
VScape: Assessing and Escaping Virtual Call Protections

Kaixiang Chen1, Chao Zhang1,2,3�, Tingting Yin1, Xingman Chen1, Lei Zhao4

1Institute for Network Science and Cyberspace, Tsinghua University
2Beijing National Research Center for Information Science and Technology

3Tsinghua University-QI-ANXIN Group JCNS
4School of Cyber Science and Engineering, Wuhan University

{ckx18,ytt18,cxm16}@mails.tsinghua.edu.cn, chaoz@tsinghua.edu.cn, leizhao@whu.edu.cn

Abstract
Many control-flow integrity (CFI) solutions have been pro-

posed to protect indirect control transfers (ICT), including
C++ virtual calls. Assessing the security guarantees of these
defenses is thus important but hard. In practice, for a (strong)
defense, it usually requires great manual efforts to assess
whether it could be bypassed, when given a specific (weak)
vulnerability. Existing automated exploit generation solu-
tions, which are proposed to assess the exploitability of vul-
nerabilities, have not addressed this issue yet.

In this paper, we point out that a wide range of virtual
call protections, which do not break the C++ ABI (applica-
tion binary interface), are vulnerable to an advanced attack
COOPLUS, even if the given vulnerabilities are weak. Then,
we present a solution VScape to assess the effectiveness of
virtual call protections against this attack. We developed a
prototype of VScape, and utilized it to assess 11 CFI solu-
tions and 14 C++ applications (including Firefox and PyQt)
with known vulnerabilities. Results showed that real-world
applications have a large set of exploitable virtual calls, and
VScape could be utilized to generate working exploits to by-
pass deployed defenses via weak vulnerabilities.

1 Introduction
To mitigate control flow hijacking attacks, many control-flow
integrity (CFI) solutions [1, 2] have been proposed. In prin-
ciple, CFI solutions validate the transfer targets of each in-
direct control transfer (ICT) instruction, including indirect
call/jump and return instructions, enforcing them fall into a
corresponding equivalence class (EC). Virtual functions in
C++ programs are lowered to indirect call instructions in bi-
nary code, and thus benefit from CFI solutions as well.

Early CFI solutions [3, 4] did not take C++ semantics
into consideration, and thus allowed virtual calls (denoted as
vcalls) to transfer to a large number of targets. Researchers
pointed out their weaknesses and proposed the COOP [5] at-
tack to bypass these defenses at virtual call sites. Some other
CFI solutions [6, 7] are C++ semantics aware, and provide
fine-grained defenses for virtual calls, defeating the COOP

attack. Recent CFI solutions [2, 8] take runtime information
(e.g., data origin) to further reduce the size of EC for virtual
calls and provide a stronger defense.

Despite a considerable amount of efforts to defeat attacks,
it is still not clear whether these defenses are strong enough
to protect virtual calls from advanced attacks, given the con-
tinuously evolving arm-race between offense and defense.
For example, according to the C++ language specification,
a virtual function call site, which expects a virtual function
from a statically declared base class, by design is allowed
to jump to all variant virtual functions overridden in derived
classes. Thus, the EC set is still large. In practice, it re-
quires great manual efforts to assess the exploitability of (po-
tentially weak) vulnerabilities, especially when some (poten-
tially strong) defenses are deployed. In general, analysts
have to comprehend the application and the vulnerability,
and search for proper exploit primitives in the target applica-
tion which may have a large code base, then assemble these
primitives to exploit the target vulnerability. This process is
time-consuming and needs automated solutions.

To automatically assess the exploitability of vulnerabil-
ities, several automated exploit generation (AEG) solu-
tions [9–11] have been proposed. However, none of them
have taken modern defenses into consideration, and thus fail
to assess their security guarantees. For instance, AEG so-
lutions targeting heap vulnerabilities, e.g., Revery [11] and
Gollum [12], only work well when the defense ASLR [13]
is disabled. AEG solutions targeting stack-based buffer over-
flow, e.g., Q [14], CRAX [15] and PolyAEG [16], cannot
bypass stack canary [17]. Thus, developing an AEG solution
to assess the security of a defense solution is necessary.

In this paper, we assess the effectiveness of virtual calls
defenses and proposed a solution VScape to facilitate the as-
sessment. We point out that, each virtual call protection is
vulnerable to an advanced attack COOPLUS, as long as it (1)
does not break the application-binary interface (ABI) of vir-
tual calls, (2) cannot guarantee the integrity of C++ objects’
VTable pointers, and (3) allows multiple transfer targets at
virtual call sites. COOPLUS is essentially a code reuse

attack, which invokes type-conformant (but out-of-context)
virtual functions at victim virtual call sites. Such invocations
are allowed by C++ semantic aware CFI solutions, but op-
erate on out-of-context objects, and thus could cause further
consequences, e.g., control flow hijacking.

VScape could facilitate this exploitation process. Specif-
ically, it analyzes the target application, scans all vcall sites
and finds compatible classes, then filters virtual functions
that could cause memory safety violations, and finally com-
piles proper exploit primitives to generate final exploits. To
the best of our knowledge, VScape is the first solution to
generate exploits to bypass virtual call protections. It shows
following intriguing features which previous researches have
not exhibited. It is able to assess the security of a large num-
ber of defenses for virtual calls and assist in generating ex-
ploits to bypass them. It could assess the exploitability of
many types of vulnerabilities, even some types of vulnera-
bilities that are hard to exploit in practice. Further, it could
yield a massive number of exploit primitives, which could
greatly facilitate manual exploit generation.

We implemented a prototype of VScape based on
Clang [18] and Angr [19], and evaluated it on 14 real world
C++ applications including Firefox and PyQt, which are
hardened with 11 CFI solutions. Results showed there is a
large attack surface of exploitable virtual call sites in real
world applications. Most virtual call protections can be by-
passed by COOPLUS, and VScape could be utilized to gen-
erate working COOPLUS exploits when given known vulner-
abilities. We pointed out that, to fully mitigate COOPLUS, a
solution which protects the integrity of vptr with a low per-
formance overhead and good compatibility is demanded.

In summary, we made the following contributions:
• We pointed out an advanced attack COOPLUS, able to

bypass a wide range of virtual call protections, even when
only weak vulnerabilities are given.

• We presented a solution VScape to assess the effectiveness
of virtual call protections against COOPLUS, including
the available attack surface and exploit primitives, and to
assist in generating working exploits.

• We implemented a prototype of VScape and evaluated it
on real world applications Firefox and PyQt hardened with
virtual call protections. Results showed that the attack sur-
face is large and bypassing virtual call protections is feasi-
ble in practice.

2 Background

2.1 VTables and Virtual Calls
In C++ applications, a virtual function in a base class can
be overridden in a derived class. When a virtual function
claimed in a base class is invoked at a virtual call site, the
actual function invoked at runtime may belong to a derived
class, depending on the runtime object’s type.

To support this polymorphism feature, compilers employ

a dynamic dispatch mechanism, in which polymorphic func-
tions are invoked via indirect call instructions. As presented
in the Itanium and MSVC C++ ABI, which are followed
by major compilers including GCC, Clang and Microsoft
MSVC, pointers to all polymorphic virtual functions (de-
noted as vfptr) of each class are kept in a separate Virtual
Function Table (VTable) bound to this class, and a pointer
vptr to the VTable is attached to each object of this class.
Since C++ supports multiple types of inheritances, including
single, multiple, and virtual inheritance, an object may have
multiple vptr located at different offsets.

A typical virtual call is shown as below, which comprises
of 3 steps: (1) dereference the this pointer of the runtime ob-
ject to get its vptr, i.e., address of the VTable; (2) find the
vfptr in target VTable, by adding a fixed offset, and (3) re-
trieve the vfptr and invoke the virtual function.

mov rax, qword ptr [rcx]; load vptr

add rax, 16; find vfptr

call [rax]; invoke vf

Note that, vptr is retrieved from an object in the heap. There-
fore, given a proper vulnerability, an adversary could exploit
it to tamper with vptr, hijack the followed virtual call. This
is the common and well known VTable hijacking [20] attack.

2.2 Virtual Call Protections
To defend against VTable hijacking attacks, researchers have
proposed multiple protection techniques.

As tampering with vptr is the entry to launch VTable hi-
jacking attacks, a straightforward solution is to guarantee
the integrity of vptr. Generic data flow integrity (DFI) tech-
niques [21, 22] can serve this purpose. VPS [23] directly
provides DFI to vptr for binary programs, but suffers from
precision issues in binary analysis. This type of defense can
protect vptr from being overwritten, but in general has high
runtime overheads and is rarely deployed in practice.

Another type of defenses breaks the C++ ABI to protect
virtual calls. For instance, CFIXX [24] places vptr in a sep-
arate metadata table, and leverages the Intel Memory Protec-
tion Extensions (MPX) hardware feature to protect the meta-
data table’s integrity. VTrust [7] replaces each vptr with an
index to a protected table, and enforces users to use VTable
pointers in the table. However, it does not protect the in-
tegrity of the vptr , leaving potential attack surfaces.vptr, In
general, this type of protection breaks the C++ ABI to block
attackers, but at the same time, it leads to a severe compati-
bility issue and hinders the broad deployment.

The third type of protection technique checks the validity
of each virtual call’s target. Most CFI solutions fall into this
category. Some recent CFI solutions, e.g., OS-CFI [2] and
µCFI [8], utilize runtime data flow information to reduce the
size of EC (even to 1). If a virtual call is only allowed to
one target, then it is guaranteed to be safe. However, runtime
data collection in general is hard to deploy in practice.

Most CFI solutions aim at both security and practical-

ity. Coarse-grained CFI solutions, e.g., BinCFI [3] and CC-
FIR [4], do not take type information or C++ semantics into
consideration, and thus allow virtual calls to transfer to a
large number of targets. Fine-grained CFI solutions, on the
other hand, utilize such information to provide stronger de-
fenses. For instance, LLVM-CFI [6] and TypeArmor [25]
utilize type information, while VTrust [7] and vfGuard [26]
utilize C++ semantics, to provide stronger defenses for vir-
tual calls. As this type of defenses is popular and practical,
we focus on assessing their effectiveness in this paper.

2.3 The COOP Attack
Multiple studies [27, 28] have demonstrated that coarse-
grained CFI solutions are too permissive and can be by-
passed. Specifically, for virtual calls, researchers proposed
the counterfeit object-oriented programming (COOP) [5] at-
tack to bypass coarse-grained defenses at virtual call sites.

COOP is, in essence, a code reuse attack, which utilizes
the fact that all existing virtual functions (even arbitrary
address-taken functions) are allowed at virtual calls if CFI so-
lutions do not precisely consider C++ semantics. COOP ex-
ploits two key factors: (F1) a set of virtual call sites (denoted
as vfgadget) which invoke existing but out-of-context virtual
functions, and (F2) a special vfgadget which can orchestrate
other vfgadgets, and accordingly prepares a set of counterfeit
C++ objects to chain vfgadgets and launch attacks.

However, the factor F2 is rare in applications, while the
factor F1 relies on the assumption that deployed defenses
have not considered C++ semantics. As the COOP paper [5]
claimed, COOP’s control flow can be reliably prevented
when precise C++ semantics are considered from source
code. Thus, COOP cannot bypass many CFI solutions, e.g.,
LLVM-CFI [6] and VTrust [7].

3 COOPLUS Attack
Different from the claim made in [5], we pointed out COOP
is more powerful than that realized by its authors. In this
section, we present a variant of COOP, named COOPLUS,
which is able to bypass C++ semantics aware CFI defenses.

3.1 Assumptions
We assume that widely deployed mitigations like includ-
ing DEP (Data Execution Prevention [29]), ASLR (Address
Space Layout Randomization [13]) and stack canary [17],
are enabled on the target. We also assume that the target vir-
tual call protection to assess is C++ semantics aware but does
not break the C++ ABI nor protect the integrity of vptr.

