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Abstract
Local Differential Privacy (LDP) protocols enable an un-

trusted data collector to perform privacy-preserving data an-

alytics. In particular, each user locally perturbs its data to

preserve privacy before sending it to the data collector, who

aggregates the perturbed data to obtain statistics of interest. In

the past several years, researchers from multiple communities–

such as security, database, and theoretical computer science–

have proposed many LDP protocols. These studies mainly fo-

cused on improving the utility of the LDP protocols. However,

the security of LDP protocols is largely unexplored.

In this work, we aim to bridge this gap. We focus on LDP

protocols for frequency estimation and heavy hitter identifi-
cation, which are two basic data analytics tasks. Specifically,

we show that an attacker can inject fake users into an LDP

protocol and the fake users send carefully crafted data to the

data collector such that the LDP protocol estimates high fre-

quencies for arbitrary attacker-chosen items or identifies them

as heavy hitters. We call our attacks data poisoning attacks.

We theoretically and/or empirically show the effectiveness of

our attacks. We also explore three countermeasures against

our attacks. Our experimental results show that they can effec-

tively defend against our attacks in some scenarios but have

limited effectiveness in others, highlighting the needs for new

defenses against our attacks.

1 Introduction

Various data breaches [1–3] have highlighted the challenges

of relying on a data collector (e.g., Equifax) to protect users’

private data. Local Differential Privacy (LDP), a variant of

differential privacy [19], aims to address such challenges. In

particular, an LDP protocol encodes and perturbs a user’s data

to protect privacy before sending it to the data collector, who

aggregates the users’ perturbed data to obtain statistics of

interest. Therefore, even if the data collector is compromised,

user privacy is still preserved as the attacker only has access

to users’ privacy-preserving perturbed data. Because of the re-

silience against untrusted data collectors, LDP has attracted in-

creasing attention in both academia and industry. Specifically,

many LDP protocols [8–10,15,18,22,31–33,45,47,59–63,69]

have been developed in the past several years. Moreover, some

of these protocols have been widely deployed in industry in-

cluding but not limited to Google, Microsoft, and Apple. For

instance, Google deployed LDP [22] in the Chrome browser to

collect users’ default homepages for Chrome; Microsoft [17]

integrated LDP in Windows 10 to collect application usage

statistics; and Apple [53] adopted LDP on iOS to identify pop-

ular emojis, which are subsequently recommended to users.

Since LDP perturbs each user’s data, it sacrifices utility of

the data analytics results obtained by the data collector. There-

fore, existing studies on LDP mainly focused on improving

the utility via designing new methods to encode/perturb users’

data and aggregate the perturbed data to derive statistical

results. However, the security of LDP is largely unexplored.

In this work, we aim to bridge this gap. In particular, we

propose a family of attacks called data poisoning attacks to

LDP protocols. In our attacks, an attacker injects fake users

to an LDP protocol and carefully crafts the data sent from the

fake users to the data collector, with the goal to manipulate the

data analytics results as the attacker desires. Specifically, we

focus on LDP protocols for Frequency Estimation and Heavy
Hitter Identification, which are two basic data analytics tasks

and are usually the first step towards more advanced tasks.

The goal of frequency estimation is to estimate the fraction
of users (i.e., frequency) that have a certain item for each of

a set of items, while the goal of heavy hitter identification

is to only identify the top-k items that are the most frequent

among the users without estimating the items’ frequencies.

Our attacks can increase the estimated frequencies for arbi-

trary attacker-chosen items (called target items) in frequency

estimation or promote them to be identified as top-k heavy hit-

ters in heavy hitter identification. Our attacks result in severe

security threats to LDP-based data analytics. For example,

an attacker can promote a phishing webpage as a popular

default homepage of Chrome; an attacker can increase the

estimated popularity of its (malicious) application when LDP



is used to estimate application popularity; and an attacker can

manipulate the identified and recommended popular emojis,

resulting in bad user experience and frustration.

The major challenge of data poisoning attacks is that, given

a limited number of fake users an attacker can inject, what data

the fake users should send to the data collector such that the

attack effectiveness is maximized. To address the challenge,

we formulate our attacks as an optimization problem, whose

objective function is to maximize the attack effectiveness and

whose solution is the data that fake users should send to the

data collector. We call our optimization-based attack Maximal
Gain Attack (MGA). To better demonstrate the effectiveness

of MGA, we also propose two baseline attacks in which the

fake users send randomly crafted data to the data collector.

Then, we apply our MGA and the baseline attacks to three

state-of-the-art LDP protocols for frequency estimation (i.e.,

kRR [33], OUE [59], and OLH [59]) and one state-of-the-art

LDP protocol for heavy hitter identification (i.e., PEM [62]).

We theoretically evaluate the effectiveness of our attacks.

Specifically, we derive the frequency gain of the target items,

which is the difference of the target items’ estimated frequen-

cies after and before an attack. Our theoretical analysis shows

that our MGA can achieve the largest frequency gain among

possible attacks. Our theoretical results also show a funda-

mental security-privacy tradeoff for LDP protocols: when an

LDP protocol provides higher privacy guarantees, the LDP

protocol is less secure against our attacks (i.e., the frequency

gains are larger). Moreover, we observe that different LDP

protocols have different security levels against our attacks. For

instance, OUE and OLH have similar security levels against

our attacks, and kRR is less secure than OUE and OLH when

the number of items is larger than a threshold. We also empir-

ically evaluate our attacks for both frequency estimation and

heavy hitter identification using a synthetic dataset and two

real-world datasets. Our empirical results also show the effec-

tiveness of our attacks. For example, on all the three datasets,

our MGA can promote 10 randomly selected target items to

be identified as top-15 heavy hitters when the attacker only

injects 5% of fake users.

We also explore three countermeasures, i.e., normalization,

detecting fake users, and detecting the target item, to defend

against our attacks. Specifically, in normalization, the data

collector normalizes the estimated item frequencies to be a

probability distribution, i.e., each estimated item frequency is

non-negative and the estimated frequencies of all items sum

to 1. Since our attacks craft the data for the fake users via

solving an optimization problem, the data from the fake users

may follow certain patterns that deviate from genuine users.

Therefore, in our second countermeasure, the data collector

aims to detect fake users via analyzing the statistical patterns

of the data from the users, and the data collector filters the

detected fake users before estimating frequencies or identify-

ing heavy hitters. The third countermeasure detects the target

item without detecting the fake users when there is only one

target item. Our empirical results show that these counter-

measures can effectively defend against our attacks in some

scenarios. For example, when the attacker has 10 target items,

normalization can reduce the frequency gain of our MGA to

OUE from 1.58 to 0.46 and detecting fake users can reduce

the frequency gain to be almost 0 because the data collector

can detect almost all fake users. However, our attacks are still

effective in other scenarios. For instance, when the attacker

has 10 randomly selected target items, our MGA to OLH still

achieves a frequency gain of 0.43 even if both detecting fake

users and normalization are used. Our results highlight the

needs for new defenses against our attacks.

In summary, our contributions are as follows:

• We perform the first systematic study on data poisoning
attacks to LDP protocols for frequency estimation and

heavy hitter identification.

• We show that, both theoretically and/or empirically, our

attacks can effectively increase the estimated frequencies

of the target items or promote them to be identified as

heavy hitters.

• We explore three countermeasures to defend against our

attacks. Our empirical results highlight the needs for new

defenses against our attacks.

2 Background and Related Work

We consider LDP protocols for two basic tasks, i.e., frequency
estimation [10, 18, 22, 31–33, 59, 63, 64, 69] and heavy hit-
ter identification [9, 45, 62]. Suppose there are n users. Each

user holds one item from a certain domain, e.g., the default

homepage of a browser. We denote the domain of the items

as {1,2, · · · ,d}. For conciseness, we simplify {1,2, · · · ,d} as

[d]. In frequency estimation, the data collector (also called cen-
tral server) aims to estimate the frequency of each item among

the n users, while heavy hitter identification aims to identify

the top-k items that have the largest frequencies among the n
users. Frequency of an item is defined as the fraction of users

who have the item.

2.1 Frequency Estimation

An LDP protocol for frequency estimation consists of three

key steps: encode, perturb, and aggregate. The encode step

encodes each user’s item into some numerical value. We

denote the space of encoded values as D. The perturb step

randomly perturbs the value in the space D and sends the per-

turbed value to the central server. The central server estimates

item frequencies using the perturbed values from all users in

the aggregate step. For simplicity, we denote by PE(v) the

perturbed encoded value for an item v. Roughly speaking, a

protocol satisfies LDP if any two items are perturbed to the

same value with close probabilities. Formally, we have the

following definition:



Definition 1 (Local Differential Privacy). A protocol A sat-
isfies ε-local differential privacy (ε-LDP) if for any pair of
items v1,v2 ∈ [d] and any perturbed value y ∈ D, we have
Pr(PE(v1) = y) ≤ eεPr(PE(v2) = y), where ε > 0 is called
privacy budget and PE(v) is the random perturbed encoded
value of an item v.

