
CADE: Detecting and Explaining Concept Drift
Samples for Security Applications

Limin Yang1, Wenbo Guo2, Qingying Hao1,
Arridhana Ciptadi3, Ali Ahmadzadeh3, Xinyu Xing2 , Gang Wang1

1University of Illinois at Urbana-Champaign 2Penn State 3Blue Hexagon Inc.

USENIX Security 2021

https://liminyang.web.illinois.edu/

A Multi-class Malware Classification Model

1. Train

2

Benign Malware
A

Malware
B

A Multi-class Malware Classification Model

1. Train

3

Benign

2. Predict

“Benign”

Benign

Malware
A

Malware
B

A Multi-class Malware Classification Model

1. Train

4

Benign

2. Predict

Malware
A

Malware
B

Malware A

“Malware A”

A Multi-class Malware Classification Model

1. Train

5

Benign

2. Predict

“Benign”?
“Malware A”?
“Malware B”?❌

Malware C

Concept Drift!
(Unseen family)

Malware
A

Malware
B

Another Type of Drift: In-class Evolution

6

Train

Benign

Malware A

Malware B

Predict

Benign Variant

Malware A Variant

Malware B Variant

Why Concept Drift Matters?

• New attacks (zero-day) are NOT trivial

7

FireEye Annual Report 2020
“1.1 million malware samples per day”

“41% malware families never seen before”

Why Concept Drift Matters?

• New attacks (zero-day) are NOT trivial

• Both malware and goodware evolve over time

8
[1] A study of run-time behavioral evolution of benign versus malicious apps in
android, Information and Software Technology, 2020.

Functionality scope distribution of
Android goodware and malware [1].

Why Concept Drift Matters?

• New attacks (zero-day) are NOT trivial

• Both malware and goodware evolve over time

• ML models’ decision boundaries shift

9

GBDT malware classifier trained on Ember-2018;
Tested a year later using malware samples from
Blue Hexagon Inc. [DLS’21]

* GBDT: Gradient Boosted Decision Tree

https://liminyang.web.illinois.edu/data/DLS21_BODMAS.pdf

When NOT to Predict?

10

Goals
❶ Detect drifting samples

❷ Find a small subset of important
features that explain why the drifting
sample is different from training data

Existing Drifting Detection Solutions

• Solutions from ML community

– JSTOR’54, SBIA’04, SDM’07, ICML’14, KDD’16, CIKM’19, etc.

– Most require data labeling on the testing set à costly for security domain

• Solutions from security community

– Transcend [USENIX Sec’17]

– Highly dependent on a good definition of “dissimilarity”, scalability issues

11

https://www.jstor.org/stable/2333009
https://link.springer.com/chapter/10.1007/978-3-540-28645-5_29
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.2279&rep=rep1&type=pdf
http://proceedings.mlr.press/v32/harel14.pdf
http://www.kdd.org/kdd2016/papers/files/rpp0427-dos-reisA.pdf
https://dl.acm.org/doi/10.1145/3357384.3358144
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-jordaney.pdf

Why It’s Hard to Define a “Good” Distance Function?

• Distance loses effectiveness in high-dimensional data

– This sample feature space has 1,368 dimensions

• Drifting samples are not labeled, hard to differentiate
from normal samples

12

T-SNE plot for the original space of an
Android malware dataset (Unseen family:)

Self-supervision: Contrastive Learning

• No knowledge about future drifting samples à self-supervision
• Use contrastive learning to learn a compressed representation of the

training data by contrasting with existing samples

13

• A sample is far away from ANY existing families’ centroids,
it’s a potential drifting sample; rank for investigation

How to explain these drifting samples?

14

Download adware

Read Contacts

Read settings

Goodware Malware Analyst makes decision

A Rich set of Explanation Methods

• Identify a small set of important features that make
the drifting sample an outlier

• Naïve idea: boundary-based explanation

– Approximate the decision boundary between

drift and in-distribution

– Explaining a supervised learning model

o LIME [KDD’16], SHAP[NeurIPS’17], LEMNA [CCS’18],
Perturbation [ICCV’17]

– Using “crossing the boundary” as a signal to derive

important features
15

“Dog” “Cat”

https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
http://www.personal.psu.edu/wzg13/publications/ccs18.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf

Problems with Boundary-based Explanation

• Difficult to approximate the boundary
– Drifting samples are limited

• Difficult to drag a drifting sample to
cross the boundary

– Drifting samples are far away from the
boundary in the sparse area

16

Our Method: Distance-based Explanation

• Perturb the original features and observe the
distance changes in latent space

• Perturbation strategy
– Replace 𝐱! ’s feature value with those of a

reference sample 𝐱!
– 𝐱! is closest to the centroid of nearest family

• Optimization goal
– Minimize the distance between 𝐱" and CA
– Use elastic-net regularization to minimize the

number of selected important features

17

Evaluation: Datasets

18

IDS2018 [ICISSP’18]
• Benign + 3 types of network intrusion
• 130,702 network flows
• Training set: 80% of 3 families
• Testing set: 20% of 3 families + unseen family