On the other hand, we assume a weak vulnerability (e.g.,
one-byte heap overflow) is given1. Existing literature on at-
tacks usually assumes the target application has a strong vul-
nerability, e.g., which allows writing arbitrary values to arbi-
trary addresses. In this paper, we only assume the target ap-
plication has one memory corruption vulnerability that can

1But weaker vulnerabilities have lower probabilities to be exploited.

vptr
member1
member2
memberN

vtable[0]
vtable[1]

vtable[n]

S1::func1(){
memberN++;

}

S2::func1(){
memberM++;

}

vtable[0]
vtable[1]

vtable[n]
vtable[m]

VTable of S1 VTable of S2

memberM

input_str(len){
read(0, &buf, len);

} // overflow

Vulnerable function

Victim object
(of class S1)

Vulnerable object
(buf)

Relay object

‘AAA…’
‘BBB…’
‘CCC…’
‘AAA…’

v
u
l

Victim function Counterfeit function

Counterfeit object
(of class S2)

foo(Base* obj){
obj->func1();

}
S1 and S2 derive from Base

Virtual call

Figure 1: An example COOPLUS attack.

be exploited to tamper with one C++ object’s vptr. This as-
sumption makes our attack more realistic and reasonable.

We only focus on escaping virtual call protections, but
other defenses in use may also hinder end-to-end exploits.
Thus, we assume the adversary has necessary capabilities,
e.g., information leaks and heap spraying, to bypass other
defenses (e.g., ASLR). Automated escaping those defenses
is out of the scope of this paper.
3.2 Principle of COOPLUS
COOPLUS is, in essence, a code reuse attack. More specifi-
cally, it is a variant of the proposed COOP attack. As COOP
bypasses coarse-grained CFI defenses by invoking existing
virtual functions at virtual call sites, COOPLUS invokes
only type-compatible virtual functions to bypass stronger de-
fenses, e.g., CFI solutions that are C++ semantics aware.

As shown in Figure 1, a virtual call site in the function foo
expects a virtual function declared in the Base class. By de-
sign, this vcall site could invoke any overridden virtual func-
tion in derived classes (e.g., Sub1 and Sub2 in the figure),
according to the C++ specification. In other words, virtual
call protection has to allow virtual calls to invoke a large set2

of compatible virtual functions.
COOPLUS works as follows. The adversary first picks a

vcall (e.g., a invocation of Base::func1) to hijack, then uti-
lizes the given (weak) vulnerability to corrupt a victim ob-
ject (e.g., of class S1, denoted as victim class) used at the
vcall. Specifically, she/he could replace the victim object’s
vptr with a VTable pointer of another class (e.g., class S2,
denoted as counterfeit class) derived from the base. Further
vcalls of this victim object (e.g., S1::func1) will invoke a
different virtual function (e.g., S2::func1, denoted as coun-
terfeit function). But ABI-conformant vcall protections will
not block this out-of-context invocation. Since objects of dif-
ferent classes have different layouts, the counterfeit function
may access fields (e.g., memberM) outside the victim object,
which may corrupt the relay object following this victim ob-
ject. Eventually, the counterfeit function or future functions
operating on the relay object will be hijacked.

Two conditions are required to make the attack work. (1)
The counterfeit class is derived from the base class expected

2Some defenses, e.g., OS-CFI and µCFI, could reduce the size of this set
by tracking runtime information, e.g., the origin of pointers.

S1::func1() { memberN}
Victim function

Counterfeit function

S2::func1(){
funcX(memberM)；

}

Relay object (Character buffer)

AAA…
/bin/sh;
BBB…

addr;

vptr
member1
member2
memberN

memberM

Victim object
(of class S1)

Counterfeit object
(of class S2)

funcX(CT *ptr){
*(ptr->addr) = ptr->data;

}

ptr
data;

fake struct CT

Figure 2: Consequences of out-of-bound data read.

at the virtual call site, to pass the security checks of a C++
semantics aware defense. (2) The counterfeit virtual function
performs out-of-bound access on the victim object, to yield
exploitable memory safety violations.

Note that, even if the counterfeit function does not cause
out-of-bound access, it may corrupt fields of the victim ob-
ject or cause other unexpected behaviors, and eventually en-
ables exploitation. But it is hard to assess the consequences
of all unexpected behaviors in a unified way. Thus, we only
consider out-of-bound access in COOPLUS.

3.3 Vulnerability Amplification
With COOPLUS, we could utilize the original vulnerability
of limited capability, i.e., which can only tamper with an ob-
ject’s vptr, to trigger new out-of-bound memory access on
the relay object. Further access to the relay object will cause
unexpected behaviors. This new memory violation could am-
plify the vulnerability’s capability, which could even lead to
arbitrary address memory writes (AAW), facilitating further
exploitation (e.g., control flow hijacking).

Out-of-bound Read. In the first case, the counterfeit func-
tion performs an out-of-bound read on the relay object. If the
relay object is controllable, then the counterfeit function may
misbehave and yield the following four types of gadgets.

If the controllable data loaded (Ld) from the relay object is
used by the counterfeit function as a program counter (PC),
then it could facilitate control flow hijacking. This type of
gadgets is denoted as Ld-Ex-PC.

If the controllable data loaded (Ld) from the relay object is
used by the counterfeit function as a target memory address
to write, then this type of gadgets could cause arbitrary mem-
ory write (AW). Depending on the value that can be written
to target memory, there are three types.
• Ld-AW-Const: the counterfeit function can only write

a constant value to target memory. This gadget can be
exploited in a limited range of scenarios.

• Ld-AW-nonCtrl: the counterfeit function writes a non-
constant and non-controllable value to target memory. It
could be exploited in a limited range of scenarios.

• Ld-AW-Ctrl: the counterfeit function writes a control-
lable value to target memory. This gadget could facilitate
AAW, as shown in the example demonstrated in Figure 2.
If the controllable data loaded from the relay object is used

S1::func1() { memberN}
Victim function

Counterfeit function

S2::func1(){
memberM = 0xffff;

}

Relay object (ArrayObject)

array_type

list_ptr
size

vptr
member1
member2
memberN

memberM

Victim object
(of class S1)

Counterfeit object
(of class S2)

Figure 3: Consequences of out-of-bound data write.

by the counterfeit function as a target memory address to
read, then it could cause arbitrary memory read (AAR).

Out-of-bound Write. The other case is that, the counter-
feit function performs an out-of-bound write on the relay ob-
ject. Further operations on the relay object will be misled.
Depending on the value written by the counterfeit function,
there are two classical types of gadgets.

• St-Ptr: the counterfeit function tries to write a pointer
value to the relay object. If the relay object could be ob-
served by the adversary, then she/he could leak a pointer
to break defenses like ASLR.

• St-nonPtr: the counterfeit function tries to write a non-
pointer value to the relay object. Depending on how this
value is used by the relay object, it may also enable further
exploitation. Figure 3 shows an example in which a non-
pointer value 0xffff is stored to the memberM field and
corrupts the relay object, which interprets the field as a
size of an array and may lead further AAR or AAW.

Relay Object Manipulation. With proper heap layout ma-
nipulation techniques, e.g., heap feng shui [30], we could
allocate many types of objects (usually of same sizes) fol-
lowing the victim object, and make them as relay objects to
enable potential exploitation paths.

For example, if the counterfeit function causes some out-
of-bound read, then a controllable relay object could be al-
located to further hijack the counterfeit function, or a non-
controllable relay object with sensitive fields could be allo-
cated to leak sensitive information. If the counterfeit func-
tion causes an out-of-bound write, then a relay object of the
proper layout (e.g., with a size field at proper offsets) could
be allocated, to drive the program out-of-control.

3.4 Attack Analysis
3.4.1 Vulnerable Protections
The COOPLUS attack could bypass a wide range of virtual
call protections that meet the following two conditions.
• The target virtual call protection follows the well known

C++ ABI. More specifically, the vptr is placed be-
fore each object, and the virtual call site allows type-
conformant virtual functions.

• Victim objects’ vptr could be corrupted by adversaries. In
other words, the target vcall protection does not guaran-
tee integrity of vptr. In practice, following the C++ ABI,

1 class Buffer{ int size; char[1024] src_buf;};
2 int input_check(Buffer* obj){
3 uint32_t length = read_uint32();
4 obj−>size = length;
5 if (length>1024) return false;
6 read_len(obj−>src_buf, length);
7 return true;
8 }
9 int vul_func(Buffer* obj){

10 uint32_t fcs =~0
11 uint8_t *src=obj−>src_buf;
12 uint8_t *p=src;
13 while(p!=&src[obj−>size]) CRC(fcs,*p++);
14 *(uint32_t *)p=htonl(fcs);//overflow when size>1020
15 }
16 int trigger_func(){
17 Buffer* p = new Buffer();
18 if (input_check(p)){ vul_func(p);}
19 }

Listing 1: A four-byte heap overflow (CVE-2015-7504).

1 Privilege_Rank *PR;
2 #define administrator 0
3 #define normal_user 1
4 class Privilege_Rank{
5 char* username;
6 uint64_t rank_level;
7 Privilege_Rank(uint64_t rl)::rank_level(rl);
8 };
9 void init_a_thread(){

10 PR = new Privilege_Rank(normal_user);
11 }
12 void sensitive_operation()
13 {
14 if (PR−>rank_level==administrator){
15 system(" / bin / sh");
16 }else{
17 do_nothing();
18 }
19 }

Listing 2: Privilege escalation primitive

vptr is associated with objects which reside in writable
heap, making it challenging to protect its integrity.

• Multiple targets are allowed at virtual call sites. Some
defenses are able to limit the number of allowed runtime
virtual functions to 1. It leaves no space for exploitation.
Some defenses, e.g., CFIXX [24], breaks the C++ ABI

and replaces each vptr with a runtime lookup table en-
try, then protects the integrity of this table with the Intel
MPX [31] hardware feature. This type of defense could de-
feat COOPLUS, but introducing compatibility issues.

Some defenses, e.g., OS-CFI [2] and µCFI [8], could track
runtime information to limit the number of allowed virtual
functions (even to 1 in some cases). However, they are in
general hard to deploy in practice. Moreover, they cannot
guarantee a unique runtime target for each virtual call in prac-
tice [32]. So, in theory, COOPLUS is still feasible.

3.4.2 Applicable Vulnerabilities
Proposed exploiting techniques in literature, in general, as-
sume applications have vulnerabilities with strong capability,
e.g., enough to make many powerful exploitations. But in re-
ality, such qualified vulnerabilities are rare. On the contrary,
COOPLUS has a lower expectation on the vulnerability and
is applicable to many real world vulnerabilities, as long as
the vulnerability can (even partially) corrupt the vptr.

For example, a heap overflow vulnerability which could
overwrite only one byte is qualified. A use after free vul-
nerability is also qualified. Listing 1 shows a heap over-
flow vulnerability which only overwrites the following four
bytes with a CRC checksum. Given that CRC could be re-
versed [33], the adversary could utilize this vulnerability to
overwrite 4 bytes (vptr) with an arbitrary value.

A weak vulnerability that can only partially overwrite a
vptr could be exploitable as well. Since the victim class and
counterfeit class are often defined in the same program mod-
ule, thus have VTables close to each other. So, a partial over-
write to one vptr could yield another compatible vptr, and
enable the COOPLUS attack. But, such weak vulnerabilities

will reduce the number of available exploit primitives, and
thus lowers the probability of being exploited.

3.4.3 Attack Effects
The major attack effect of COOPLUS is arbitrary address
write or read (AAW or AAR). On one hand, AAW and AAR
are the basic assumptions of most exploitation techniques,
which could be further utilized to perform kinds of advanced
attacks including control flow hijacking. On the other hand,
AAW and AAR vulnerabilities are rare in practice. There-
fore, COOPLUS provides a robust solution to get AAW and
AAR primitives, facilitating many exploits.

Furthermore, in some cases, COOPLUS cannot be utilized
to get AAW or AAR primitives. But it could be exploited as
well. Take the code in Listing 1 as an example, assuming
we could only find one counterfeit function, which only dou-
bles a data field of the relay object, we could still utilize it to
launch control flow hijacking attacks. As shown in Listing 2,
there is a sensitive operation at line 15, which will only be
executed with proper rank_level. As a result, we could allo-
cate a Privilege_Rank object as the relay object, and utilize
COOPLUS to double the rank_level field. By launching
this attack multiple times, we could overwrite this field to 0,
and launch the sensitive operation.

4 Primitive Generator
Given a target application, a vulnerability, and a virtual call
protection, we would like to assess whether the vulnerabil-
ity could be exploited to launch the COOPLUS attack and
bypass the deployed protection. However, it is challenging.