Moreover, an LDP protocol is called pure LDP if it satisfies

the following definition:

Definition 2 (Pure LDP [59]). An LDP protocol is pure if
there are two probability parameters 0 < q < p < 1 such that
the following equations hold for any pair of items v1,v2 ∈
[d],v1 �= v2:

Pr(PE(v1) ∈ {y|v1 ∈ S(y)}) = p (1)

Pr(PE(v2) ∈ {y|v1 ∈ S(y)}) = q, (2)

where S(y) is the set of items that y supports.

We note that the definition of the support S(y) depends on
the LDP protocol. For instance, for some LDP protocols [18,
59], the support S(y) of a perturbed value y is the set of items
whose encoded values could be y. For a pure LDP protocol,
the aggregate step is as follows:

f̃v =

1
n

n
∑

i=1
1S(yi)(v)−q

p−q
, (3)

where f̃v is the estimated frequency for item v ∈ [d], yi is the

perturbed value from the ith user, and 1S(yi)(v) is an character-
istic function, which outputs 1 if and only if yi supports item

v. Formally, the characteristic function 1S(yi)(v) is defined as

follows: 1S(y)(v) is 1 if v ∈ S(y) and 0 otherwise.

Roughly speaking, Equation (3) means that the frequency
of an item is estimated as the fraction of users whose per-
turbed values support the item normalized by p,q, and n.
Pure LDP protocols are unbiased estimators of the item fre-
quencies [59], i.e., E[ f̃v] = fv, where fv is the true frequency
for item v. Therefore, we have:

n

∑
i=1

E[1S(yi)(v)] = n( fv(p−q)+q). (4)

Equation (4) will be useful for the analysis of our attacks.

Next, we describe three state-of-the-art pure LDP protocols,

i.e., kRR [18], OUE [59], and OLH [59]. These three protocols

are recommended for use in different scenarios. Specifically,

kRR achieves the smallest estimation errors when the number

of items is small, i.e., d < 3eε +2. When the number of items

is large, both OUE and OLH achieve the smallest estimation

errors. OUE has a larger communication cost, while OLH

has a larger computation cost for the central server. There-

fore, when the communication cost is a bottleneck, OLH is

recommended, otherwise OUE is recommended.

2.1.1 kRR

Encode: kRR encodes an item v to itself. Therefore, the

encoded space D for kRR is identical to the domain of items,

which is D = [d].
Perturb: kRR keeps an encoded item unchanged with a
probability p and perturbs it to a different random item a ∈ D
with probability q. Formally, we have:

Pr(y = a) =

{
eε

d−1+eε � p, if a = v,
1

d−1+eε � q, otherwise,
(5)

where y is the random perturbed value sent to the central

server when a user’s item is v.

Aggregate: The key for aggregation is to derive the support

set. A perturbed value y only supports itself for kRR. Specif-

ically, we have S(y) = {y}. Given the support set, we can

estimate item frequencies using Equation (3).

2.1.2 OUE

Encode: OUE encodes an item v to a d-bit binary vector eeev
whose bits are all zero except the v-th bit. The encoded space

for OUE is D = {0,1}d , where d is the number of items.

Perturb: OUE perturbs the bits of the encoded binary vec-
tor independently. Specifically, for each bit of the encoded
binary vector, if it is 1, then it remains 1 with a probability p.
Otherwise if the bit is 0, it is flipped to 1 with a probability q.
Formally, we have:

Pr(yi = 1) =

{
1
2 � p, if i = v,

1
eε+1 � q, otherwise,

(6)

where the vector yyy = [y1 y2 · · · yd ] is the perturbed value for

a user with item v.

Aggregate: A perturbed value yyy supports an item v if and

only if the v-th bit of yyy, denoted as yv, equals to 1. Formally,

we have S(yyy) = {v|v ∈ [d] and yv = 1}.

2.1.3 OLH

Encode: OLH leverages a family of hash functions H, each of

which maps an item v ∈ [d] to a value h ∈ [d′], where d′ < d.

In particular, OLH uses d′ = eε + 1 as it achieves the best

performance [59]. An example of the hash function family

H could be xxhash [14] with different seeds. Specifically,

a seed is a non-negative integer and each seed represents

a different xxhash hash function. In the encode step, OLH

randomly picks a hash function H from H. When xxhash

is used, randomly picking a hash function is equivalent to

randomly selecting a non-negative integer as a seed. Then,

OLH computes the hash value of the item v as h = H(v). The

tuple (H,h) is the encoded value for the item v. The encoded

space for OLH is D = {(H,h)|H ∈ H and h ∈ [d′]}.



Perturb: OLH only perturbs the hash value h and does not
change the hash function H. In particular, the hash value stays
unchanged with probability p′ and switches to a different
value in [d′] with probability q′. Formally, we have:

Pr(y = (H,a)) =

{
eε

eε+d′−1 � p′, if a = H(v),
1

eε+d′−1 � q′, otherwise,
(7)

where y is the perturbed value sent to the central server from a

user with item v. Therefore, the overall probability parameters

p and q are p= p′ = eε

eε+d′−1
and q= 1

d′ · p′+(1− 1
d′ ) ·q′ = 1

d′ .

Aggregate: A perturbed value y = (H,h) supports an item

v ∈ [d] if v is hashed to h by H. Formally, we have S(y) =
{v|v ∈ [d] and H(v) = h}.

2.2 Heavy Hitter Identification

The goal of heavy hitter identification [9, 10, 62] is to identify

the top-k items that are the most frequent among the n users.

A direct and simple solution is to first estimate the frequency

of each item using a frequency estimation protocol and then

select the k items with the largest frequencies. However, such

method is not scalable to a large number of items. In response,

a line of works [9, 10, 62] developed protocols to identify

heavy hitters without estimating item frequencies. For ex-

ample, Bassily et al. [9] and Wang et al. [62] independently

developed a similar heavy hitter identification protocol, which

divides users into groups and iteratively applies a frequency

estimation protocol to identify frequent prefixes within each

group. Next, we take the Prefix Extending Method (PEM) [62],

a state-of-the-art heavy hitter identification protocol, as an

example to illustrate the process.

In PEM, each user encodes its item as a γ-bits binary vec-

tor. Suppose users are evenly divided into g groups. In the

jth iteration, users in the jth group use the OLH protocol

to perturb the first λ j = �log2 k�+
⌈

j · γ−�log2 k�
g

⌉
bits of their

binary vectors and send the perturbed bits to the central server,

which uses the aggregate step of the OLH protocol to esti-

mate the frequencies of the prefixes that extend the previous

top-k prefixes. OLH instead of OUE is used because the num-

ber of items corresponding to λ j bits is 2λ j , which is often

large and incurs large communication costs for OUE. Specif-

ically, the central server uses the aggregate step of OLH to

estimate the frequencies of the λ j-bits prefixes in the set

R j−1 ×{0,1}λ j−λ j−1 , where R j−1 is the set of top-k λ j−1-bits

prefixes identified in the ( j−1)th iteration and the × symbol

denotes Cartesian product. After estimating the frequencies

of these λ j-bits prefixes, the central server identifies the top-k
most frequent ones, which are denoted as the set R j. This pro-

cess is repeated for the g groups and the set of top-k prefixes

in the final iteration are identified as the top-k heavy hitters.

2.3 Data Poisoning Attacks
Data poisoning attacks to LDP protocols: A concurrent

work [13] studied untargeted attacks to LDP protocols. In

particular, they focused on degrading the overall performance

of frequency estimation or heavy hitter identification. For

instance, we can represent the estimated frequencies of all

items as a vector, where an entry corresponds to an item. They

studied how an attack can manipulate the Lp-norm distance

between such vectors before and after attack. In contrast,

we study targeted attacks that aim to increase the estimated

frequencies of the attacker-chosen target items or promote

them to be identified as heavy hitters. We note that the Lp-

norm distance between the item frequency vectors is different

from the increased estimated frequencies for the target items.

For instance, L1-norm distance between the item frequency

vectors is a loose upper bound of the increased estimated

frequencies for the target items.

