSmoothing
https://github.com/alevine0/patchSmoothing


[44] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial
training against location-optimized adversarial patches.
In European Conference on Computer Vision Workshops
(ECCV Workshops), 2020.

[45] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras,
Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. In Advances
in Neural Information Processing Systems, pages 5014–
5026, 2018.

[46] Vikash Sehwag, Chawin Sitawarin, Arjun Nitin Bhagoji,
Arsalan Mosenia, Mung Chiang, and Prateek Mittal. Not
all pixels are born equal: An analysis of evasion attacks
under locality constraints. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2285–2287, 2018.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

[48] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,
and Alexander A. Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI), pages 4278–4284, 2017.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–9, 2015.

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In 2nd
International Conference on Learning Representations
(ICLR), 2014.

[51] Simen Thys, Wiebe Van Ranst, and Toon Goedemé.
Fooling automated surveillance cameras: Adversarial
patches to attack person detection. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPR Workshops), pages 49–55, 2019.

[52] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial
example defenses. In 2020 USENIX Security and AI
Networking Summit (ScAINet), 2020.

[53] Eric Wong and J. Zico Kolter. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 5283–
5292, 2018.

[54] Tong Wu, Liang Tong, and Yevgeniy Vorobeychik. De-
fending against physically realizable attacks on image
classification. In 8th International Conference on Learn-
ing Representations (ICLR), 2020.

[55] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and
Prateek Mittal. Patchguard: Provable defense against ad-
versarial patches using masks on small receptive fields.
arXiv preprint arXiv:2005.10884, 2020.

[56] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural net-
works. In 25th Annual Network and Distributed System
Security Symposium (NDSS), 2018.

[57] Dong Yin, Ramchandran Kannan, and Peter Bartlett.
Rademacher complexity for adversarially robust gen-
eralization. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pages 7085–
7094, 2019.

[58] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Ad-
versarial examples: Attacks and defenses for deep learn-
ing. IEEE Transactions on Neural Networks and Learn-
ing Systems, 30(9):2805–2824, 2019.

[59] Zhanyuan Zhang, Benson Yuan, Michael McCoyd, and
David Wagner. Clipped bagnet: Defending against
sticker attacks with clipped bag-of-features. In 3rd Deep
Learning and Security Workshop (DLS), 2020.

A Provable Adversarial Training

In order to improve the provable robust accuracy, we train a
BagNet with a mask over the region with the largest true class
evidence. This training mimics the procedure of our provable
analysis in Algorithm 2, and we call it provable adversarial
training. In Table 14, we report the results for Mask-BN-17
with and without provable adversarial training against a 2%
pixel patch on ImageNet/ImageNette and a 2.4% pixel patch
on CIFAR-10. We can see from the table that provable ad-
versarial training significantly improves provable robustness.
We note that we do not do provable adversarial training for
DS-ResNet because it is too expensive to computing its all
local features during the training. Further details of model
training are available in our technical report [55].

Table 14: Effect of provable adversarial training on Mask-BN-17

Dataset ImageNet ImageNette CIFAR-10

Accuracy clean robust clean robust clean robust

Conventional training 54.4% 13.3% 93.9% 83.8% 82.6% 31.7%
Provable adv. training 54.6% 26.0% 95.0% 86.7% 83.9% 47.3%



Figure 6: Toy example of 1-D convolution computation

Figure 7: Example of computing window size.

B Details of Receptive Fields

Local features focus on the center of the receptive field.
In Section 3.1, we mentioned that a particular local feature
focuses exponentially more on the center of its receptive field.
We provide the intuition for this argument in Figure 6. The
left part of the figure illustrates a 1-D example of convolu-
tion computation in which the input has five cells and will go
through two convolution layers with a kernel size of 3 to com-
pute the final output. Each cell in the hidden layer (i.e., the
output of the first convolution layer) looks at 3 input cells, and
the output cell looks at three hidden cells. We count the num-
ber of times each cell is looked at when computing the output
cell and plot it in the figure. As we can see, the center cell of
the input layer receives the most attention (being looked at 3
times). Moreover, as the number of layers increases (a similar
example for 3 convolution layers is plotted in the right part of
Figure 6), the difference in attention between the center cell
and the rightmost/leftmost cell will increase exponentially.
Therefore, a particular feature focuses exponentially more on
the center of its receptive field, and an adversary controlling
the center cell will have a larger capacity to manipulate the
final output features.
Computing the Window Size. One crucial step of our robust
masking defense is to determine the window size, and we
show in Section 3.4 and Equation 1 that the window size w
can be computed as w= d(p+r−1)/se, where p is the upper
bound on the patch size, r is the size of receptive field, and
s is the stride of receptive field. In Figure 7, we provide the
intuition for Equation 1. In this example, we assume the stride
s= 4, and the size of the receptive field r= 3. We distinguish
the centers of receptive fields, the other cells in the receptive
fields, and the other cells with different colors. Note that we
choose a large stride s such that adjacent receptive fields

Table 15: Top-k accuracies of Mask-BN-17 on ImageNet

Patch size 1% pixels 2% pixels 3% pixels

Accuracy clean robust clean robust clean robust

Top-1 55.1% 32.2% 54.6% 26.0% 54.1% 19.7%
Top-2 65.9% 48.3% 65.5% 43.8% 64.9% 38.2%
Top-3 71.3% 52.2% 70.8% 48.7% 70.2% 44.1%
Top-4 74.6% 53.9% 74.2% 51.3% 73.7% 47.4%
Top-5 77.0% 54.8% 76.6% 52.9% 76.2% 49.6%

do not overlap for a better visual demonstration; the derived
equation is applicable to smaller s or larger r. In Figure 7,
we want to determine the largest patch size p such that the
patch only appears in n but not n+1 receptive fields. We plot
the boundary of the largest patch with red dash line in the
figure. The left part of the patch covers the rightmost cells of
receptive field 0, and the right part does not appear in receptive
field n. Based on Figure 7, we can compute p= n ·s−r+1.
Next, we can substitute n with w, use d·e for generalization to
any patch size, and finally get w= d(p+r−1)/se. We note
that the network architectures [4, 27] used in this paper have
s= 8 for BagNet and s= 1 for DS-ResNet.