To launch a COOPLUS attack, we have to first find a
proper tuple of exploit primitives (virtual call, victim class,
counterfeit class), where (1) the virtual call invokes a virtual
function declared in a base class, (2) the victim class and
counterfeit class are derived from the base class but have dif-
ferent virtual function implementations, and (3) the victim
object has to be corrupted by the vulnerability. Finding such
a tuple in the target application, especially in one that has a
large code base, is a heavy task. Furthermore, we have to

Primitive GenerationInputs

Info
Collecting

Exploit Constraint Solving

Virtual Call Site
Reachability Testing

OOB Instruction
Reachability Solving

Exploit Assembling

Outputs

Exploit
Template

Real-World
Exploit

Memory
States

Constraints Path
Constraints

Primitive
Searching

Primitive
Capability
Analysis

Vulnerability
Matching

Exploitable
Memory

States
Inference

Target
Program
Source
Code

Vulnerablility
Description

Expected
Primitive
Attributes

Candidate
Primitives

Expected Primitive Construction

Figure 4: Overview of the COOPLUS exploit compiler: VScape.

0 1

2 1

2

Virtual Call Base
Interface Class

0

2

Classwith
Overridden
Functions

Inheritance Tree-A Inheritance Tree-B

Figure 5: An example CIH and ranks.

generate proper inputs to trigger the virtual call, then trigger
the out-of-bound memory access in the counterfeit function,
and eventually, trigger sensitive operations on the corrupted
data fields, requiring great efforts too.

Therefore, we present a solution VScape to automatically
compile candidate primitives and filter practical and reach-
able primitives, which further facilitates generating the final
exploit to bypass the target virtual call protection.

4.1 System Overview
Figure 4 shows the overview of the VScape compiler. It con-
sists of three major components: primitive generation, ex-
pected primitive construction, and exploit constraint solving.

The primitive generation component takes source code
of target applications as inputs, then searches for candidate
vcall primitives that can bypass defenses and analyzes their
capabilities, and outputs these candidate primitives.

Then, the expected primitive construction component
takes (1) description of the given vulnerability (e.g., vulner-
able object’s size and affecting ranges), and (2) expected ex-
ploit primitive attributes (e.g., write an arbitrary value to a
specific address) as inputs, and outputs qualified candidate
primitives, together with memory sates (e.g., certain fields of
the relay object take specific values) which could make such
primitives work. With such information, security analysts
could get desired primitives and compose exploits quickly.

The exploit constraint solving component further resolves
certain constraints (e.g., path reachability) to make chosen
primitives working in the final exploit. VScape takes a user-
provided exploit template as an extra input to form a full
chain exploit, and outputs the final working exploit.

Currently, there are no solutions able to automatically con-
struct exploit templates, except for simple vulnerabilities like
stack-based buffer overflow. Thus, VScape relies on analysts
to schedule exploit steps, i.e., preparing an exploit template,
and provide knowledge of the vulnerability and what types of
primitives are needed by the template. VScape could search
for qualified primitives and complete the working exploits.
Note that, it is common for modern AEG solutions, e.g., Gol-
lum [12], Revery [11] and BOPC [34], to have user-supplied
exploit templates (in different forms) to assist AEG, since a
full chain exploit needs to address many challenges that are
out of scope (e.g., heap manipulation).

4.2 Primitive Generation
4.2.1 Data Collection
The first step of VScape is collecting virtual call related in-
formation during compilation, including compatible classes
and different virtual functions implementations. Specifically,
VScape collects three types of information as below:
• Virtual call sites: COOPLUS bypasses virtual call protec-

tions around certain virtual call sites. Therefore, VScape
first logs all virtual call sites in the target application, as
well as the expected virtual function’s statically declared
base interface class information.

• Class layouts: The victim class and counterfeit class in
an exploit primitive all derive from the virtual call’s inter-
face class. Therefore, VScape also logs the class layout
information during compilation, including its size, offsets
of member fields and base classes. Note that, the final
exploit also relies on relay objects, which may have no
virtual functions. So VScape will log all class layouts no
matter the class has virtual functions or not.

• Virtual functions: VScape logs all type-conformant vir-
tual functions for each virtual call site, i.e., those overrid-
den in classes derived from the interface class. Further,
VScape logs the maximum field access offset of each vir-
tual function when generating code for the function, since
it has to find potential out-of-bound memory access later.

4.2.2 Primitive Searching
For a given virtual call, we need to find proper victim classes
and counterfeit classes, which have different implementa-
tions of the target virtual function. Such a pair of functions
could yield unexpected behaviors and enable COOPLUS ex-
ploitation, thus forming a candidate exploit primitive.

Since the victim class and counterfeit class all derive from
the interface class expected in the virtual call, we could first
build the class inheritance hierarchy (CIH) tree based on the
class layout information we collected, as shown in Figure 5,
then search the tree for derived classes that have different
implementations of the target virtual function.

More specifically, VScape checks the implementations of
the target virtual function in all derived classes. A breadth-
first search (BFS) algorithm is applied to iterate all derived
classes, starting from the base interface class. A global rank
number (starting from 0) is maintained to record versions
of the target virtual function. Each time a parent class is it-
erated, each of its child class will be assigned with a rank

number. If the child class inherits the implementation of this
virtual function, then the rank number of the parent class is
assigned to this child class. Otherwise, the global rank num-
ber increases by 1 and is set to the child class.

Finally, any two classes with different rank numbers, to-
gether with the virtual call, could form a candidate exploit
primitive (virtual call, victim class, counterfeit class).
4.2.3 Primitive Capability Analysis
As discussed in Section 3.3, different virtual call primitives
have different capabilities. VScape further analyzes each
primitive to understand its capability. Specifically, it first de-
termines whether the out-of-bound (OOB) memory access in
the counterfeit function is a write or a read operation.

For an OOB read, it then analyzes how the loaded value is
used in the counterfeit function, i.e., whether it is used as a
program counter or a target memory address to write. For the
latter case, VScape will further analyze whether the written
value is controllable by the adversary, via taint analysis.

For an OOB write, it then analyzes whether the value writ-
ten to the relay object is a pointer value. If yes, VScape fur-
ther looks for potential information leakage locations (users
of the relay object) to bypass ASLR.

In this way, VScape could determine the capability of each
primitive, i.e., Ld-Ex-PC, Ld-AW-Const, Ld-AW-nonCtrl,
Ld-AW-Ctrl, St-Ptr, and St-nonPtr. Note that, one primitive
could have multiple capabilities, depending on the function-
ality of the counterfeit function and users of the relay object.

4.3 Expected Primitive Construction
Given all candidate primitives and their capabilities, VScape
further selects appropriate ones which can cooperate with the
given vulnerability and satisfy expected primitive attributes.
4.3.1 Vulnerability Matching
Given a vulnerability, not all candidate primitives could be
invoked. Specifically, the vulnerable object where the vul-
nerability occurs has to be allocated in the same heap as the
victim object of the candidate primitive.

For instance, if there are multiple heap allocators responsi-
ble for allocating different objects, or the sole heap allocator
puts objects of different types or different sizes into different
zones, then the vulnerable object cannot influence the victim
object, and the corresponding primitive will not work.

Given the vulnerability description input, VScape learns
expert knowledge of the heap allocators, and then matches
candidate primitives with the target.
4.3.2 Exploitable Memory States Inference
In an exploit, the vcall primitive has to serve a specific pur-
pose, e.g., write a specific value to a specific address. In
order to serve such purposes, which are defined as input ex-
pected primitive attributes, the candidate vcall primitive has
to run in a specific memory state, e.g., certain fields in the
victim object have to take specific values.

VScape could automatically infer such memory state re-
quirements for a candidate vcall primitive via taint analysis

t25 = GET:I64(rdi)
STle(t23) = t25 # t23=t26
t28 = LDle:I64(t26) # t28=this
t42 = Add64(t28,0x50) # x=0x50
t44 = LDle:I64(t42)
t45 = Add64(t44,0x78) # y=0x78
t48 = LDle:I32(t45)
t47 = Add64(t48,0x18) # z=0x18
t50 = LDle:I32(t47)
t49 = 32Uto64(t50)
t51 = 64to32(t49)
t14 = Add32(t51,0x1) # increment
t55 = 32Uto64(t14)
t58 = 64to32(t55)
STle(t56) = t58

IN: target_addr, taint trace of a given gadget
OUT: memory_setting

Memory_Setting_Template:
set_64bit_mem(base, offset, value)
set_64bit_mem(this, offset1, addr1)
set_64bit_mem(addr1, offset2, addr2)
...

Expressions:
t42= this + x
t45= t44 + y
t47= t48 + z

Point-to:
t44 = *t42
t48 = *t45

Conditions:
t47 == target_addr

Result:
offset1 = x, addr1 = ctrl_mem (for fake objects)
offset2 = y, addr2 = target_addr-z

Taint Trace on VEX

Semantics of the above:
((*(this+x)+y)+z)++

Figure 6: An example memory state inference, for a primi-
tive with the Ld-AW-Ctrl capability.
and symbolic execution. Given a candidate primitive, i.e.,
a virtual call site, a victim function and a counterfeit func-
tion, VScape will mark the victim object and the adjacent
relay object as symbolic values, and symbolically executes
the counterfeit function which will access the relay object.

For instance, Figure 6 shows a primitive with the capabil-
ity Ld-AW-Ctrl, and the expected primitive attribute is that
this primitive should write to a specific address target_addr.
By performing symbolic execution on the taint-related trace
of the counterfeit function, we could infer that, the adversary
needs to set the field at offset x with a pointer to a fake object
crafted by the adversary, and set the field at offset y of this
fake object with target_addr - z.

4.4 Exploit Constraint Solving
So far, the candidate primitives are retrieved via static anal-
ysis. It is not clear whether such primitives could reveal ex-
pected behaviors at runtime.

Given a candidate primitive (virtual call, victim class,
counterfeit class), there are three specific questions to an-
swer: (1) Given that not all data flow is feasible at runtime,
whether the victim object will be used at the vcall site? In
other words, whether the victim function could be invoked at
runtime? If not, the counterfeit function will not be invoked
either. (2) Given that the counterfeit function has many pro-
gram paths, whether the OOB memory access instruction
could get executed at runtime? If not, the unexpected mem-
ory safety violation will not happen. (3) If both answers are
yes, what data constraints should be met in order to trigger
the victim function and the OOB access instruction?
4.4.1 Reachability of Victim Functions
Directed fuzzing [35] is a straightforward solution to evalu-
ate the runtime reachability of the target function or instruc-
tion. However, during the experiment, we figured out the
efficiency of existing directed fuzzing solutions is low at ex-
ploring reachable targets when there are hundreds of targets
in a relatively large application.

As a result, we skip evaluating the reachability of every
victim function. Instead, we only try the best to get an in-
complete list of reachable victim functions, and discard re-

1 def main () :
2 h e a p _ o p e r a t i o n _ b e f o r e _ r e l a y _ o b j e c t ()
3 gen_relay_object_and_fake_object()
4 h e a p _ o p e r a t i o n _ b e f o r e _ v i c t i m _ o b j e c t ()
5 gen_allocate_victim_object()
6 v u l _ t r i g g e r ()
7 gen_invoke_counterfeit_function()
8 o p e r a t i o n s _ a f t e r _ c o o p l u s ()
9

10 # Prepare memory f o r the expec ted p r i m i t i v e
11 def g e n _ r e l a y _ o b j e c t _ a n d _ f a k e _ o b j e c t () :
12 ' ' ' set_memory (re lay_base , o f f s e t _ 1 , va lue_1) ' ' '
13 ' ' ' set_memory (fake_base , o f f s e t _ 2 , va lue_2) ' ' '
14 . . .
15 # Ensure v i c t i m f u n c t i o n ' s r e a c h a b i l i t y
16 def g e n _ a l l o c a t e _ v i c t i m _ o b j e c t () :
17 from PyQt5 . QtCore import Qt
18 from PyQt5 . QtWidgets import QWidget , Q A p p l i c a t i o n
19 window = QWidget ()
20 # Ensure OOB i n s t r u c t i o n ' s r e a c h a b i l i t y
21 def g e n _ i n v o k e _ c o u n t e r f e i t _ f u n c t i o n () :
22 window . show ()

Listing 3: An example exploit template for PyQt.

maining victim functions (although some of them could be
reachable). Specifically, we utilize dynamic testing to evalu-
ate target applications with given benchmark test cases, and
collect victim functions that are triggered during testing.