Data poisoning attacks to machine learning: A line of

works [7, 11, 23–25, 27–30, 35–39, 41–44, 49, 50, 58, 65] stud-

ied data poisoning attacks to machine learning systems. In

particular, the attacker manipulates the training data such

that a bad model is learnt, which makes predictions as the at-

tacker desires. For instance, Biggio et al. [11] investigated data

poisoning attacks against Support Vector Machines. Jagiel-

ski et al. [29] studied data poisoning attacks to regression

models. Shafahi et al. [50] proposed poisoning attacks to

neural networks, where the learnt model makes incorrect

predictions only for target testing examples. Gu et al. [27]

and Liu et al. [36] proposed data poisoning attacks (also

called backdoor/trojan attacks) to neural networks, where

the learnt model predicts an attacker-chosen label for test-

ing examples with a certain trigger. Data poisoning attacks

were also proposed to spam filters [41], recommender sys-

tems [24,25,35,65], graph-based methods [55], etc.. Our data

poisoning attacks are different from these attacks because

how LDP protocols aggregate the users’ data to estimate fre-

quencies or identify heavy hitters is substantially different

from how a machine learning system aggregates training data

to derive a model.

3 Attacking Frequency Estimation

3.1 Threat Model
We characterize our threat model with respect to an attacker’s

capability, background knowledge, and goal.

Attacker’s capability and background knowledge: We as-

sume an attacker can inject some fake users into an LDP

protocol. These fake users can send arbitrary data in the en-

coded space to the central server. Specifically, we assume

n genuine users and the attacker injects m fake users to the

system. Therefore, the total number of users becomes n+m.

We note that it is a practical threat model to assume that an



attacker can inject fake users.In particular, previous measure-

ment study [54] showed that attackers can easily have access

to a large number of fake/compromised accounts in various

web services such as Twitter, Google, and Hotmail. Moreover,

an attacker can buy fake/compromised accounts for these

web services from merchants in the underground market with

cheap prices. For instance, a Hotmail account costs $0.004 –

0.03; and a phone verified Google account costs $0.03 – 0.50

depending on the merchants.

Since an LDP protocol executes the encode and perturb

steps locally on users’ side, the attacker has access to the

implementation of these steps. Therefore, the attacker knows

various parameters of the LDP protocol. In particular, the

attacker knows the domain size d, the encoded space D , and

the support set S(y) for each perturbed value y ∈ D .

Attacker’s goal: We consider the attacker’s goal is to pro-

mote some target items, i.e., increase the estimated frequen-

cies of the target items. For example, a company may be

interested in making its products more popular. Formally,

we denote by T = {t1, t2, · · · , tr} the set of r target items. To

increase the estimated frequencies of the target items, the at-

tacker carefully crafts the perturbed values sent from the fake

users to the central server. We denote by Y the set of crafted

perturbed values for the fake users, where an entry yi of Y
is the crafted perturbed value for a fake user. The perturbed

value yi could be a number (e.g., for kRR protocol), a binary

vector (e.g., for OUE), and a tuple (e.g., for OLH).
Suppose f̃t,b and f̃t,a are the frequencies estimated by the

LDP protocol for a target item t before and after attack, re-
spectively. We define the frequency gain Δ f̃t for a target item
t as Δ f̃t = f̃t,a − f̃t,b,∀t ∈ T . A larger frequency gain Δ f̃t im-
plies a more successful attack. Note that an LDP protocol
perturbs the value on each genuine user randomly. Therefore,
the frequency gain Δ f̃t is random for a given set of crafted
perturbed values Y for the fake users. Thus, we define the
attacker’s overall gain G using the sum of the expected fre-
quency gains for the target items, i.e., G(Y) = ∑t∈T E[Δ f̃t ],
where Δ f̃t implicitly depends on Y. Therefore, an attacker’s
goal is to craft the perturbed values Y to maximize the over-
all gain. Formally, the attacker aims to solve the following
optimization problem:

max
Y

G(Y). (8)

We note that, to incorporate the different priorities of the

target items, an attacker could also assign different weights to

the expected frequency gains E[Δ f̃t ] of different target items

when calculating the overall gain. Our attacks are also appli-

cable to such scenarios. However, for simplicity, we assume

the target items have the same priority.

3.2 Three Attacks
We propose three attacks: Random perturbed-value attack
(RPA), random item attack (RIA), and Maximal gain attack
(MGA). RPA selects a perturbed value from the encoded space

of the LDP protocol uniformly at random for each fake user

and sends it to the server. RPA does not consider any informa-

tion about the target items. RIA selects a target item from the

set of target items uniformly at random for each fake user and

uses the LDP protocol to encode and perturb the item. MGA

crafts the perturbed value for each fake user to maximize the

overall gain G via solving the optimization problem in Equa-

tion (8). RPA and RIA are two baseline attacks, which are

designed to better demonstrate the effectiveness of MGA.

Random perturbed-value attack (RPA): For each fake

user, RPA selects a value from the encoded space of the LDP

protocol uniformly at random and sends it to the server.

Random item attack (RIA): Unlike RPA, RIA considers in-

formation about the target items. In particular, RIA randomly

selects a target item from the set of target items for each fake

user. Then, the LDP protocol is applied to encode and perturb

the item. Finally, the perturbed value is sent to the server.

Maximal gain attack (MGA): The idea behind this attack is
to craft the perturbed values for the fake users via solving the
optimization problem in Equation (8). Specifically, according
to Equation (3), the frequency gain Δ f̃t for a target item t is:

Δ f̃t =

1
n+m

n+m
∑

i=1
1S(yi)(t)−q

p−q
−

1
n

n
∑

i=1
1S(yi)(t)−q

p−q
(9)

=

n+m
∑

i=n+1
1S(yi)(t)

(n+m)(p−q)
−

m
n
∑

i=1
1S(yi)(t)

n(n+m)(p−q)
, (10)

where yi is the perturbed value sent from user i to the server.
The first term in Equation (10) only depends on fake users,
while the second term only depends on genuine users. More-
over, the expected frequency gain for a target item t is:

E[Δ f̃t ] =

n+m
∑

i=n+1
E[1S(yi)(t)]

(n+m)(p−q)
−

m
n
∑

i=1
E[1S(yi)(t)]

n(n+m)(p−q)
, (11)

where we denote the second term as a constant ct for simplic-
ity. Moreover, based on Equation (4), we have:

ct =
m( ft(p−q)+q)
(n+m)(p−q)

, (12)

where ft is the true frequency of t among the n genuine users.
Furthermore, we have the overall gain as follows:

G =

n+m
∑

i=n+1
∑

t∈T
E[1S(yi)(t)]

(n+m)(p−q)
− c, (13)

where c = ∑t∈T ct =
m( fT (p−q)+rq)
(n+m)(p−q) , where fT = ∑t∈T ft . c

does not depend on the perturbed values sent from the fake
users to the central server. In RPA and RIA, the crafted per-
turbed values for the fake users are random. Therefore, the
expectation of the characteristic function E[1S(yi)(t)] and the
overall gain depend on such randomness. However, MGA



uses the optimal perturbed values for fake users, and the char-
acteristic function 1S(yi)(t) becomes deterministic. Therefore,
for MGA, we can drop the expectation E in Equation (13), and
then we can transform the optimization problem in Equation
(8) as follows:

Y∗ = argmax
Y

G(Y) = argmax
Y

n+m

∑
i=n+1

∑
t∈T

1S(yi)(t), (14)

where we remove the constants c and (n+m)(p−q) in the op-
timization problem. Note that the above optimization problem
only depends on the perturbed values of the fake users, and
the perturbed values yi for the fake users are independent from
each other. Therefore, we can solve the optimization prob-
lem independently for each fake user. Formally, for each fake
user, we craft its perturbed value y∗ via solving the following
optimization problem:

y∗ = argmax
y∈D

∑
t∈T

1S(y)(t). (15)

We note that, for each fake user, we obtain its perturbed

value via solving the same above optimization problem. How-

ever, as we will show in the next sections, the optimization

problem has many optimal solutions. Therefore, we randomly

pick an optimal solution for a fake user.

Next, we discuss how to apply these three attacks to state-

of-the-art LDP protocols including kRR, OUE, and OLH, as

well as analyzing their overall gains.