C Tighter Provable Analysis for Over-
conservative Mask Size

Recall that the mask window size is a tunable security param-
eter. Robust masking can prove robustness for any patch is
smaller than the mask. In this section, we discuss a tighter
version of Lemma 1 when the defender overestimates the
worst-case patch size and use a larger mask window size.
Let W be the set of all possible malicious windows and V
be the set of all possible detected windows whose sizes are
larger than malicious windows. We can have the following
generalized Lemma.

Lemma 2. Given a malicious window w ∈ W , a class
ȳ ∈ Y , and the set of all possible detected windows V , the
clipped and masked class evidence of class ȳ (i.e., sȳ) can
be no larger than SUM(ûȳ� (1−v∗w))/(1−T ), where v∗w =
argmaxv∈Vw SUM(ûȳ�v) and Vw = {v ∈V |SUM(w�v) =
SUM(w)}.

In this lemma, Vw is the set of possible mask windows
that cover the entire malicious window w, and v∗w is the mask
window in Vw with the largest class evidence. This bound
reduces to the bound of Lemma 1 when the sizes of malicious
window and mask window (i.e., the output of subprocedure
DETECT) are the same: Vw = {w} and thus v∗w = w. The
proof of Lemma 2 is in the same spirit as that of Lemma 1
and is available in our technical report [55].



D Additional Top-k Analysis

Top-k provable robustness. In Algorithm 2, we compare the
maximum wrong class evidence maxy′∈Y ′(sy′) with the lower
bound of true class evidence sy to determine the feasibility
of an attack. To determine the top-k provable robustness,
we create a set S ← {y′ ∈ Y ′|sy′ > sy} for wrong classes
whose evidence is larger than the lower bound of the true
class evidence sy. If the set size |S | is smaller than k, we
assume the image is robust to the top-k attack.
Additional results for ImageNet. We report the top-k clean
accuracy and provable robust accuracy in Table 15. Notably,
Mask-BN achieves a 77.0% clean and 54.8% provable robust
top-5 accuracy against a 1% pixel patch for the extremely
challenging 1000-class classification task.

E Additional Discussion on Multiple Patches

In this paper, we focus on the threat of the adversary arbitrarily
corrupting one contiguous region. In this section, we discuss
how PatchGuard can deal with multiple adversarial patches.
Merge multiple patches into one large patch. The most
straightforward way to approach multiple patches is to con-
sider a larger contiguous region that contains all patches. The
analysis in the paper can be directly applied. However, when
the multiple patches are far away from each other, the merged
single region can be too large to have decent model robustness.
When this is the case, we have the following alternatives.7

Mask individual local features. Our robust masking pre-
sented in Section 3.4 masks the feature window with the
highest class evidence. As an alternative, we can mask α

individual local features with top-α highest class evidence.
Such individual feature masking is agnostic to the number
of patches, and we can easily re-prove Lemma 1 to have the
same upper bound of wrong class evidence. However, the
lower bound of true class in this masking mechanism is re-
duced compared with window masking, and this will lead to
a drop in provable robust accuracy.
Use alternative secure aggregation. As discussed in Sec-
tion 6.2, a promising direction of future work is to explore
parameter-free secure aggregation mechanisms. We note that
we have already seen concrete examples of alternative ag-
gregation that can deal with multiple patches in Section 6.1,
where we discuss how to reduce PatchGuard to CBN and DS.

F Additional Discussion on the Limits of
PatchGuard

In Section 5, we evaluate our defense against 1-3% pixel
patches. In this section, we take Mask-BN-17 on ImageNette

7We note that when patches are far away from each other, the problem
is closer to the global adversarial example with a L0 constraint, which is
orthogonal to our work.

Figure 8: Performance of Mask-BN-17 on ImageNette against vari-
ous patch sizes.

Figure 9: Visualization of large occlusion with a 96×96 pixel block
on the 224×224 image.

for a case study to analyze the defense performance when
facing a much larger patch. We report the performance of
Mask-BN-17 against various patch sizes in Figure 8. Note
that the image is in the shape of 224×224; a 32×32 square
patch takes up 2% pixels. As shown in the figure, the clean
accuracy of Mask-BN-17 drops slowly as the patch size in-
creases. When the patch size is as large as 192 pixels, the
patch will appear in the receptive field of all local features of
BagNet-17 and our defense reduces to a random guess (10%
accuracy for the 10-class classification task). Similarly, the
provable robust accuracy drops as the patch becomes larger.
We note that this drop also results from the limitation of classi-
fication problem itself when the patch is large. In Figure 9, we
visualize five images and occlude them with a 96×96 pixel
block. As shown in the figure, a large pixel block covers the
entire salient object and makes the classification almost im-
possible (recall that our threat model allows the adversary to
put a patch at any location of the image). Notably, our defense
still achieves a 91.1% clean accuracy and 50.7% provable
robust accuracy against this large 96×96 patch. We believe
this analysis further demonstrates the strength of our defense.
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