Drebin [NDSS’14]
• Top 8 malware families
• 3,317 malware samples
• Training set: 80% of 7 families
• Testing set: 20% of 7 families + unseen family

https://www.scitepress.org/Papers/2018/66398/66398.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FA766C4813C5D68A8650E969145E9AA4?doi=10.1.1.676.2139&rep=rep1&type=pdf

Drift Detection Results

Method Drebin (Avg±Std) IDS2018 (Avg±Std)

F1 Norm. Effort F1 Norm. Effort

Vanilla AE 0.72±0.15 1.48±0.31 0.74±0.12 1.74±0.40

Transcend 0.80±0.12 1.29±0.45 0.65±0.46 1.45±0.57

CADE 0.96±0.03 1.00±0.09 0.96±0.06 0.95±0.07

19

Iteratively choose a family as the unseen family and report the average results here.

* Vanilla AE: Standard Autoencoder without contrastive learning.

Real-world test: evaluate on Blue Hexagon PE malware dataset, still effective!

Why CADE Works?

20

−50 −40 −30 −20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

40

Original Space
−50 −40 −30 −20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

Latent Space (Vanilla AE)
−50 −40 −30 −20 −10 0 10 20 30 40

−40

−20

0

20

40

FDkeInstDller
DroiGKungFu
3lDnkton
Ginger0Dster
BDseBriGge
IFonosys
KPin
FDkeDoF

Latent Space (CADE)

T-SNE visualization for Drebin dataset (Unseen family: Iconosys)

Drift Explanation: Case Study

Drifting sample family: FakeDoc; closest family: GingerMaster
• Key difference: FakeDoc usually subscribes to premium services via SMS.

21

Important features selected by CADE (avg # of selected features is 45 out of 1000+)

Takeaways

• Concept drift is a critical problem for ML/Security applications

• Contrastive Autoencoder is effective to detect concept drift

• Distance-based explanation is more suitable for

explaining drifting samples

22

Explaining
Distance

AB

xt

Thank you!

Homepage

https://liminyang.web.Illinois.edu

Code, features, and supplemental materials available
https://github.com/whyisyoung/CADE

A new PE malware dataset [DLS’21]

https://whyisyoung.github.io/BODMAS/

https://liminyang.web.illinois.edu/
https://github.com/whyisyoung/CADE
https://liminyang.web.illinois.edu/data/DLS21_BODMAS.pdf
https://whyisyoung.github.io/BODMAS/

Backup Slides

24

• Drift detection: if a sample is far away from ANY existing families’
centroid, it’s a potential drifting sample

• But different families’ tightness vary, how to set distance thresholds?

25

Drift Detection in the Latent Space

• MAD (Median Absolute Deviation) [1]

– Median of the median distance to the centroid

– 𝑀𝐴𝐷 = 𝑏 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋! −𝑚𝑒𝑑𝑖𝑎𝑛 𝑋

– 𝑋 is a set of distances to the centroid

– Any new data outside 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) ± 𝐴 ∗ 𝑀𝐴𝐷à outlier

• Rank drifting samples for investigation

[1] Detecting outliers: Do not use standard deviation around the mean, use absolute
deviation around the median, Journal of Experimental Social Psychology, 2013

Drift Detection: Evaluation Metrics

• Precision = detected unseen family samples
inspected samples

• Recall = detected unseen family samples
total # of unseen family samples

• F? =
2 ∗ Precision ∗ Recall

Precision + Recall
• Normalized Inspection effort =

inspected samples
total # of unseen family samples

26

Training set: A (200), B(200), C(200)
Testing set: A(50), B(50), C(50), D(10)

ID Family Precision Recall

1 D 1/1 = 1 1/10 = 0.1

2 D 2/2 = 1 2/10 = 0.2

3 C 2/3 = 0.67 2/10 = 0.2

4 D 3/4 = 0.75 3/10 = 0.3

5 D 4/5 = 0.8 4/10 = 0.4

.......

A ranked list of detected samples

Real-world Test on Blue Hexagon PE Malware

• 20,613 Windows PE malware, 395 families, Sept. 2019 – Feb. 2020
• 2,381 features, training with top N families Sept. 2019 – Jan. 2020
• Testing set: Feb. 2020
• CADE is still effective!

27

N
(training
families)

F1
Norm.
Effort

Detected
Unseen
Families

5 0.97 1.02 161/165

10 0.95 0.98 153/160

15 0.87 0.84 140/155

Drift Explanation: Evaluation Metrics and Results

• Metric: the latent distance between a perturbed sample and its closest centroid.
• Using CADE to select important features, 𝐱! → 𝐱@, while baseline methods may
→ 𝐱!′ , which is still far away from CA.

28

Method Drebin-FakeDoc
Avg±Std

IDS2018-Infiltration
Avg±Std

Original distance 5.363±0.568 11.715±2.321
Random 5.422±1.773 11.546±3.169

Boundary-based 3.960±2.963 6.184±3.359
COIN [IJCAI’18] 6.219±3.962 8.921±2.234

CADE 0.065±0.035 2.349±3.238

https://arxiv.org/pdf/1711.10589.pdf