3.3 Attacking kRR
Random perturbed-value attack (RPA): For each fake user,
RPA randomly selects a perturbed value yi from the encoded
space, i.e., [d], and sends it to the server. We can calculate the
expectation of the characteristic function for t ∈ T as follows:

E[1S(yi)(t)] = Pr(1S(yi)(t) = 1) (16)

= Pr(t ∈ S(yi)) = Pr(yi = t) (17)

=
1

d
(18)

Therefore, according to Equation (13), the overall gain is

G = rm
d(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects an item ti from the set of target items T , per-
turbs the item following the rule in Equation (5), and sends
the perturbed item yi to the server. First, we can calculate the
expectation of the characteristic function as follows:

E[1S(yi)(t)] = Pr(yi = t) (19)

= Pr(ti = t)Pr(yi = t|ti = t)

+Pr(ti �= t)Pr(yi = t|ti �= t) (20)

=
1

r
· p+(1− 1

r
)q, (21)

where r = |T | is the number of target items. According

to Equation (13), we can obtain the overall gain as G =
(p+(r−1)q)m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

crafts its perturbed value by solving the optimization prob-

lem in Equation (15). For the kRR protocol, we have

∑t∈T 1S(y)(t) ≤ 1 and ∑t∈T 1S(y)(t) = 1 when y is a target

item in T . Therefore, MGA picks any target item for each

fake user. Moreover, according to Equation (13), the overall

gain is G = m
(n+m)(p−q) − c.

3.4 Attacking OUE
Random perturbed-value attack (RPA): For each fake user,

RPA selects a d-bits binary vector yyyi from the encoded space

{0,1}d uniformly at random as its perturbed vector and sends

it to the server. We denote by yi, j the j-th bit of the per-

turbed vector yyyi. Therefore, for each target item t ∈ T , we

have E[1S(yyyi)
(t)] = Pr(yi,t = 1) = 1

2 . According to Equation

(13), we can obtain the overall gain as G = rm
2(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects a target item ti ∈ T , encodes it to a d-bits binary
vector ei whose bits are all zeros except the ti-th bit, randomly
perturbs ei following Equation (6), and sends the perturbed
vector yyyi to the server. For a target item t ∈ T , we can calculate
the expected value of the characteristic function as follows:

E[1S(yyyi)
(t)] = Pr(yi,t = 1) (22)

= Pr(ti = t)Pr(yi,t = 1|ti = t)

+Pr(ti �= t)Pr(yi,t = 1|ti �= t) (23)

=
1

r
· p+(1− 1

r
) ·q, (24)

where p and q are defined in Equation (6). Therefore, the

overall gain is G = (p+(r−1)q)m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

chooses a perturbed vector yyyi that is a solution of the optimiza-

tion problem defined in Equation (15). For OUE, we have

∑t∈T 1S(yyyi)
(t) ≤ r and ∑t∈T 1S(yyyi)

(t) = r is achieved when

1S(yyyi)
(t) = 1,∀t ∈ T . Thus, for each fake user, MGA initial-

izes a perturbed vector yyyi as a binary vector of all 0’s and sets

yi,t = 1 for all t ∈ T . However, if all fake users send the same

perturbed binary vector to the server, the server can easily

detect the fake users. For instance, there is only one entry in

the perturbed binary vector that has value 1 when we only

have 1 target item; and the server could detect a vector with

only a single 1 to be from a fake user, because it is statistically

unlikely for a genuine user to send such a vector. Therefore,

MGA also randomly samples l non-target bits of the perturbed

vector yyyi and sets them to 1. Specifically, we set l such that

the number of 1’s in the binary vector is the expected number

of 1’s in the perturbed binary vector of a genuine user. Since

the perturbed binary vector of a genuine user has p+(d−1)q
1’s on average, we set l = 
p+(d −1)q− r�. Note that r is

usually much smaller than d, so l is a non-negative value. The

final binary vector is sent to the server. According to Equation

(13), the overall gain is G = rm
(n+m)(p−q) − c.



kRR OUE OLH

Random perturbed-value attack (RPA) β( r
d − fT ) β(r− fT ) −β fT

Random item attack (RIA) β(1− fT ) β(1− fT ) β(1− fT )

Maximal gain attack (MGA) β(1− fT )+
β(d−r)
eε−1 β(2r− fT )+

2βr
eε−1 β(2r− fT )+

2βr
eε−1

Standard deviation of estimation r
√

d−2+eε

(eε−1)
√

n
2reε/2

(eε−1)
√

n
2reε/2

(eε−1)
√

n

Table 1: Overall gains of the three attacks for kRR, OUE, and OLH. n is the number of genuine users, β = m
n+m is the

fraction of fake users among all users, d is the number of items, r is the number of target items, fT = ∑t∈T ft is the sum
of true frequencies of the target items among the genuine users, ε is the privacy budget, and e is the base of the natural
logarithm. To understand the significance of the overall gains, we also include the standard deviations of the estimated
total frequencies of the target items among the n genuine users [59] in the table.

3.5 Attacking OLH
Random perturbed-value attack (RPA): For each fake user,

RPA randomly selects a hash function Hi ∈H and a hash value

ai ∈ [d′], and sends the tuple yi = (Hi,ai) to the server. For

each t ∈ T , we have E[1S(yyyi)
(t)] = Pr(Hi(t) = ai) =

1
d′ . There-

fore, we can obtain the overall gain as G = rm
d′(n+m)(p−q) − c.

Random item attack (RIA): For each fake user, RIA ran-
domly selects a target item ti, randomly selects a hash function
Hi ∈ H, and calculates the hash value hi = Hi(ti). The tuple
(Hi,hi) is then perturbed as (Hi,ai) according to Equation (7).
(Hi,ai) is the perturbed value, i.e., yi = (Hi,ai). We assume
the hash function Hi maps any item in [d] to a value in [d′]
uniformly at random. For a target item t ∈ T , we can calculate
the expectation of the characteristic function as follows:

E[1S(yi)(t)] = Pr(Hi(t) = ai) (25)

= Pr(ti = t)Pr(Hi(t) = ai|ti = t)

+Pr(ti �= t)Pr(Hi(t) = ai|ti �= t) (26)

=
1

r
· p+(1− 1

r
) ·q. (27)

Thus, the overall gain for RIA is G = [p+(r−1)q]m
(n+m)(p−q) − c.

Maximal gain attack (MGA): For each fake user, MGA

chooses a perturbed value yi = (Hi,ai) that is a solution of

the optimization problem defined in Equation (15). For OLH,

we have ∑t∈T 1S(yi)(t)≤ r and ∑t∈T 1S(yi)(t) = r is achieved

when the hash function Hi maps all items in T to ai, i.e.,

Hi(t) = ai,∀t ∈ T . Thus, for each fake user, MGA searches

for a hash function Hi in H such that Hi(t) = ai,∀t ∈ T holds.

Therefore, according to Equation (13), the overall gain is

G = rm
(n+m)(p−q) −c. Note that we may not be able to find such

a hash function in practice. In our experiments, for each fake

user, we randomly sample 1,000 hash functions and use the

one that hashes the most target items to the same value.

3.6 Theoretical Analysis
Table 1 summarizes the overall gains of the three attacks for

kRR, OUE, and OLH, where we have replaced the parameters

p and q for each LDP protocol according to Section 2.1. Next,

we compare the three attacks, discuss a fundamental security-

privacy tradeoff, and compare the three LDP protocols with

respect to their security against our data poisoning attacks.

Comparing the three attacks: All three attacks achieve

larger overall gains when the target items’ true frequencies

are smaller (i.e., fT is smaller). MGA achieves the largest

overall gain among the three attacks. In fact, given an LDP

protocol, a set of target items and fake users, MGA achieves

the largest overall gain among all possible attacks. This is

because MGA crafts the perturbed values for the fake users

such that the overall gain is maximized. RIA achieves larger

overall gains than RPA for kRR and OLH, while RPA achieves

a larger overall gain than RIA for OUE.

Table 1 also includes the standard deviations of the es-

timated total frequencies of the target items among the n
genuine users. Due to the

√
n term in the denominators, the

standard deviations are much smaller than the overall gains

of our MGA attacks. For instance, on the Zipf dataset in our

experiments with the default parameter settings, the overall

gains of MGA are 1600, 82, and 82 times larger than the

standard deviations for kRR, OUE, and OLH, respectively.

Fundamental security-privacy tradeoffs: The security of

an LDP protocol is determined by the strongest attack (i.e.,

MGA) to it. Intuitively, when the privacy budget ε is smaller

(i.e., stronger privacy), genuine users add larger noise to their

data. However, the perturbed values that MGA crafts for the

fake users do not depend on the privacy budget. As a result,

the fake users contribute more towards the estimated item

frequencies, making the overall gain larger. In other words,

we have a fundamental security-privacy tradeoff. Formally,

the following theorem shows such tradeoffs.

Theorem 1 (Security-Privacy Tradeoff). For any of the three
LDP protocols kRR, OUE, and OLH, when the privacy budget
ε is smaller (i.e., stronger privacy), MGA achieves a larger
overall gain G (i.e., weaker security).

Proof. Table 1 shows that ε is in the denominator of the

overall gains for MGA. Therefore, the overall gains of MGA

increase as ε decreases.