Specifically, VScape inserts callback handlers at virtual
call sites of each candidate primitive. During testing, the
callback handler will log the invoked victim function and the
corresponding test case.
4.4.2 Reachability of OOB Instructions
Given a reachable victim function of a candidate primitive,
we could launch COOPLUS to execute the counterfeit func-
tion. However, the out-of-bound access operation in the
counterfeit function may not get executed at runtime, since
this function may have multiple paths.

VScape utilizes symbolic execution to infer whether the
OOB access instruction is reachable and under what condi-
tion it is reachable. More specifically, it takes the logged test
case that reaches the victim function as input, and dumps
the runtime context when the victim function is hit, and then
feeds it to the symbolic execution engine Angr [19].

Starting from the dumped context, Angr begins concolic
execution on the counterfeit function (rather than the victim
function). The relay object is marked as symbolic values,
since it could be controlled by the adversary via heap manip-
ulation. Angr will explore all paths of the counterfeit func-
tion and verify whether the OOB instruction is reachable. If
yes, it outputs the path constraints (e.g., a specific memory
state) that should be satisfied by related objects.
4.4.3 Exploit Assembling
Generating an exploit in practice is extremely challenging,
both for humans and machines. There are many open chal-
lenges in automated exploit generation [36]. VScape is not
able to generate full chain exploits automatically neither.

VScape also relies on a user-provided exploit template to
compose a full chain exploit. Specifically, several manual
steps are required in the template, including (1) manipulate

the heap layouts of the target application, to arrange victim
objects and relay objects; (2) reform the vulnerability POC
to tamper with vptr of the victim object with a proper value,
and (3) utilize the capability provided by the COOPLUS
primitives to launch final exploits. For the first step, there
are several draft solutions to assist heap layout manipulation,
e.g., SLAKE [37], SHRIKE [38] and Gollum [12]. However,
they are still in an early stage. For the second step, symbolic
execution is a potential solution. But it requires great engi-
neering efforts and faces the scalability challenge. For the
last step, many well-known exploit patterns are required to
assist the exploitation. For instance, the adversary could uti-
lize AAW to overwrite the global offset table or other func-
tion pointers to hijack the control flow. We leave the automa-
tion of these steps to future work.

Listing 3 shows an example exploit template for PyQt. Op-
erations at line 2, 4, 6, and 8 represent the aforementioned
manual steps, where operations at line 3, 5, and 7 could be
automatically done by VScape. Specifically, at line 3, VS-
cape infers the memory state in which the vcall primitive has
to run. At line 5, VScape builds the victim object from a
logged test case and ensures the reachability of the victim
function. At line 7, VScape ensures the counterfeit function
is invoked and the OOB instruction is executed.

5 Evaluations
To evaluate the effectiveness of COOPLUS attack and VS-
cape, we designed several experiments and tried to answer
the following questions:

• RQ1: What is the popularity of COOPLUS exploit
primitives in real world C++ applications?

• RQ2: Is the COOPLUS attack effective at defeating var-
ious virtual call protections?

• RQ3: Is VScape effective at generating exploit primi-
tives and assisting full chain exploit generation, when
given real world vulnerabilities?

5.1 Implementation
We implemented a prototype of VScape. It consists of (1) a
compiler plugin based on Clang [53] and LLVM [54] to col-
lect virtual call related information, (2) a primitive searcher
which finds candidate primitives and analyzes their capabil-
ities based on the VEX IR [55], (3) an expected primitive
constructor which finds matching primitives and required
memory states, and (4) an exploit constraint solver which
adopts lightweight dynamic tests and symbolic execution
based on Angr [19], to filter reachable victim functions and
solve memory states that can reach target OOB. The code
size of each component is listed in Table 2.

5.2 Attack Surface Analysis
To answer the question RQ1, we evaluated VScape on 14
open source C++ programs, which are widely used and ac-
tively maintained. All programs are compiled with default

Table 1: Statistics of virtual functions, virtual call sites, and COOPLUS exploit primitives of 14 C++ applications.

Unique Virtual Call Sites (UVC) VFunc Variants (Ranks)
for #UVC-CVF

VFunc Variants (Ranks)
for #UVC-OVF

Category App Version LoC Virtual
Functions

Virtual
Call Sites All #UVC-CC #UVC-CVF All µ Max

#UVC-
OVF All µ σ Med Max

All
Primitives

firefox [39] 50.1.0 1,062,487 84,753 101,116 25,224 18,874 (74%) 2,279 (9%) 12,480 5.5 627 969 3,432 3.5 12.8 2 389 83,786Browser chromium [40] 77.0.3864.0 3,670,688 171,373 322,583 61,315 34,371 (56%) 7,205 (12%) 30,532 4.2 1,124 3,741 11,808 3.2 16.7 2 978 535,007
oce [41] 0.11 1,979,905 18,097 29,945 3,738 1,877 (50%) 609 (16%) 7,188 11.8 3,323 303 1,123 3.7 4.1 2 62 4,040
Bento4 [42] 1.5.1.0 77,050 935 1,879 253 141 (55%) 43 (17%) 264 6.1 77 31 152 4.9 7.4 3 44 1,140
ImageMagick [43]7.0.8 540,190 294 40 10 7 (70%) 2 (20%) 118 59.0 59 1 18 18.0 0.0 18 18 153
exiv2 [44] 0.27.1 367,780 908 3,041 300 163 (54%) 36 (12%) 177 4.9 13 19 68 3.6 2.2 2 8 134
opencv [45] 4.1.2 1,352,028 36,855 28,569 9,183 883 (9%) 182 (2%) 2,907 16.0 160 86 1,216 14.1 33.1 2 157 55,116
qt [46] 5.12.0 26,292,899 27,590 28,601 6,764 4,730 (69%) 1,662 (25%) 14,027 8.4 2,015 840 4,468 5.3 34.5 2 751 508,141

Multi-
media
Tech

aGrum [47] 0.16.3.9 406,787 2,597 33,028 1,006 304 (30%) 36 (4%) 92 2.6 6 8 23 2.9 1.1 2.5 5 26
SLikeNet [48] 0.2.0 1,062,487 445 1,924 308 135 (43%) 29 (9%) 147 5.1 25 11 79 7.2 7.3 2 24 538
Bitcoin [49] 0.18.1 262,693 2,142 5,875 400 246 (61%) 33 (8%) 100 3.0 7 25 64 2.6 1.0 2 5 62
znc [50] 1.8.0 26,951 761 1,412 257 225 (87%) 85 (33%) 394 4.6 36 28 73 2.6 1.7 2 11 99

Network
& Server

mongodb [51] 4.3.2 4,755,978 17,025 22,171 4,176 2,738 (65%) 406 (10%) 2,387 5.9 230 206 577 2.8 1.8 2 17 865
Others openbabel [52] 3.0.0 206,855 2,220 2,569 466 234 (50%) 66 (14%) 674 10.2 121 31 136 4.4 3.8 3 21 455

#UVC-CC: UVCs with multiple Compatible Classes, #UVC-CVF: UVCs with multiple Compatible VFuncs. #UVC-OVF: UVC with OOB VFunc pairs.
µ: Average number of VFunc Variants for each UVC, σ: Standard deviation of VFunc Variants.

Table 2: Implementation of VScape
Component Language LoC

Customized Compiler C++ 2097
Primitive Searcher Python 5209

Expected primitive construction Python 822
Exploit constraint solving C++, Python 1118

Total C++, Python 9246

configurations. In order to replay vulnerabilities found sev-
eral years ago, we conducted experiments in the outdated
Ubuntu 16.04 system.
5.2.1 Popularity of Virtual Calls
Table 1 shows the statistics of virtual functions and vir-
tual call sites of each application. From the fifth and sixth
columns, we can see that: All applications have hundreds of
virtual functions, while Chromium has over 171 thousands
of virtual functions. Moreover, all applications except Im-
ageMagick have thousands of virtual call sites. It shows that
polymorphism is very popular in C++ applications.

We further analyze those virtual call sites in detail. First,
different virtual call sites may invoke the same virtual func-
tion, i.e., the same function declared in the same base class.
From the perspective of COOPLUS, different virtual call
sites expecting the same virtual function could be exploited
in the same way. So, we deduplicate the virtual call sites,
and count the number of unique virtual call sites (UVC) in
column 7.

Then, given a virtual call site, it expects a virtual function
declared in a base interface class, and any overridden virtual
function implemented in a derivation of the base class is al-
lowed. However, there are two special cases in which only
one virtual function exists: (1) the base interface class does
not have any derivations, and (2) all derivation classes do not
override the implementation in the base class. Therefore, we
remove UVCs that satisfy the first condition and list the re-
mained count in column 8, and remove UVCs that satisfy
the second condition and list the remained count in column
9. These UVCs form the basis of COOPLUS.

For instance, in the application Chromium, there are over
61 thousands of UVCs, but 44% (=1-56%) of them have
only one compatible class (i.e., no derivations), another 44%
(=56%-12%) of them have multiple compatible classes but
none of them override the target virtual function expected

at the UVC, and only 12% of them actually have multiple
compatible functions. In other words, about 88% (=1-12%)
of these UVCs only have one candidate virtual function to
invoke in the whole application, and therefore could be op-
timized with the devirtualization technique [56]. It also im-
plies that, developers tend to use polymorphism, even if no
derivations are implemented in the current version of code.

5.2.2 COOPLUS Exploit Primitives
For a UVC, if it has multiple compatible functions, then it
is a candidate that COOPLUS could utilize to bypass the de-
ployed defense. Column 10-19 in Table 1 shows the detail
statistics of candidate exploit primitives in each application.

For UVCs with multiple compatible virtual functions, the
average number of compatible functions ranges from 2.6
(aGrum) to 59 (ImageMagick), as shown in the fourth col-
umn. Further, the maximum number of compatible virtual
functions ranges from 6 (aGrum) to 3323 (oce), as shown in
column 12. This number roughly implies the complexity of
the class inheritance hierarchy (CIH) tree of the application.

Further, since COOPLUS only works for virtual functions
that could cause out-of-bound (OOB) access on objects of
compatible classes, we also count the number of UVCs that
have at least one pair of compatible functions with OOB ac-
cess operations, and list the data in column 13. For these
filtered UVCs, we also count their numbers of compatible
virtual functions in column 14, 15, 16, 17 and 18. From the
median and the standard deviation, we can see the number of
compatible virtual functions are not spread evenly. Mostly,
we can only find a pair of them. But even so, we can find
abundant virtual functions for some UVCs. Lastly, the num-
ber of candidate COOPLUS exploit primitives is listed in the
last column (i.e., column 19).

Further, VScape analyzes each primitive to understand
its capability. Details can be found in Appendix A.2. For
feature-rich applications, e.g., firefox and opencv, hundreds
of primitive gadgets are found. Especially, there are over
5,360 useful COOPLUS gadgets recognized in chromium
(shown as Table 4), implying a large attack surface is avail-
able for adversaries to bypass potential defenses. Therefore,
we can conclude that, COOPLUS exploit primitives are very
popular in C++ applications (answers to RQ1).

Table 3: Effectiveness of CFI solutions against COOPLUS

Category CFI Scheme Granularity Realization Theoretical Basis Effective against
COOP⋆

Effective against
COOPLUS

ABI incompatible CFIXX [24] - Source code + MPX [57] Object integrity 3 3
Validity check

(with runtime context)
µCFI [8] Unique Source code + Intel PT [58] Path-sensitive 3 3
OS-CFI [2] Fine Source code + MPX [57] + TSX [59] Source-sensitive 3 7

Validity check
(with C++ semantics)

MCFI [60] Fine Source code Type-based 3 7
πCFI [61] Fine Source code Context-sensitive 3 7
CFI-LB [62] Fine Source code + Intel PIN [63] Call stack based ? 7
SafeDispatch∗ [64] Fine Source code Type-based 3 7
LLVM-CFI [6] Fine Source code Type-based 3 7

Generic CFI
(Example targets in COOP)

CCFIR [4] Coarse Binary - 7 7
binCFI [3] Coarse Binary - 7 7
LockDown [65] Coarse Binary - 7 7

?: CFI-LB has an implementation flaw which makes it fail to defeat COOP. This flaw has also been confirmed by [32].
*: SafeDispatch is not open-source, we evaluate it based on a reproduction work [66].
⋆: Here, we refer COOP to the one claimed in the original paper [5], excluding the variant COOPLUS.