Comparing the security of the three LDP protocols: Ta-

ble 1 shows that, when MGA is used, OUE and OLH achieve

the same overall gain. Therefore, OUE and OLH have the

same level of security against data poisoning attacks. The

following theorem shows that OUE and OLH are more secure

than kRR when the number of items is larger than a threshold.

Theorem 2. Suppose MGA is used. OUE and OLH are more
secure than kRR when the number of items is larger than some
threshold, i.e., d > (2r−1)(eε −1)+3r.

Proof. See Appendix A.

4 Attacking Heavy Hitter Identification

4.1 Threat model

Attacker’s capability and background knowledge: We

make the same assumption on the attacker’s capability and

background knowledge as in attacking frequency estimation,

i.e., the attacker can inject fake users into the protocol and

send arbitrary data to the central server.

Attacker’s goal: We consider the attacker’s goal is to pro-

mote some target items, i.e., manipulate the heavy hitter iden-

tification protocol to recognize the target items as top-k heavy

hitters. Formally, we denote by T = {t1, t2, · · · , tr} the set of r
target items, which are not among the true top-k heavy hitters.

We define success rate of an attack as the fraction of target

items that are promoted to be top-k heavy hitters by the attack.

An attacker’s goal is to achieve a high success rate.

4.2 Attacks

State-of-the-art heavy hitter identification protocols iteratively

apply frequency estimation protocols. Therefore, we apply

the three attacks for frequency estimation to heavy hitter iden-

tification. Next, we use PEM as an example to illustrate how

to attack heavy hitter identification protocols.

In PEM, each item is encoded by a γ-bits binary vector

and users are randomly divided into g groups. On average,

each group contains a fraction of m
n+m fake users. In the jth

iteration, PEM uses OLH to perturb the first λ j bits of the

binary vectors for users in the jth group and sends them to

the central server. An attacker uses the RPA, RIA, or MGA to

craft the data sent from the fake users to the central server by

treating the first λ j bits of the binary vectors corresponding

to the target items as the “target items” in the jth iteration.

Such attacks can increase the likelihood that the first λ j bits

of the target items are identified as the top-k prefixes in the

jth iteration, which in turn makes it more likely to promote

the target items as top-k heavy hitters.

Parameter Default setting

β 0.05

r 1

fT 0.01

ε 1

k 20

g 10

Table 2: Default parameter settings.

5 Evaluation

5.1 Experimental Setup

Datasets: We evaluate our attacks on three datasets, in-

cluding a synthetic dataset and two real-world datasets, i.e.,

Fire [4] and IPUMS [51].

• Zipf: Following previous work on LDP protocols, we

generate random data following the Zipf’s distribution. In

particular, we use the same parameter in the Zipf’s distri-

bution as in [59]. By default, we synthesize a dataset with

1,024 items and 1,000,000 users.

• Fire [4]: The Fire dataset was collected by the San Fran-

cisco Fire Department, recording information about calls

for service. We filter the records by call type and use the

data of type “Alarms”. We treat the unit ID as the item that

each user holds, which results in a total of 244 items and

548,868 users.

• IPUMS [51]: The IPUMS dataset contains the US census

data over the years. We select the latest data of 2017 and

treat the city attribute as the item each user holds, which

results in a total of 102 items and 389,894 users.

Parameter setting: For frequency estimation, the overall

gains of our attacks may depend on β (the fraction of fake

users), r and fT (the number of target items and their true

frequencies), ε (privacy budget), and d (number of items in

the domain). For heavy hitter identification, the success rates

of our attacks further depend on k (the number of items iden-

tified as heavy hitters) and g (the group size used by the

PEM protocol). Table 2 shows the default settings for these

parameters, which we will use in our experiments unless other-

wise mentioned. We will study the impact of each parameter,

while fixing the remaining parameters to their default settings.

Moreover, we use d′ = �eε +1� in OLH as d′ is an integer.

5.2 Results for Frequency Estimation
Impact of different parameters: Table 1 shows the theoret-

ical overall gains of the three attacks for the kRR, OUE, and

OLH protocols. We use these theoretical results to study the

impact of each parameter. Figures 1 to 3 show the impact of

different parameters on the overall gains and normalized over-
all gains. A normalized overall gain is the ratio between the

total frequencies of the target items after and before an attack,



Figure 1: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for kRR.

Figure 2: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for OUE.

Figure 3: Impact of different parameters on the overall gains (first row) and normalized overall gains (second row) of
the three attacks for OLH.

i.e., (G+ fT )/ fT , where fT is the total true frequencies of the

target items. We observe that MGA outperforms RIA, which

outperforms RPA or achieves similar (normalized) overall

gains with RPA. The reason is that MGA is an optimization-

based attack, RIA considers information of the target items,

and RPA does not consider information about the target items.

Next, we focus our analysis on MGA since it is the strongest

attack. The (normalized) overall gains of MGA increase as

the attacker injects more fake users, the attacker promotes

more target items (except the kRR protocol), or the privacy

budget ε becomes smaller (i.e., security-privacy tradeoffs).

The (normalized) overall gain of MGA decreases as the total

true frequency of the target items (i.e., fT ) increases, though

the decrease of the overall gain is marginal. The (normalized)

overall gain of MGA increases for kRR but keeps unchanged

for OUE and OLH as d increases. We note that, for a given



Figure 4: Impact of different parameters on the success rates of the three attacks for PEM (heavy hitter identification
protocol). The first row is on Zipf, the second row is on Fire, and the third row is on IPUMS.

set of target items (i.e., fT is given), the trend of normalized

overall gain is the same as that of the overall gain with respect

to parameters β, r, ε, and d. Therefore, in the rest of the paper,

we focus on overall gain for simplicity.

Measuring RIA and MGA for OLH: The theoretical over-

all gain of RIA for OLH is derived based on the “perfect”

hashing assumption, i.e., an item is hashed to a value in the

hash domain [d′] uniformly at random. Practical hash func-

tions may not satisfy this assumption. Therefore, the theoreti-

cal overall gain of RIA for OLH may be inaccurate in practice.

We use xxhash [14] as hash functions to evaluate the gaps be-

tween the theoretical and practical overall gains. In particular,

Figure 5a compares the theoretical and practical overall gains

of RIA for OLH, where 1 item is randomly selected as target

item, β = 0.05, and ε = 1. We observe that the theoretical and

practical overall gains of RIA for OLH are similar.

Our theoretical overall gain of MGA for OLH is derived

based on the assumption that the attacker can find a hash

function that hashes all target items to the same value. In

practice, we may not be able to find such hash functions

within a given amount of time. Therefore, for each fake user,

we randomly sample some xxhash hash functions and use

the one that hashes the most target items to the same value.

Figure 5b compares the theoretical and practical overall gains

of MGA for OLH on the IPUMS dataset as we sample more

hash functions for each fake user, where we randomly select

5 items as target items, i.e., r = 5. Our results show that the

practical overall gains approach the theoretical ones with

several hundreds of randomly sampled hash functions when

r = 5. We have similar observations for the other two datasets

and thus we omit their results due to the limited space.

(a) (b)

Figure 5: (a) Theoretical and practical overall gains of
RIA for OLH. (b) Theoretical and practical overall gains
of MGA for OLH on the IPUMS dataset as we sample
more hash functions for each fake user, where r = 5.

5.3 Results for Heavy Hitter Identification

Figure 4 shows the empirical results of applying our three

attacks, i.e., RPA, RIA and MGA, to PEM on the Zipf, Fire,

and IPUMS datasets, respectively. By default, we randomly

select r = 10 target items that are not identified as top-k heavy

hitters by PEM before attack and use the three attacks to

promote them. Default values for the other parameters are

identical to those in Table 2. The success rate of an attack

is calculated as the fraction of target items that appear in

the estimated top-k heavy hitters. The results show that our

MGA attacks can effectively compromise the PEM protocol.

In particular, we observe that MGA only needs about 5% of

fake users to achieve a 100% success rate when r = 10 and

k = 20. In fact, with only 5% of fake users, we can promote

10 target items to be in the top-15 heavy hitters, or promote 15

target items to be in the top-20 heavy hitters. However, RPA

and RIA are ineffective. Specifically, even if we inject 10%



of fake users, neither RPA nor RIA can successfully promote

even one of the target items to be in the top-k heavy hitters.

Moreover, the number of groups g and the privacy budget ε
have negligible impact on the effectiveness of our attacks.

6 Countermeasures

We explore three countermeasures. The first countermeasure

is to normalize the estimated item frequencies to be a prob-

ability distribution, the second countermeasure is to detect

fake users via frequent itemset mining of the users’ perturbed

values and remove the detected fake users before estimating

item frequencies, and the third countermeasure is to detect the

target item without detecting the fake users when there is only

one target item. The three countermeasures are effective in

some scenarios. However, our MGA is still effective in other

scenarios, highlighting the needs for new defenses against our

data poisoning attacks.

6.1 Normalization

The LDP protocols estimate item frequencies using Equation

(3). Therefore, the estimated item frequencies may not form a

probability distribution, i.e., some estimated item frequencies

may be negative and they may not sum to 1. For instance, our

experimental results in Section 5.2 show that the overall gains

of MGA may be even larger than 1. Therefore, one natural

countermeasure is to normalize the estimated item frequencies

such that each estimated item frequency is non-negative and

the estimated item frequencies sum to 1. For instance, one

normalization we consider is as follows: the central server

first estimates the frequency f̃v for each item v following a

LDP protocol (kRR, OUE, or OLH); then the server finds

the minimal estimated item frequency f̃min; finally, the server

calibrates the estimated frequency for each item v as f̄v =
f̃v− f̃min

∑v( f̃v− f̃min)
, where f̄v is the calibrated frequency. Our overall

gain is calculated by the difference between the calibrated

frequencies of the target items after and before attack. We note

that there are also other methods to normalize the estimated

item frequencies [31, 63], which we leave as future work.

Note that the normalization countermeasure is not applicable

to heavy hitter identification because normalization does not

impact the ranking of items’ frequencies.

6.2 Detecting Fake Users

RPA and MGA directly craft the perturbed values for fake

users, instead of using the LDP protocol to generate the per-

turbed values from certain items. Therefore, the perturbed

values for the fake users may be statistically abnormal. We

note that it is challenging to detect fake users via statistical

analysis of the perturbed values for the kRR protocol, because

the perturbed value of a user is just an item, no matter whether

User 1:

User 2:

User 3:

User 4:

Figure 6: An example itemset that are all 1’s in 3 of the 4
binary vectors. Each column corresponds to an item.

or not the attacker follows the protocol to generate the per-

turbed value. Therefore, we study detecting fake users in the

RPA and MGA attacks for the OUE and OLH protocols. Since

PEM iteratively applies OLH, we can also apply detecting

fake users to PEM.

OUE: Recall that MGA assigns 1 to all target items and l
randomly selected items in the perturbed binary vector for

each fake user. Therefore, among the perturbed binary vectors

from the fake users, a set of items will always be 1. However,

if the perturbed binary vectors follow the OUE protocol, it

is unlikely to observe that this set of items are all 1’s for a

large number of users. Therefore, our idea to detect fake users

consists of two steps. In the first step, the server identifies

itemsets that are all 1’s in the perturbed binary vectors of a

large number of users. In the second step, the server detects

fake users if the probability that such large number of users

have these itemsets of all 1’s is small, when following OUE.

Step I. In this step, the server identifies itemsets that are

frequently all 1’s among the perturbed binary vectors. Figure 6

shows an example itemset that are all 1’s in 3 of the 4 binary

vectors. Identifying such itemsets is also known as frequent
itemset mining [6]. In our problem, given the perturbed binary

vectors from all users, frequent itemset mining can find the

itemsets that are all 1’s in at least a certain number of users.

Specifically, a frequent itemset mining method produces some

tuples BBB = {(B,s)|s ≥ τ}, where B is an itemset and s is the

number of users whose perturbed binary vectors are 1’s for

all items in B.

Step II. In this step, we determine whether there are fre-

quent itemsets that are statistically abnormal. Specifically,

we predict a tuple (B,s) ∈ BBB to be abnormal if s ≥ τz, where

z = |B| is the size of the itemset B. When an itemset is pre-

dicted to be abnormal, we predict the items as the target items

and the users whose perturbed binary vectors are 1’s for all

items in the itemset to be fake. The threshold τz achieves a

tradeoff between false positive rate and false negative rate of

detecting fake users. Specifically, when τz is larger, a smaller

number of genuine users are predicted as fake (i.e., a smaller

false positive rate), while a larger number of fake users are

not detected (i.e., a larger false negative rate). Therefore, a

key challenge is how to select the threshold τz. We propose

to select the threshold such that the false positive rate is at

most η. Specifically, given a threshold τz > (n+m)pqz−1,



we can derive an upper bound of the false positive rate as
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

(see Appendix B for details). Therefore,

to guarantee that the false positive rate is at most η and achieve

a small false negative rate, we select the smallest τz that sat-

isfies τz > (n+m)pqz−1 and
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

≤ η. We set

η = 0.01 in our experiments.

OLH: To attack the OLH protocol, MGA searches a hash

function for each fake user that hashes as many target items

to the same value as possible. Suppose we construct a d-

bit binary vector yyy for each user with a tuple (H,a) such

that yv = 1 if and only if H(v) = a. Then, the target items

will be 1’s in the binary vectors for a large number of users.

Therefore, we can also leverage the method to detect fake

users in OLH. Specifically, in Step I, we find frequent item-

sets in the constructed binary vectors. In Step II, we predict

an itemset B to be abnormal if its number of occurrences s
among the n+m binary vectors is larger than a threshold

τz, where z = |B| is the size of the itemset. Like OUE, we

select the threshold τz such that the false positive rate is at

most η. Specifically, we select the smallest τz that satisfies

I(qz−1;τz,n+m− τz +1)≤ η, where I is the regularized in-
complete beta function [5]. I(qz−1;τz,n+m− τz + 1) is the

false positive rate for a given τz (see Appendix B for details).

PEM: The heavy hitter identification protocol PEM itera-

tively applies OLH to identify heavy hitters. Therefore, we

can apply the frequent itemset mining based detection method

to detect fake users in PEM. Specifically, in each iteration of

PEM, the central server applies the detection method in OLH

to detect fake users in PEM; and the central server removes

the predicted fake users before computing the top-k prefixes.

6.3 Conditional Probability based Detection
The frequent itemset mining based detection method above

requires at least two target items as it identifies the abnor-

mal frequent itemset as the target items. When there is only

one target item, i.e., r = 1, it fails to detect the target item.

Therefore, we discuss another method to detect the target item

when r = 1, which leverages conditional probabilities. Note

that this method does not detect fake users.

OUE: Suppose yyy is a user’s perturbed binary vector. With a
little abuse of notation, we denote the j-th bit of yyy as y j. Given
the target item t and a random item j, we have the following
equations under our MGA attacks to OUE:

Pr(y j = yt = 1) = Pr(v = t) ·Pr(y j = yt = 1|v = t)

+Pr(v = j) ·Pr(y j = yt = 1|v = j)

+Pr(v �= t, j) ·Pr(y j = yt = 1|v �= t, j)

+Pr(fake) ·Pr(y j = yt = 1|fake) (28)

=
n ft

n+m
· pq+

n f j

n+m
· pq

+
n(1− ft − f j)

n+m
·q2 +

m
n+m

· l
d −1

, (29)

f j 0.01 0.01 0.1 0.1 0.5 0.5 0.9 0.9

ft 0 0.01 0 0.01 0 0.01 0 0.01

f̂u 0.25 0.26 0.18 0.19 0.18 0.18 0.18 0.19

(a) β = 0.05

f j 0.01 0.01 0.1 0.1 0.5 0.5 0.9 0.9

ft 0 0.01 0 0.01 0 0.01 0 0.01

f̂u 1.8 1.8 0.87 0.88 0.82 0.84 0.82 0.83

(b) β = 0.2

Table 3: Threshold f̂u for different f j and ft .