5.3 Test against CFI Solutions
To answer the question RQ2, we further evaluate the effec-
tiveness of 12 virtual call protections against COOPLUS.
5.3.1 Experiment Setup
We crafted a vulnerable benchmark [67], and hardened it
with 11 CFI defenses respectively, to evaluate their effective-
ness against COOPLUS. Note that, we did not choose large
applications like browsers as targets to evaluate, for the fol-
lowing reasons. First, few proposed CFI solutions can be
deployed to real world large applications without compati-
bility issues. For instance, the Clang-CFI [6] fails to com-
pile Firefox due to cross module support. Second, a crafted
benchmark is easy to exploit and to validate, since no heap
layout manipulation or other advanced exploit skills are re-
quired. Third, the evaluation result drew from the crafted
benchmark is the same as the result from real world applica-
tions, in terms of defenses’ effectiveness against COOPLUS.
5.3.2 Result Analysis
Table 3 shows the evaluation results of these defenses. It
confirmed that CFI approaches that do not consider C++ se-
mantics ([4], [3], [65]) are all vulnerable to COOP [5] and
COOPLUS. The original paper [5] claimed COOP can be re-
liably prevented when precise C++ semantics are taken into
consideration. We believed this is not correct. As the results
showed, one variant of COOP, i.e., COOPLUS, successfully
bypasses all defenses except CFIXX [24] and µCFI [8] (an-
swers to RQ2).

The defense CFIXX places vptr in a separate integrity-
protected table, so that the adversary cannot overwrite it to
launch COOPLUS. But CFIXX breaks the C++ ABI and
may cause compatibility issues in some applications.

The CFI defense µCFI takes runtime data flow informa-
tion into consideration, and could identify the unique target
for each indirect call (including virtual call) in most cases.
Essentially, it provides data integrity protection to vptr to
certain extents. Thus, it is able to defeat COOPLUS in most
cases. But it requires Intel PT and a separate process to mon-
itor data, making it hard to deploy in practice. Another CFI
solution OS-CFI also takes runtime context into considera-
tion, but could be bypassed by COOPLUS in some cases,
due to some trade-offs in its implementation [32].

For all other CFI solutions, including C++ semantic
aware ones (e.g., MCFI [60]), they all can be bypassed by
COOPLUS, since they (1) keep the C++ ABI, (2) cannot pro-
tect the integrity of vptr, and (3) allow more than one targets
at virtual call sites.

Therefore, to fully mitigate COOPLUS, a solution which
protects the integrity of vptr with a low performance over-
head and good compatibility is demanded.

5.4 Exploit in Practice
To answer the question RQ3, we evaluated VScape on
Mozilla Firefox 50.1 (64-bit) and Python-3.6.7 with PyQt-
5.12 library in a Linux x64 operating system.

These two applications both have OOB vulnerabilities
[68, 69] and large numbers of primitives for the COOPLUS
attack. Two key factors affecting exploit success rates are (1)
whether these primitives are reachable (i.e., could be invoked
by users), and (2) how these primitives can help amplify the
vulnerability to acquire more powerful capabilities. VScape
will help with these analyses. Given an exploit template tak-
ing care of the rest AEG challenges, we finally synthesize
expressive exploits for the targets with VScape.
5.4.1 Attack Surface Analysis
We analyzed Firefox and PyQt with VScape, and demon-
strated the analysis results in Figure 7 and 8.

After recovering class inheritance hierarchy trees, we get
2,279 unique virtual call sites (UVC) that have multiple can-
didate virtual functions in Firefox (1,662 in PyQt). Then,
after performing primitive search, we can filter out UVCs
that do not have OOB virtual function pairs, and get 969 and
840 UVCs in Firefox and PyQt respectively. For each UVC,
there could be multiple virtual function pairs with OOB be-
haviors, and thus we could get multiple primitives. As shown
in Figure 7, there are 83,786 and 508,141 primitives respec-
tively.

Further, we perform the reachability testing, to get an in-
complete set of victim functions and their UVCs. Thus, we
get 180 and 220 reachable UVCs, together with 1665 and
2299 primitives respectively. Furthermore, we match these
primitives with given vulnerabilities (CVE-2018-5146 and
CVE-2014-1912), and get 12 and 16 qualified UVCs. Lastly,

1,662
840

220 16

2,279

969
183 12

#UVC-
CVF

#UVC-
OVF

#UVC-
Reachable

#UVC-
Qualified

Chosen
Primitive

0

1,000

2,000

3,000

4,000

5,000

6,000

#UVCs of PyQt
#UVCs of Firefox

S1 S2 S3 S4

508,141

2299
657

1

83,786

1665

481

2

1

10

100

1,000

10,000

100,000

1,000,000Primitives of PyQt
Primitives of Firefox

S2: UVC
reachability test

S4: Inst reachability
solve

S3: Vulnerability
matching

S1: Primitive search

#UVC-CVF

Chosen
primitive

Figure 7: The number of candidates descends along various analyzing stages.

Figure 8: Time cost distribution of
each analysis phase. The inner ring is
for Firefox, the outer is for PyQt.

we assess the reachability of target OOB instructions, and
find one (incomplete set) UVC in these two applications, to-
gether with 1 and 2 primitives respectively.

Figure 8 shows the time cost distribution of different anal-
ysis steps. For Firefox, UVC reachability testing took the
most time, which tested 43,463 test cases from the Firefox
project. But for PyQt, we only collected 330 test cases to
perform reachability testing. In contrast, VScape spent most
of the time in primitive search and capability analysis, which
are the main steps to locate the attack surfaces.

5.4.2 Case Study
Due to the page limit, we only present the case study for
Mozilla Firefox 50.1 (64 bit) here, and put the case study for
PyQt in Appendix A.1.

For Firefox, we used CVE-2018-5146 [69] to demonstrate
the attack. This vulnerability is an out-of-bound write with
controllable value, which occurs while processing Vorbis
audio data with Libvorbis. But the OOB write only af-
fects objects in jemalloc heap [70], separated from easily-
controllable JS Objects in Nursery or Tenured memory.

The complicated memory management in Firefox in-
creases the difficulty of exploitation. Controllable JS ob-
jects in Firefox are managed by generational garbage collec-
tor (GGC) [71], while victim objects (C/C++ objects) quali-
fied for COOPLUS are allocated on the jemalloc heap. Only
if the size of a JS object exceeds a certain limit, it will be
moved to the jemalloc heap. Moreover, the jemalloc allo-
cates objects in different runs with respect to their sizes. So
the constraints of object sizes should be considered.

Amplification Strategy. The vulnerability CVE-2018-
5146 [69] exists in libvorbis is related to the procedure of
decoding ogg data to PCM data. A boundary check is missed
in a nested loop, leading to an out-of-bound increment mem-
ory in the native heap (jemalloc in this case). And the size of
the vulnerable object is adjustable. Since the key instruction
in PoC is a floating add, we need to know the original value
of vptr, then we can replace it with vptr of counterfeit class.

Among all types of gadgets, St-nonPtr is the most popular
(as shown in Table 4). In most cases, the counterfeit function
tries to write a boolean value into OOB area. For COOPLUS,
this helps attackers to write exception value, zero or one,
into relay objects. If we can manipulate Hi address byte,
pointers are very possible to be corrupted and re-pointed to

addresses out of the memory segment. When the corrupted
pointer value locates in unmapping memory, we can take full
control over this range with elaborated heap spray.

In this way, we build a complete controllable faking object
in this area. If the faking object contains metadata underly-
ing memory read and write, it can also be used for AAR and
AAW in exploitation. Specifically, we counterfeit objects of
JSString, modify the data pointers and leak memory in arbi-
trary addresses. Then with sufficient leaks, we can make it
easy to counterfeit complicated objects like ArrayBufferOb-
ject and TypedArrayObject, and write arbitrary bytes into
target addresses. We find some qualified objects which live
across heap managers - the data list for ArrayObject will be
moved to jemalloc from Nursery and Tenured when its size
grows larger than 128 bytes.

With the heap manager deployed in Firefox, we have to
search vulnerable objects, victim objects, and relay objects in
the same size range. We choose the relay object whose size
must exceed 128 bytes. Thus, to meet the requirements for
heap layouts, we can only select victim classes in a primitive
database whose size is big enough.

Primitive in Exploit. According to above, we order
VScape with several rules (1) the size of victim class ex-
ceed 128, (2) the offset of victim member variable off mod
8 > 1 (Hi address byte) and (3) the primitive has capa-
bilities of St-nonPtr. The number of matched candidate
UVC is 71. And 12 of them are triggered in reachabil-
ity tests. Then, the primitive tuple that we select is (An-
imation::UpdateTiming(), Animation, CSSAnimation)
in the namespace of mozilla::dom.

Before composing a real exploit, we emulate a PC hijack
toward the counterfeit virtual function, and implement sym-
bolic execution by Angr, to assess whether the target instruc-
tion is reachable in the assumption that the memory of re-
lay objects is controllable. In this case, the instruction for
OOB-Writing only executes when a variable named mNeed-
sNewAnimationIndexWhenRun is not null, which is exactly
an overwritten variable in the relay object. And the condition
does not conflict with the supposed gadget who is going to
zero the boolean type variable.

Specifically, Firefox provides Web Animation APIs for
users to describe animations on DOM elements. When
we declare animation config with javascript code, corre-

0xfffe0aca122351e0

(1) Memory layout before COOPLUS attack

①

②

③

JSStringObject

Data pointer

Data Field

Controllablememory

Arbitrary address

0xfffe0aca120051e0

Counterfeit ptr

Sensitive data

Strings…

vptr Counterfeit vptr

(2) Memory layout after COOPLUS attack

… …

Figure 9: COOPLUS exploit primitives for Firefox.
1 vulnerable object - float list 2 victim object - mozilla::
dom::Animation 3 relay object - item list of ArrayObject.

sponding Animation objects will be allocated on jemal-
loc heap during page rendering. CSSAnimation is a sub
class of Animation, the counterfeit function CSSAnima-
tion::UpdateTiming() tries to zero the boolean variable
mNeedsNewAnimationIndexWhenRun.

Exploit Synthesis. The object size of Animation is 256
bytes. Thus, such objects will only be found in runs for 256
bytes. To create the required heap layout, the vulnerable ob-
ject (float list) and the relay object (data list for ArrayOb-
ject) are all modified into the same size.

As shown in Figure 9, after triggering the counterfeit func-
tion, we can tamper with the NaN-boxing pointer of Ar-
rayObject’s item. When the pointer is redirected toward
controllable memory, we use a counterfeit JSStringObject
to get AAR. Then with similar technique, replacing coun-
terfeit JSStringObject with a counterfeit TypedArrayOb-
ject, AAW is as well achieved.

6 Related Work
6.1 CFI-Oriented Attacks
Researchers have proposed a number of practical yet impre-
cise CFI solutions. Although these coarse-grained CFI so-
lutions can significantly reduce the attack surface, multiple
attacks [72–74] have been proposed to bypass these CFI so-
lutions, by exploiting the fact that the size of equivalence
class (EC) for each ICT is still large.

To defeat attacks against coarse-grained CFI solutions, re-
searchers also proposed fine-grained CFI solutions. How-
ever, as sound and complete pointer analysis is unfortunately
undecidable, fine-grained CFI solutions rely on sound but in-
complete pointer analysis in practice, providing conservative
over-approximate results and enabling potential attacks. For
example, Control Jujutsu [75] shows that common software
engineering practices force points-to analysis to merge sev-
eral equivalence classes. Imprecise ECs are large enough for
arbitrary computation, to enable an attacker to execute arbi-
trary malicious code even when fine-grained CFI is enforced.
Control-Flow Bending [27] goes one step further and shows
that CFI solutions with ideal point-to analysis results are still
vulnerable. Some other attacks target implementations of
specific CFI solutions. For example, StackDefiler [28] ex-

ploits the defect in detail design of IFCC and VTV [6] to
realize successful hijack in Chrome.

Recently proposed CFI solutions (e.g., πCFI [61], OS-
CFI [2] and µCFI [8]) utilize runtime context information
to reduce the size of EC, providing better defenses against
these attacks. These solutions provide data flow integrity to
a certain extent, but in general, are hard to deploy in practice.