Pr(yt = 1) = Pr(v = t) ·Pr(yt = 1|v = t)

+Pr(v �= t) ·Pr(yt = 1|v �= t)

+Pr(fake) ·Pr(yt = 1|fake) (30)

=
n ft

n+m
· p+

n(1− ft)
n+m

·q+ m
n+m

, (31)

Pr(y j = 1|yt = 1) =
Pr(y j = yt = 1)

Pr(yt = 1)
(32)

=q+
f jq(p−q)+ β

1−β · ( l
d−1 −q)

ft p+(1− ft)q+
β

1−β

. (33)

Given a non-target item u �= j, we have the following:

Pr(y j = yu = 1)

= Pr(v = u) ·Pr(y j = yu = 1|v = u)

+Pr(v = j) ·Pr(y j = yu = 1|v = j)

+Pr(v �= j,u) ·Pr(y j = yu = 1|v �= j,u)

+Pr(fake) ·Pr(y j = yu = 1|fake) (34)

=
n fu

n+m
· pq+

n f j

n+m
· pq+

n(1− fu − f j)

n+m
·q2

+
m

n+m
· l

d −1
· l −1

d −2
, (35)

Pr(yu = 1)

= Pr(v = u) ·Pr(yu = 1|v = u)

+Pr(v �= u) ·Pr(yu = 1|v �= u)

+Pr(fake) ·Pr(yu = 1|fake) (36)

=
n fu

n+m
· p+

n(1− fu)
n+m

·q+ m
n+m

· l
d −1

, (37)

Pr(y j = 1|yu = 1)

=
Pr(y j = yu = 1)

Pr(yu = 1)
(38)

= q+
f jq(p−q)+ β

1−β · l
d−1 · ( l−1

d−2 −q)

fu p+(1− fu)q+
β

1−β · l
d−1

. (39)

Suppose both t and u are among the top-N items with the

largest estimated frequencies. The true frequency ft for the

target item t is small, since our attack aims to promote an

unpopular item. We have Pr(y j = 1|yt = 1)< Pr(y j = 1|yu =
1) when fu is smaller than a threshold f̂u. Table 3 shows such

threshold for different values of f j and ft , where β = 0.05

and β = 0.2. We observe that fu is highly likely smaller than



kRR OUE OLH

No Norm No Norm Detect Both No Norm Detect Both

RPA 2e-3 -1e-3 0.50 2e-3 0.50 2e-3 -2e-3 -2e-3 -2e-3 -2e-3

RIA 0.05 -4e-3 0.05 0.03 – – 0.05 0.03 – –

MGA 2.72 0.43 1.58 0.46 7e-17 -2e-16 1.18 0.43 1.18 0.43

Table 4: Overall gains of the three attacks on the IPUMS
dataset after countermeasures are deployed. The column
“No” means no countermeasure is used. The column
“Both” means the combined countermeasure. “–” means
that the countermeasure is not applicable. Only normal-
ization is applicable for kRR.

the threshold f̂u for a variety of f j when β = 0.2, as f̂u is

very large (sometimes even larger than 1). This observation

shows that if we randomly pick an item as j and compare

the conditional probabilities Pr(y j = 1|yu = 1) for each item

u in the top-N items, then we can detect the item with the

smallest conditional probability as the target item. However,

when β = 0.05, the effectiveness of such detection method

depends on the true frequencies f j and fu.

OLH: The conditional probability based detection method
can also be used for OLH when r = 1. Specifically, we can
construct a d-bit binary vector yyy for each user whose vth entry
yv = 1 if and only if H(v) = a, where (H,a) is the user’s
perturbed value. Assuming the hash function hashes an item
uniformly at random to a hash value in [d′]. Then, we have
the following conditional probabilities:

Pr(y j = 1|yt = 1) = q+
f jq(p−q)

ft p+(1− ft)q+
β

1−β

, (40)

Pr(y j = 1|yu = 1) = q+
f jq(p−q)

fu p+(1− fu)q+
β

1−β ·q
. (41)

6.4 Experimental Results

We empirically evaluate the effectiveness of the three coun-

termeasures. Unless otherwise mentioned, we focus on nor-

malization and detecting fake users as the conditional proba-

bility based detection is only applicable for one target item.

Note that normalization and detecting fake users can also be

used together. Specifically, the central server can first detect

and remove the fake users, and then perform normalization.

Therefore, we will also evaluate the combined countermea-

sure. We use the same default experimental setup as those

in Section 5.1. Moreover, we use the FP-growth algorithm

implemented in the Python package mlxtend [46] to identify

frequent itemsets.

6.4.1 Frequency Estimation

Overall results: Table 4 shows the experimental results with

no countermeasure, normalization, detection, and combined

countermeasure, where β = 0.05 and r = 10. We observe that

the countermeasures are effective in some scenarios. For ex-

ample, for OUE, combining the two countermeasures leads to

an overall gain of -2e-16 for MGA, which means that the esti-

mated total frequency of the target items is even smaller than

the one before attack. However, the countermeasures are inef-

fective in other scenarios. For instance, MGA can still achieve

a large overall gain of 0.43 for OLH even if both countermea-

sures are used. Normalization can reduce the overall gains

of all the three attacks for the three protocols except RPA

for OLH. However, MGA still achieves large overall gains

after normalization. Detecting fake users is ineffective for

RPA because RPA randomly samples perturbed values in the

encoded space for the fake users and thus the perturbed values

do not have meaningful statistical patterns. When the counter-

measures are used, MGA is still the most effective attack in

most cases. Therefore, we focus on MGA and further study

the impact of β and r on the countermeasure effectiveness.

Impact of β and r on MGA: Figure 7a-7b show the impact

of β on the countermeasures against MGA when we fix r = 10,

while Figure 7c-7d show the results for r when we fix β =
0.05 on the IPUMS dataset. First, we observe that for OUE,

detecting fake users and the combined countermeasure can

effectively defend against the MGA attacks (i.e., reduce the

overall gains to almost 0) when β and r are larger than some

thresholds, e.g., β > 0.001 and r ≥ 3. The countermeasures

are ineffective when β or r is small (e.g., β ≤ 0.001 or r ≤ 2).

This is because the detection method relies on that the target

itemset is frequent and abnormal, but the target itemset is not

frequent when β is small and is not abnormal among the users’

perturbed values when r is small.

Second, for OLH, detecting fake users and the combined

countermeasure can effectively defend against the MGA at-

tacks only when r is not too small nor large, e.g., 3 ≤ r ≤ 5

in our experiments. Recall that, to attack OLH, our MGA

randomly samples 1,000 hash functions and uses the one that

hashes the largest number of target items to the same value

for each fake user. When r ≤ 5, our MGA can find a hash

function that hashes all target items to the same value. There-

fore, the target itemset is frequent among the users’ perturbed

values. Moreover, when r ≥ 3, the frequent target itemset is

also abnormal. As a result, the detection method can detect

MGA when 3 ≤ r ≤ 5. When r ≥ 6, our MGA can only find

a hash function among the 1,000 random ones that hashes a

subset of the target items to the same value for each fake user.

In other words, each fake user essentially randomly picks a

subset of the target items and promotes them. Therefore, the

entire target itemset is not frequent enough and MGA evades

detection. Our MGA evades detection for all the explored β
in Figure 7b because r = 10 in these experiments.

Adaptive MGA to OUE: Inspired by the evasiveness of

MGA to OLH, we can also adapt MGA to OUE that evades

detection. Specifically, for each fake user, instead of using a

perturbed value that supports all r target items, we randomly

select r′ of the r target items and find a perturbed value that



(a) OUE (b) OLH (c) OUE (d) OLH (e) Adaptive MGA

Figure 7: (a)-(b) Impact of β on the countermeasures against MGA when r = 10. (c)-(d) Impact of r on the countermea-
sures against MGA when β = 0.05. (e) Impact of r′ on the adaptive MGA (MGA-A) to OUE when r = 10.

(a) N (b) β

Figure 8: Impact of N and β on the detection rate of the
conditional probability based method for r = 1.

supports the r′ selected target items. The adaptive attack splits

the frequency of the target itemset with size r to
( r

r′
)

itemsets

with size r′, which becomes much harder to detect. We call

such adaptive attacks MGA-A. Figure 7e shows the impact

of r′ on MGA-A to OUE when r = 10. We observe that our

adaptive MGA achieves smaller overall gains as r′ becomes

smaller when no countermeasures are deployed. However,

our adaptive MGA evades detection when r′ < r.

Attack stealthiness: If the frequent itemset mining based

detection method returns an abnormal frequent itemset, then

the central server predicts that it is under our MGA attack.

Our attack is stealthy if the central server cannot detect it. Our

results show that, for OUE, our MGA is stealthy when β or r
is small (e.g., β ≤ 0.001 or r ≤ 2), and our adaptive MGA is

stealthy when r′ < r. For OLH, our MGA is stealthy when r is

small or large enough, e.g., r ≤ 2 or r ≥ 6 in our experiments.

Conditional probability based detection for r = 1: We

measure the effectiveness of the conditional probability based

detection method using detection rate. Specifically, in each

experiment, we perform our MGA attack with a random target

item 50 times and the detection rate is the fraction of the 50

experiment trials in which the target item is correctly detected.

Figure 8a shows the impact of N on the detection rate when

we fix β = 0.05 on the IPUMS dataset. We observe that the

detection rate first increases and then decreases as N grows.