COOP [5] first used counterfeit objects to enable Turing-
complete malicious computations. But it is wrongly declared
that COOP can only circumvent CFI solutions that are not
aware of C++ semantic. Instead, one variant of COOP, i.e.,
COOPLUS, is able to bypass virtual call protections that are
C++ semantics aware but neither break the C++ ABI nor pro-
tect the integrity of vptr, even when only weak vulnerabili-
ties are given.

6.2 Automated Exploit Generation
Automated exploit generation (AEG) can be used to assess
the exploitability of vulnerability by generating an exploit.
Since David et al. proposed automatic patch-based exploit
generation (APEG) [76], AEG [9–11, 16, 77] has become a
research focus in recent years.

Representative techniques include AEG [9], May-
hem [10], Q [14] and CRAX [15]. These AEG solutions
share a similar workflow. In general, they will first ana-
lyze vulnerabilities in detail along with a crashing path, then
search for exploitable states, collect vulnerability and exploit
constraints respectively, and finally generate exploit inputs.

Repel [78] shows examples to exploit heap-based vulnera-
bilities with symbolic executions starting from crash points.
PRIMGEN [79] automatically counterfeits fake objects to
obtain exploit primitives in Web browsers. A key limita-
tion in these AEG solutions is that they only focus on ana-
lyzing one single program state in crashing paths. Recently,
FUZE [80] and Revery [11] use fuzzing to explore more ex-
ploitable states. Note that, all such solutions are not fully
automated, and still require expert knowledge or annotations.
Gollum [12] first completes an end-to-end AEG system from
primitive extraction to heap layout inference in user space.

Another key challenge is heap layout manipulation.
ARCHEAP [81] presents an automatic tool to systematically
discover the unexplored heap exploitation primitives for spe-
cific heap allocators. RELAY [82] simulates human exploita-
tion behavior for metadata corruption and solves layout prob-
lems according to the exploit pattern. And HEAPG [83] au-
tomates multi-hop exploitation for heap-based vulnerability
via known techniques of ptmalloc. These three studies help
synthesize exploits in CTF challenges but do not help much
when composing a heap-based exploit in real world.

Gollum [12] applies a genetic algorithm to solve this prob-
lem and accelerates the performance of the random search
algorithm proposed in SHRIKE [38]. Another work SLAKE
[37] extracts heap operations and obtains desired slab layouts
based on the specific knowledge of kernel heap allocator.

Although some of AEG solutions show their effectiveness
in real applications, none of them have taken modern de-
fenses into consideration. For instance, Revery [11] and Gol-
lum [12]) focusing on exploiting heap vulnerabilities only
works well when the defense ASLR [13] is disabled. AEG
solutions targeting stack-based buffer overflow, e.g., Q [14],
CRAX [15] and PolyAEG [16], cannot bypass stack ca-
nary [17]. Compared with these AEG solutions, VScape is
able to generate exploits to bypass virtual call protections
and evaluate COOPLUS with real CVE cases.

DOP attacks. A generalized form of data-only attacks is
Data Oriented Programming (DOP) [84]. Since DOP does
not tamper with control flow, it is outside the scope of most
CFI solutions. Data Flow Integrity (i.e., [21, 22]) is a pop-
ular defense against DOP. The work [85] has developed a
semi-automated framework to search for DOP gadgets. By
assuming AAR and AAW capability, BOPC [34] further au-
tomatically generates DOP exploit payloads. However, in
practice, how to get AAR and AAW capability in practice,
especially when the target is fully protected, is not addressed
in previous solutions.

In contrast, COOPLUS is a CFI-oriented attack. Given a
weak vulnerability, VScape is committed to building AAR
and AAW primitives under modern defenses.

7 Discussion
Potential Mitigations. Given the preconditions of the
COOPLUS, there are two ways to protect applications from
this attack, including: (1) separating vptr from writable and
vulnerable heap objects, e.g., by putting them in a separate
protected memory region; and (2) protecting the integrity of
vptr, e.g., by applying DFI to block illegal writes to vptr.

The first type of defense will break the C++ ABI, as
shown in CFIXX [24]. Thus, such defenses are not prac-
tical. Proper mitigation would be protecting the integrity
of vptr. However, traditional data-flow integrity solutions
(e.g., [21, 22]) in general have high performance overheads,
which also prohibit the adoption.

Instead, we think applicable mitigation is a combination
of type-based and context-sensitive CFI solutions, which
could provide similar protection as data flow integrity. As
shown in our experiment, the context-sensitive CFI solution
µCFI [8] successfully protects the benchmark code [67] from
COOPLUS with precise runtime information. But µCFI re-
quires Intel PT and works on a customized kernel, making
it hard to deploy in practice. By contrast, type-based CFI
solutions are popular and take less effort in implementation
and deployment. Thus, for a perfect defense, it is necessary
to measure the size of overridden virtual functions for each
virtual call site. For a virtual call with only one candidate vir-
tual function implementation, a type-based check is enough
to ensure the control-flow integrity. But for virtual calls hav-
ing more than one compatible function, the context informa-
tion (e.g., the origin of objects) should be considered.

But there are some challenges to address, in order to ef-
ficiently track context information without causing compat-
ibility issues. CFI-LB [62] uses call stack to represent the
context, is able to reduce the size of EC, but still leaves mul-
tiple valid targets. OS-CFI [2] utilizes the origin sensitivity
to divide the targets of each ICT into the smallest sets, how-
ever, has severe compatibility issues [32]. These challenges
are left as future work.

Limitations of VScape. Same to other state-of-the-
art AEG researches (i,e, Gollum [12], Revery [11] and
BOPC [34],), VScape is also not fully automated. It still
greatly depends on exploit templates to prepare for the
prospective exploit routine. There are still several open chal-
lenges to address, including but not only limited to (1) auto-
mated heap layout manipulation, especially in a heap man-
ager with a garbage collector, (2) generating exploits for
complicated and large applications (such as browsers), and
(3) requiring expert knowledge (e.g., exploiting strategies) to
compose multi-step exploits. These challenges greatly limit
the availability of these AEG tools, including VScape.

Practicality of COOPLUS. For C++ applications utiliz-
ing virtual functions, the COOPLUS attack surface is large,
as shown in Table 1. As proved by the examples in Firefox
and PyQt, this attack is feasible in real world targets. We
believe this type of attack is general and realistic. However,
we cannot guarantee this type of attack will always succeed.
The key factor affecting the success rate is the number of
available exploit primitives existed in target applications.

8 Conclusions
In this paper, we propose an advanced attack COOPLUS, and
present a solution VScape to assess the effectiveness of vir-
tual calls defenses against this attack. COOPLUS is a code
reuse attack that is able to bypass every virtual call protec-
tion as long as it (1) does not break the ABI of virtual calls,
(2) cannot guarantee the integrity of C++ objects’ VTable
pointers, and (3) allow multiple runtime targets at virtual call
sites. Following the principle of COOPLUS, our solution
VScape analyzes target applications and compiles proper ex-
ploit primitives for generating final exploits, to assess the ef-
fectiveness of target defenses. We evaluated VScape on C++
applications with known vulnerabilities. Results showed that
real-world applications have a large set of exploitable virtual
calls, and VScape could be utilized to generate working ex-
ploits to bypass virtual call protections with weak vulnera-
bilities. We concluded that, to fully mitigate COOPLUS in
practice, we have to protect the integrity of vptr with a low
performance overhead and good compatibility.

Acknowledgement

This work was supported in part by National Natu-
ral Science Foundation of China under Grant 61772308,

61972224, U1736209 and U1836112, and BNRist Net-
work and Software Security Research Program under Grant
BNR2019TD01004 and BNR2019RC01009.

References
[1] M. MartnAbadi and J. L. ÚlfarErlingsson, “Control flow integrity:

Principles, implementations, and applications.” in Proceedings of the
12th ACM Conference on Computer and Communications Security,
Alexandria, Virginia, 2005, pp. 340–353.

[2] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity.” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 195–211.

[3] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 337–352.

[4] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables.” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 559–573.

[5] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications.” in 2015 IEEE
Symposium on Security and Privacy. IEEE, pp. 745–762. [Online].
Available: https://ieeexplore.ieee.org/document/7163058/

[6] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in gcc & llvm.” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 941–955.

[7] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song,
“Vtrust: Regaining trust on virtual calls.” in NDSS, 2016.

[8] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity.” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1470–
1486.

[9] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley., “Aeg:
Automatic exploit generation,” 2011.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code.” in Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 2012, pp. 380–394.

[11] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to ex-
ploitable.” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1914–
1927.

[12] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and grey-
box exploit generation for heap overflows in interpreters.” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2019, pp. 1689–1706.

[13] PaX-Team, “PaX ASLR (Address Space Layout Randomization),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.” in USENIX Security Symposium, 2011, pp. 25–41.

[15] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and
W.-M. Leong, “Crax: Software crash analysis for automatic exploit
generation by modeling attacks as symbolic continuations.” in Soft-
ware Security and Reliability (SERE), 2012 IEEE Sixth International
Conference on. IEEE, 2012, pp. 78–87.

[16] M. Wang, P. Su, Q. Li, L. Ying, Y. Yang, and D. Feng, “Automatic
polymorphic exploit generation for software vulnerabilities.” in Inter-
national Conference on Security and Privacy in Communication Sys-
tems. Springer, 2013, pp. 216–233.

[17] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in SECURITY,
1998.

[18] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation.” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[19] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis.” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[20] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint: Protect-
ing virtual function tables’ integrity.” in NDSS, 2015.

[21] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operat-
ing systems design and implementation, 2006, pp. 147–160.

[22] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in NDSS, 2016.

[23] A. Pawlowski, V. van der Veen, D. Andriesse, E. van der Kouwe,
T. Holz, C. Giuffrida, and H. Bos, “Vps: excavating high-level c++
constructs from low-level binaries to protect dynamic dispatching,”
in Proceedings of the 35th Annual Computer Security Applications
Conference. ACM, Dec 2019, p. 97–112. [Online]. Available:
https://dl.acm.org/doi/10.1145/3359789.3359797

[24] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx: Object
type integrity for c++ virtual dispatch.” in Prof. of ISOC Network &
Distributed System Security Symposium (NDSS). https://hexhive. epfl.
ch/publications/files/18NDSS. pdf, 2018.

[25] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida,
“A tough call: Mitigating advanced code-reuse attacks at the binary
level.” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 934–953.

[26] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries.” in NDSS, 2015.

[27] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 161–
176.

[28] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the
effectiveness of control-flow integrity under stack attacks.” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2015, pp. 952–963.

[29] S. Andersen and V. Abella, “Data Execution Prevention: Changes
to Functionality in Microsoft Windows XP Service Pack 2, Part
3: Memory Protection Technologies.” http://technet.microsoft.com/
en-us/library/bb457155.aspx, 2004.

[30] A. Sotirov, “Heap feng shui in javascript.” Black Hat Europe, 2007.

[31] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “In-
tel mpx explained: A cross-layer analysis of the intel mpx system
stack.” Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, vol. 2, no. 2, pp. 1–30, 2018.

[32] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding
cracks in shields: On the security of control flow integrity mecha-
nisms.” in Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2020.

https://ieeexplore.ieee.org/document/7163058/
http://pax.grsecurity.net/docs/aslr.txt
https://dl.acm.org/doi/10.1145/3359789.3359797
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx

[33] B. Maxwell, D. Thompson, G. Amerson, and L. Johnson, “Analysis
of crc methods and potential data integrity exploits.” in International
Conference on Emerging Technologies, 2003, pp. 25–26.

[34] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks.” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1868–1882.

[35] K. Serebryany and M. Böhme, “Aflgo: Directing afl to reach specific
target locations.” 2017.

[36] J. Vanegue, “The automated exploitation grand challenge.” in pre-
sented at H2HC Conference, 2013.

[37] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for ex-
ploiting vulnerabilities in the linux kernel.” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2019, pp. 1707–1722.

[38] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation.” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 763–779.

[39] “Firefox Browser.” https://www.mozilla.org/, 2020.

[40] “The Chromium Projects.” https://www.chromium.org/, 2020.

[41] “Opencascade .” https://github.com/tpaviot/oce, 2019.

[42] “Bento4 | Fast, Modern Tools and C++ Class Library.” https://github.
com/axiomatic-systems/Bento4, 2020.

[43] “ImageMagick.” https://www.imagemagick.org/, 2020.

[44] “Exif, IPTC & XMP metadata and ICC Profile.” https://www.exiv2.
org/, 2020.

[45] “Open Source Computer Vision Library.” https://opencv.org/, 2020.

[46] “Official mirror of the qt-project.org qt.” https://github.com/qt, 2020.

[47] “A GRaphical Universal Modeler.” https://agrum.gitlab.io/, 2020.

[48] “Open Source/Free Software cross-platform network engine.” https:
//github.com/SLikeSoft/SLikeNet, 2020.

[49] “Bitcoin-Open source P2P money.” https://bitcoin.org/en/, 2020.

[50] “ZNC-An advanced IRC bouncer.” https://github.com/znc/znc, 2020.

[51] “MongoDB,” https://github.com/mongodb/mongo, 2020.

[52] “Open Babel: The Open Source Chemistry Toolbox.” http://
openbabel.org/wiki/Main_Page, 2020.

[53] “Clang: a C language family frontend for LLVM.” https://clang.llvm.
org/, 2005.

[54] “The LLVM Compiler Infrastructure.” https://llvm.org/, 2000.

[55] “Valgrind Home.” https://valgrind.org/, 2020.

[56] M. Namolaru, “Devirtualization in gcc.” in Proceedings of the GCC
Developers’Summit. Citeseer, 2006, pp. 125–133.

[57] “Intel memory protection extensions.” 2018. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-intel-memory-protection-extensions.html

[58] “Processor Tracing.” https://software.intel.com/en-us/blogs/2013/09/
18/processor-tracing, 2013.

[59] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance eval-
uation of intel® transactional synchronization extensions for high-
performance computing,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Anal-
ysis, 2013, pp. 1–11.

[60] B. Niu and G. Tan, “Modular control-flow integrity.” in ACM SIG-
PLAN Notices, vol. 49, no. 6. ACM, 2014, pp. 577–587.

[61] ——, “Per-input control-flow integrity,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2015, pp. 914–926.

[62] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in 2019 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 95–110.

[63] “Pin - a dynamic binary instrumentation tool.” 2018. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html

[64] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: Securing c++ vir-
tual calls from memory corruption attacks.” in NDSS, 2014.

[65] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[66] “Reproduction of SafeDispatch.” https://github.com/kongxiao0532/
safedispatch-reproduce, 2020.

[67] “Benchmark used for testing CFI solutions’effectiveness
against the COOP LUS attack.” https://github.com/https:
//github.com/cooplus-vscape/CFIbenchmark, 2021.

[68] “Buffer Overflow in python socket packet.” https://bugs.python.org/
issue20246, 2014.

[69] “Mozilla Firefox Audio Driver Out of Bounds.” https://bugzilla.
mozilla.org/show_bug.cgi?id=1446062, 2018.

[70] “jemalloc: A general purpose malloc(3) implementation.” 2017.
[Online]. Available: https://github.com/jemalloc/jemalloc

[71] “Mozilla Garbage collection.” 2005. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey/Internals/Garbage_collection

[72] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity.” in 2014 IEEE
Symposium on Security and Privacy. IEEE, pp. 575–589. [Online].
Available: http://ieeexplore.ieee.org/document/6956588/

[73] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis, “Size does matter: Why using gadget-chain length to pre-
vent code-reuse attacks is hard.” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 417–432.

[74] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking mod-
ern defenses.” in 23rd USENIX Security Symposium (USENIX Secu-
rity 14), 2014, pp. 385–399.

[75] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses
of fine-grained control flow integrity.” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security - CCS ’15. ACM Press, pp. 901–913. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2810103.2813646

[76] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications.” in
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE,
2008, pp. 143–157.

[77] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is
mine: Automatic shellcode transplant for remote exploits,” in IEEE
Symposium on Security and Privacy (Oakland). IEEE, May 2017,
p. 824–839. [Online]. Available: http://ieeexplore.ieee.org/document/
7958612/

[78] D. Repel, J. Kinder, and L. Cavallaro, “Modular synthesis of
heap exploits.” ACM Press, 2017, p. 25–35. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3139337.3139346

[79] B. Garmany, M. Stoffel, R. Gawlik, P. Koppe, T. Blazytko, and
T. Holz, “Towards automated generation of exploitation primitives for
web browsers,” in Proceedings of the 34th Annual Computer Security
Applications Conference. ACM, Dec 2018, p. 300–312. [Online].
Available: https://dl.acm.org/doi/10.1145/3274694.3274723

https://www.mozilla.org/
https://www.chromium.org/
https://github.com/tpaviot/oce
https://github.com/axiomatic-systems/Bento4
https://github.com/axiomatic-systems/Bento4
https://www.imagemagick.org/
https://www.exiv2.org/
https://www.exiv2.org/
https://opencv.org/
https://github.com/qt
https://agrum.gitlab.io/
https://github.com/SLikeSoft/SLikeNet
https://github.com/SLikeSoft/SLikeNet
https://bitcoin.org/en/
https://github.com/znc/znc
https://github.com/mongodb/mongo
http://openbabel.org/wiki/Main_Page
http://openbabel.org/wiki/Main_Page
https://clang.llvm.org/
https://clang.llvm.org/
https://llvm.org/
https://valgrind.org/
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/kongxiao0532/safedispatch-reproduce
https://github.com/kongxiao0532/safedispatch-reproduce
https://github.com/https://github.com/cooplus-vscape/CFIbenchmark
https://github.com/https://github.com/cooplus-vscape/CFIbenchmark
https://bugs.python.org/issue20246
https://bugs.python.org/issue20246
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://bugzilla.mozilla.org/show_bug.cgi?id=1446062
https://github.com/jemalloc/jemalloc
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
http://ieeexplore.ieee.org/document/6956588/
http://dl.acm.org/citation.cfm?doid=2810103.2813646
http://ieeexplore.ieee.org/document/7958612/
http://ieeexplore.ieee.org/document/7958612/
http://dl.acm.org/citation.cfm?doid=3139337.3139346
https://dl.acm.org/doi/10.1145/3274694.3274723

[80] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze: To-
wards facilitating exploit generation for kernel use-after-free vulnera-
bilities.” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 781–797.

[81] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to
systematically discover new heap exploitation primitives,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1111–1128. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/yun

[82] F. Deng, J. Wang, B. Zhang, C. Feng, Z. Jiang, and Y. Su, “A pattern-
based software testing framework for exploitability evaluation of meta-
data corruption vulnerabilities,” Scientific Programming, vol. 2020,
2020.

[83] Z. Zhao, Y. Wang, and X. Gong, “Haepg: An automatic multi-hop
exploitation generation framework,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2020, pp. 89–109.

[84] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits.” in 24th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 177–192.

[85] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks.” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 969–986.

[86] “Pymalloc: A Specialized Object Allocator.” https://docs.python.org/
2.3/whatsnew/section-pymalloc.html, 2002.

[87] “The gnu c library (glibc).” 2019, online: accessed 26-Feb-2019.
[Online]. Available: https://www.gnu.org/software/libc/

[88] Y. Chen and X. Xing, “A systematic study of elastic objects in kernel
exploitation.” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2020.

A Appendix
Due to the page limit, we present the case study of PyQt,
the sketch of the exploit for Firefox, the benchmark code
protected by CFI but bypassed by COOPLUS, and the detail
of how VScape performs capability analysis for primitives.

A.1 Case Study of PyQt-5.12
CPython itself has no virtual calls for COOPLUS since it
is a program fully developed with C language. But with
binding libraries, Python can easily use APIs compiled into
shared libraries. PyQt is a widely used library in Python
GUI programming, which is developed with C++. Cooper-
ating with a publicly documented heap overflow vulnerabil-
ity CVE-2014-1912 [68], we evaluate COOPLUS attack for
AAR and AAW as we do for Firefox.

0xea611251c0

(1) Memory layout before COOPLUS attack

①

②

③

pyString object

Data range = 24

Data Field

Controllablememory

0xea001251c0

Counterfeit data
Range = 0x7ff..f

vptr Counterfeit vptr

(2) Memory layout after COOPLUS attack

… …

Readable
Data Field

Readable
Data Field

Figure 10: COOPLUS exploit primitives in PyQt. 1 vulner-
able object: socket character buffer 2 victim object: QWid-
getPrivate 3 relay object: item list of pyListObject.

Like Firefox, Python implements an independent allocator
named Pymalloc [86] to manage user-controlled Pyobjects.
But when the size of the Pyobject exceeds a threshold value
(512 bytes on 64 bit systems), the native allocator will take
it over. In Linux, CPython utilizes ptmalloc [87] to manage
the native heap. Comparing with jemalloc, ptmalloc makes
the heap layout extremely casual without strict isolation.

Amplification Strategy. CVE-2014-1912 [68] is a typical
heap overflow vulnerability. Attackers can write arbitrary
value directly into out-of-bound areas. And the number of
bytes corrupted is enough for our experiment. When the size
of the bytearray is 512 bytes, the three key objects could be
placed closely. In this case, VTables of the victim and the
counterfeit object are placed near to each other, we don’t
have to guess the base address of the Qt library. A partial
overwrite is enough to make the hijacking.

The vulnerable object is a character buffer in the native
heap. Thus, the victim object in primitive and the relay ob-
ject should be maintained in the native heap too. And there
are no other size requirements for objects in this case.

The strategy we used on Firefox still works well in this
case. We find the data field of pyListObject in CPython is
an ideal relay object. According to our observation, when
the items of a pyListObject exceed 64, the item table will
be allocated into the native heap. We select primitives that
can tamper with Hi Address of pointers in the relay object
with boolean values, redirect the pointer to a non-mapping
address, conterfiet a pyString object, and set the size of string
0x7ff..f (set a large value for the size of string). As a result,
we can leak memory of a wide range. Then we attain the
base address of library array.cpython, and fake a bytearray
object for AAR and AAW.

Primitive in Exploit. The same as what we do in the
case of firefox, we list two rules (1) the offset of victim
member variable offset mod 8 > 1 and (2) the primitive
should have gadgets of ST-OW-nonPtr. Finally, the primi-
tive tuple (QWidgetPrivate::endBackingStorePainting(),
QWidgetPrivate, QOpenGLWidgetPrivate) is selected
for a byte flipping in this case. But there is no
constraints for control flow this time. The only
thing that the counterfeit function QOpenGLWidgetPri-
vate::endBackingStorePainting() does is to set the byte at
the offset +490 in the counterfeit object to zero. Since the
chunk size of the victim object QWidgetPrivate is 464 in
ptmalloc, it can actually affect the 27th byte in the relay ob-
ject in the next chunk.

Exploit Synthesis. As shown in Figure 10, we place a list
of string (data items of pyListObject) as the relay object,
then the pointer to the string object is corrupted and redi-
rected to attacker-controllable areas. The forged data length
in the fake string object helps to leak data of a large range. As
long as the library base of array.cpython is obtained, a fake
object of bytearray is built, with controllable data pointer, we
successfully get primitives for AAR and AAW.

https://www.usenix.org/conference/usenixsecurity20/presentation/yun
https://www.usenix.org/conference/usenixsecurity20/presentation/yun
https://docs.python.org/2.3/whatsnew/section-pymalloc.html
https://docs.python.org/2.3/whatsnew/section-pymalloc.html
https://www.gnu.org/software/libc/

Table 4: Statistics of Primitive Capability Analyzing.

App #UVC
-OVF

INVES
Units

Failure
Rate

St-* Ld-AW[/Ex]-* SumnonPtr Ptr Ex-PC nonCtrl Const Ctrl
Bento4 31 361 4.4% 19 8 55 108 87 9 286
Bitcoin 25 60 1.7% 4 0 13 4 4 4 29

qt 840 4,206 4.0% 471 453 106 126 46 73 1,275
firefox 969 4,303 13.3% 633 66 597 361 230 133 2,020

chromium 3,741 14,822 13.8% 1,326 280 1,634 896 838 386 5,360
ImageMagick 1 51 0.0% 0 0 0 0 0 0 0

exiv2 19 63 1.6% 10 10 8 16 0 3 47
opencv 86 3,185 6.2% 758 31 506 18 1,641 76 3,030
aGrum 8 21 14.3% 6 2 1 6 16 0 31

SLikeNet 11 222 11.3% 34 1 27 8 3 5 78
mongodb 206 662 11.2% 52 13 174 75 115 141 570

oce 303 1,594 8.5% 156 9 273 78 24 30 570
znc 28 65 13.8% 17 4 10 6 5 4 46

openbable 31 374 24.1% 89 19 29 28 89 80 334

#UVC-OVF: UVC with OOB VFunc.
INVS Unit: an investigation unit is that like [counterfeit virtual function, a member variable in counterfeit object].
Failure Rate: the proportion of Failed-to-Analyzing INVS units.