This is because when N is too small, e.g., N = 1, the target

item is likely not in the top-N items; and when N is too large,

it’s more likely that there exists a non-target item in the top-N
items that has a smaller conditional probability than the target

item. We notice that the detection rate is lower for OLH than

for OUE. This is because the threshold f̂u for OLH is smaller

than that for OUE, e.g., f̂u = 0.18 for OLH and f̂u = 0.26 for

OUE when ft = f j = 0.01. Figure 8b shows the impact of β
on the detection rate, where we explore N = 1 to 20 to find

the N that achieves the highest detection rate for each given

β. We observe that the detection rate increases as β increases,

which implies that the MGA attack with r = 1 is easier to

detect when there are more fake users. Once the target item

is detected, the server can compute the sum of the estimated

frequencies of all non-target items as f̃U = ∑u�=t f̃u and set the

estimated frequency of the target item as f̃t = 1− f̃U , which

can reduce the overall gain of MGA. For instance, the overall

gain decreases from 2.37 to 0.095 for OLH when β = 0.1.

6.4.2 Heavy Hitter Identification

Normalization is ineffective for heavy hitter identification

because normalization does not impact the ranking of the

items’ estimated frequencies. Moreover, the conditional prob-

ability based detection is only applicable to one target item.

Therefore, we perform experiments on detecting fake users

for heavy hitter identification. Moreover, we focus on MGA

because RIA and RPA are ineffective even without detecting

fake users (see Figures 4). We observe that detecting fake

users is effective in some scenarios but not in others. For

instance, when r = 5, detecting fake users can reduce the

success rate of MGA from 1 to 0, as all fake users can be

detected. However, when r = 10, our MGA can still achieve

a success rate of 1.

6.5 Other Countermeasures

Detecting fake users is related to Sybil detection in dis-

tributed systems and social networks. Many methods have

been proposed to mitigate Sybil attacks. For instance, meth-

ods [12, 16, 26, 52, 56, 57, 67, 68] that leverage content, be-

havior, and social graphs are developed to detect fake users

in social networks. Our detection method can be viewed as

a content-based method. Specifically, our detection method

analyzes the statistical patterns of the user-generated content

(i.e., perturbed values sent to the central server) to detect fake

users. However, our detection method is different from the

content-based methods to detect fake users in social networks,

as the user-generated content and their statistical patterns dif-



fer. Social-graph-based methods are inapplicable when the

social graphs are not available.

Another countermeasure is to leverage Proof-of-Work [20],

like how Sybil is mitigated in Bitcoin. In particular, before

a user can participate in the LDP protocol, the central server

sends a random string to the user; and the user is allowed to

participate the LDP protocol after the user finds a string such

that the cryptographic hash value of the concatenated string

has a certain property, e.g., the first 32 bits are all 0. However,

such method incurs a large computational cost for genuine

users, which impacts user experience. Moreover, when users

use mobile devices such as phones and IoT devices, it is chal-

lenging for them to perform the Proof-of-Work. Malicious-

party-resistant SMPC could also be used to limit the impact

of fake users (e.g., [40]). However, such methods generally

sacrifice computational efficiency.

7 Discussion

Applicability to shuffling-based and SMPC-based proto-
cols: Shuffling-based protocols [21] apply shuffling to the

users’ perturbed vectors such that a better DP guarantee can

be derived. Since they still encode and perturb each user’s

data, our attacks are applicable. When SMPC-based proto-

cols have local encoding and perturbation steps like [34], our

attacks are applicable and the security-privacy trade-off still

holds. When there is no local encoding or perturbation step in

the SMPC-based DP protocols like [48], our RPA and MGA

are not applicable because an attacker cannot manipulate the

perturbed vectors. However, our RIA is still applicable be-

cause it only needs to modify the item value. In this case, we

do not have the security-privacy trade-off because the overall

gain of RIA does not rely on the privacy budget.

RIA without perturbation: A variant of RIA is that a fake

user samples one of the r target items randomly, encodes it,

and sends the encoded value to the central server without

perturbing it. When r = 1, this RIA variant has the same

overall gain as MGA. When r > 1, the RIA variant uses a fake

user to promote only one target item. However, MGA uses

a fake user to simultaneously promote multiple target items,

which means that its overall gain is multiple times of the RIA

variant’s overall gain. Moreover, it may be easy for the central

server to detect the RIA variant for OUE. Specifically, the

server can count the number of 1’s in a vector from a user. If

there is only one entry that is 1, then it is likely that the vector

is from a fake user as the probability that a genuine vector

contains a single 1 is fairly small.

Defending OLH by restricting the hash functions: Since

MGA to OLH relies on searching a hash function that maps

target items to the same hash value, the server could restrict

the space of seeds of the hash function or select the hash

function by itself to defend OLH against MGA. However, the

defense may break the privacy guarantees. In particular, an

untrusted server could carefully select a space of seeds or a

hash function that does not have collisions in the item domain.

For instance, a hash value h corresponds to a unique item.

When receiving a hash value h from a user, the server knows

the user’s item, which breaks the LDP guarantee.

8 Conclusion

In this work, we perform the first systematic study on data

poisoning attacks to LDP protocols. Our results show that

an attacker can inject fake users to an LDP protocol and

send carefully crafted data to the server such that the target

items are estimated to have high frequencies or promoted as

heavy hitters. We show that we can formulate such an attack

as an optimization problem, solving which an attacker can

maximize its attack effectiveness. We theoretically and/or

empirically show the effectiveness of our attacks. Moreover,

we explore three countermeasures against our attacks. Our

empirical results show that these countermeasures have lim-

ited effectiveness in some scenarios, highlighting the needs

for new defenses against our attacks.

Interesting future work includes generalizing our attacks

to other LDP protocols, e.g., LDP protocols for itemset min-

ing [61] and key-value pairs [66], as well as developing new

defenses to mitigate our attacks.
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A Proof of Theorem 2

Proof. Let β(1− fT )+
β(d−r)
eε−1 > β(2r− fT )+

2βr
eε−1 , we have:

1+
d − r
eε −1

> 2r+
2r

eε −1
⇐⇒ d −3r

eε −1
> 2r−1. (42)

Since eε > 1, the inequality above is equivalent to d > (2r−
1)(eε −1)+3r.

B FPRs of Detecting Fake Users

OUE: If a user’s perturbed binary vector yyy follows the
OUE protocol, then we can calculate the probability that the

items in a set B of size z, are all 1 in the perturbed binary
vector as follows: Pr(yb = 1,∀b ∈ B) = pqz−1 if v ∈ B and
Pr(yb = 1,∀b ∈ B) = qz otherwise, where yb is the bth bit of
the perturbed binary vector yyy and v is the user’s item. Let
fB = ∑b∈B fb denote the sum of true frequencies of all items
in B, X1 denote the random variable representing the number
of users whose items are in B and whose perturbed binary
vectors are 1 for all items in B, and X2 denote the random vari-
able representing the number of users whose items are not in
B and whose perturbed binary vectors are 1 for all items in B.
If all the n+m users follow the OUE protocol, then we have
the following distributions: X1 ∼ Binom( fB(n+m), pqz−1)
and X2 ∼ Binom((1− fB)(n+m),qz), where Binom is a bino-
mial distribution. Now we consider another random variable
X = X1 +X2, which represents the number of users whose
perturbed binary vectors are 1 for all items in B. X follows a
distribution with mean μ and variance Var as follows:

μ = fB(n+m)pqz−1 +(1− fB)(n+m)qz (43)

≤ (n+m)pqz−1 (44)

Var = fB(n+m)pqz−1(1− pqz−1)

+(1− fB)(n+m)qz(1−qz) (45)

≤ (n+m)pqz−1(1− pqz−1). (46)

Based on the Chebyshev’s inequality, for any τz > (n +
m)pqz−1, we have:

Pr(X ≥ τz) = Pr(X −μ ≥ τz −μ)

≤ Pr(|X −μ| ≥ τz −μ)

≤ Var
(τz −μ)2

≤ (n+m)pqz−1(1− pqz−1)

[τz − (n+m)pqz−1]2
(47)

Here, if we choose τz as the threshold, the probability Pr(X ≥
τz) is the false positive rate, which is upper bounded by
(n+m)pqz−1(1−pqz−1)
[τz−(n+m)pqz−1]2

.

OLH: As discussed in Section 6.2, we first construct a d-bit
binary vector yyy for each user with a tuple (H,a) such that
yv = 1 if and only if H(v) = a. For an item set B of size z,
assume X is a random variable that represents the number of
users whose constructed binary vectors are 1’s for all items
in B. If all the n+m users follow the OLH protocol, then for
any τz > 0, the probability that X ≥ τz is bounded as follows:

Pr(X ≥ τz) = 1−Pr(X ≤ τz −1)

= 1− I(1−qz−1;n+m− τz +1,τz)

= I(qz−1;τz,n+m− τz +1) (48)

Note that if we set τz as the threshold, the probability Pr(X ≥
τz) is the false positive rate.