Shape Inheritance

class shape0{
 public:
 virtual void render(void);
 unsigned long long param_0;
};
class shape{{idx}}: public shape{{parent_idx}}{
 public:
 virtual void render(void);
 char pre_buf_{{idx}}[{{prefix_buf_size}}];
 unsigned long long param_{{idx}};
 char suf_buf_{{idx}}[{{suffix_buf_size}}];
};

1: Create shape (shape_type: int)

2: Delete shape (shape_idx: int)

3: Trigger virtual call: render ()

 4: Create banner (size:int, string : char[])

 5: Change banner (string : char[])

 6: Trigger vulnerability ()

 7: Check pwn ()

Main Loop

void shape{{idx}}::render(){
 //expected OOB primitive
 param_{{idx}} = param_0;
 //side effect
 suffix_buf_{{idx}}[{{offset2}}]=‘C’);
};

Virtual Method Override
void check_pwn(){
// Exploit is supposed to modify
// certificate (global data
// stored in .bss)
 if (certificate==0){
 printf("Not PWNed\n");
 }
 else{
 printf("OOOps!\n");}
}

Check exploit resultstruct banner{
 char header[{{header_size}}];
 unsigned long long length;
 char* buffer;
};
void create_banner(uint64 length, char* input){
 int allocate_size=sizeof(banner)+length+1;
 g_ptr =new char[allocate_size];
 g_ptr->length = length;
 g_ptr->buffer = (char*)ptr+sizeof(banner);
 memcpy(ptr->buffer, input, length);
}

Create banner - the relay object

void trigger_bug(){
 // heap overflow happens
 // when readin_size > bufsize
 char* buf = new char[{{bufsize}}];
 scanf("%{{readin_size}}s",buf);
};

Trigger vulnerability

void change_banner(char* input){
 memcpy(g_ptr->buffer,
 input, g_ptr->length);
}

Change banner

VKDSHBSDUHQWŇV�ƉHOG

VKDSHBLG[ŇV�ƉHOG

pre_buf_ suf_buf_…

1

2 8 22

5 163

4 7

24

26 11

10

31 12

13

15 17

33183219

34 21 27 35

31

25

29233020

6 9 14

A Sample CIH

{{idx}}

Figure 11: Summary for the motivation example. The template use {{idx}} to distinguish different derived shape classes. When
the expected number for {{idx}} ranges from 1 to 35, a sample class inheritance hierarchy (CIH) can be seen from the figure.

A.2 Primitive Capability Analysis

We denote a primitive with a capability (defined in Sec-
tion 3.3) as a primitive gadget. Table 4 shows the capabil-
ities VScape found from candidate primitives. An investi-
gation unit is a tuple contains a counterfeit function and a
member variable of the counterfeit object whose address is
in the relay object in COOPLUS attack. The third column
shows numbers of investigation units VScape found. Notice
that a primitive indicates a combination of a victim function
and any counterfeit function which belongs to the subclass of
the victim class, while an investigation unit is selected only
from counterfeit functions who override the direct parents’
method. So that the number of investigation units is much
less than the number of total primitives. VScape successfully
finds the majority of them as shown in the fourth column.
Some of the units are failed to analyze because we restricted
the maximum number of the taint paths and the trace depth,
to ensure we can get a result in considerable time. Column 4-
9 shows the exploitable instructions from the analyzed units,

we can see there are sufficient gadgets found in applications
except for ImageMagick [43]. And with this analysis, VS-
cape filters out a great number of primitive candidates which
are useless for exploitation. For example, 51 primitive can-
didates in ImageMagick have no capabilities for our require-
ments, which is hard to make help for further exploitation.

A.3 Motivation Example
In this section, we present a motivation example help readers
better understand the steps of VScape as discussed in Sec-
tion 4. Due to the space limitation, more details can be found
online at https://github.com/cooplus-vscape .
A.3.1 Victim Program
As shown in Figure 11, the target application dispatches
tasks with a switch table in the main loop. Analysts can trig-
ger different program behaviors with elaborate inputs.

This program implements polymorphism with a series of
shape classes. The step 3 in the main loop triggers vir-
tual call ::render() for each created shape. For simplic-
ity, we do not show the global inheritance in this figure,

https://github.com/cooplus-vscape

Virtual Call Site:
 /home/cooplus/main.cxx:76:15
Virtual Call:
 shape0::render
Overridden VFuncs: [
 shape1::render,
 shape4::render,
 ...]

Victim-Counterfeit pair:
 (shape0, shape30)
Virtual Method:
 "::render()"
Access Fields of Counterfeit VFunc:
 ++R 8 (EmitLoadOfLValue)
 ++W 72 (EmitStoreThroughLValue)
Capability:
 St-nonPtr

(a) Sample Record for Virtual Calls (b) Sample Record for Primitive Pair

Figure 12: A candidate primitive in motivation case.

UAF
offset

Chunk Range

Sizeof(Vuln_Obj): 160
Chunk Range: 160
OOB Offset: 0
Max OOB Length: 178
OOB Value:

Vuln_Obj

OOB Offset Overwrittern Data

Next_Obj

Critical
data

(a) Model for Out-of-buffer Write
Vuln_Obj

Chunk Range

UAF
data

Overlap_Obj
Critical

data

(b) Model for Use-After-Free write
(c) Capability Summary for
 Motivation case

8byte 2 OOBValues

! byte /2 {’\n’,’\t’,’ ’}
<latexit sha1_base64="3DkdC+VEFx8sjZjksMMLInxI+oQ=">AAACZnicbVHBbhMxEPVuKW1DaUMrxIGLRYTCAUW7baX2WJULtxaJpJXiKJp1JolVr72yZ1ui1f4kN85c+AycZCUgZSTLz2/eeDzPWaGVpyT5EcVbz7af7+zutV7svzw4bL86GnhbOol9abV1dxl41MpgnxRpvCscQp5pvM3uPy3ztw/ovLLmKy0KHOUwM2qqJFCgxu1aTK0Drbkg/EZVtiCsuVCmOV9fXw1Al+hrIVrCqdmcwDn7+EfNa2EsLQuqNdldbRnIe6/Bz7npftykKFC8W4t63O4kvWQV/ClIG9BhTdyM29/FxMoyR0MyXOWHaVLQqAJHSmqsW6L0WIQ+MMNhgAZy9KNqZVPN3wdmwsO8YRniK/bvigpy7xd5FpQ50Nxv5pbk/3LDkqYXo0qZoiQ0ct1oWmpOli895xPlUJJeBADSqfBWLufgQFL4mVYwId0c+SkYnPTS097Jl7PO5VVjxy57y96xDyxl5+ySfWY3rM8k+xntRUfRcfQrPohfx2/W0jhqao7ZPxHz379Wuhw=</latexit>

Figure 13: Vulnerability Description.

but present a template for shape declaration. The derived
shape implements three exclusive fields - pref_buf_{{idx}},
param_{{idx}} and sub_buf_{{idx}}; The overridden ::ren-
der() wirtes param_0 into para_{{idx}}, making it an ideal
candidate primitive for COOPLUS.

Furthermore, the banner is a flexible structure, which is
similar to objects used in kernel exploitation [88]. It has a
length field that controls the size for a content buffer, and
maintains a pointer to it. For simplicity, create_banner()
places the buffer close to the banner object. Then at step 5 of
the main loop, analysts are able to modify data in this buffer.
The overflow vulnerability locates at trigger_bug(). The
{{bufsize}} determines the chunk size in the cache, whereas
the {{readin_size}} defines the maximum length for read-in
bytes. Assuming the goal of exploit is to corrupt the certifi-
cate in the global segment at runtime, we can verify the con-
sequence for our attack with the use of check_pwn() at step
7. Lastly, we build the motivation example with the jemalloc
heap allocator and the LLVM-CFI defense.

Moreover, to reflect the complexity of class hierarchy
in real world application, this sample program implements
more than thirty shape_{{idx}} classes with randomly gener-
ated pre- and suf- fields. It is hard for analysts to find a cor-
rect solution without systematic approaches, to corrupt the
certificate field when a semantics-aware CFI (i.e., LLVM-
CFI) is deployed.

A.3.2 Workflow of the VScape Compiler
The sample CIH is too complex to be analyzed manually,
thus, VScape is developed as a systematic approach to com-
pile elements for launching the COOPLUS attack. As shown
in Figure 4, VScape has three major components.

The first task primitive generation is to search candidate
primitives. VScape takes source code of target application
as inputs and generates records of candidate primitives, as
shown in Figure 12.

The second task, expected primitive construction compo-

Expected Primitive Model:
 % banner.buffer at off 40
 % target at certificate address;
 Strat1: banner[40,48] == 0x605294

Figure 14: Expected Primitive Attributes.

Memory States Constraints:
 victim class: shape32
 counterfeit class: shape35
 Input[160,168] == 0x402F48 ; fake vptr
 ∩ Input[168,176] == 0x605294 ; buffer ptr

Figure 15: Memory State Constraints.

nent requires analysts to prepare (1) description of the given
vulnerability and (2) expected exploit primitive attributes.
Figure 13(a&b) models two types of vulnerabilities, and Fig-
ure 13(c) depicts the vulnerability in trigger_bug() with for-
malized language. And if either the pointer or length is cor-
rupted, we can launch COOPLUS from there. For simplicity,
we only focus on one exploit strategy, i.e., buffer pointer cor-
ruption, in this example. Figure 14 shows the expected primi-
tive attributes which can enable the aforementioned strategy,
which is provided by analysts too. Then VScape searches
primitives fit for the vulnerability and expected primitive at-
tributes. Figure 15 shows one qualified primitive and its
memory state constraint in which the primitive could work.

The user-provided exploit template takes cares of other
critical steps of the exploitation, including (1) creating an ex-
pected heap layout for the character buffer, the victim object
and the banner, (2) utilizing the given vulnerability to tam-
per with vptr , and (3) utilizing the primitives provided by
VScape to finalize exploitation. VScape will provide quali-
fied primitives for the exploit template to compose the final
exploit. Figure 16 shows an example exploit, where texts in
yellow background are generated by VScape.

1\n32\n1\n32\n1\n32\n

2\n2\n
4\n104\nccccc\n

2\n0\n

6\nAAAŏ\x48\x2f\x40\x00\x00\x00\x00\x00

\x94\x52\x60\x00\x00\x00\x00\x00\x0a

3\n
5\n2222\n

7\n

Alloc Victim Object

Alloc Flexible Object

Trigger Bug

Heap Op

Trigger COOPlus
Arbitrary Write

Check PWN

 shape32

address certificate

Heap Op

alloc banner to jemalloc-160

shape35’s vtable address

write something

Figure 16: The Final Payload. Bytes in yellow background
are automated generated by VScape while manual efforts are
responsible for others.

	Introduction
	Background
	VTables and Virtual Calls
	Virtual Call Protections
	The COOP Attack

	COOPlus Attack
	Assumptions
	Principle of COOPlus
	Vulnerability Amplification
	Attack Analysis
	Vulnerable Protections
	Applicable Vulnerabilities
	Attack Effects

	Primitive Generator
	System Overview
	Primitive Generation
	Data Collection
	Primitive Searching
	Primitive Capability Analysis

	Expected Primitive Construction
	Vulnerability Matching
	Exploitable Memory States Inference

	Exploit Constraint Solving
	Reachability of Victim Functions
	Reachability of OOB Instructions
	Exploit Assembling

	Evaluations
	Implementation
	Attack Surface Analysis
	Popularity of Virtual Calls
	COOPlus Exploit Primitives

	Test against CFI Solutions
	Experiment Setup
	Result Analysis

	Exploit in Practice
	 Attack Surface Analysis
	Case Study

	Related Work
	CFI-Oriented Attacks
	Automated Exploit Generation

	Discussion
	Conclusions
	Appendix
	Case Study of PyQt-5.12
	Primitive Capability Analysis
	Motivation Example
	Victim Program
	Workflow of the VScape Compiler

