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Another Type of Drift: In-class Evolution

Train

O O O O Benign

‘ ‘ ‘ ‘ Malware A
AAAA Malware B

Predict

Benign Variant

Malware A Variant

Malware B Variant

ARTIFACT

CADE: Detecting and Explaining Concept Drift Samples “’::‘::'I‘:
for Security Applications €p B

PASSED

Limin Yang", Wenbo Guo', Qingying Hao", Arridhana Ciptadi*
Ali Ahmadzadeh?, Xinyu Xing', Gang Wang®

sity of Hlinois at Urbana-Champaign The Pennsylvania State University *Blue Hexagon

liminy2@illinois. cdu, wzg1 3@ist.psu.edu, ghao2 @illinois.edu, {arm, ali) @bluchexagon.ai, xxing@ist psu.edu, gangw @illinois.cdu

Abstract

Concept drift poses a critical challenge to deploy machine
learmning models to solve practical security problems. Due
to the dynamic behavior changes of attackers (and/or the
benign counterparts), the testing data distribution is often
shifting from the original training data over time, causing
major failures to the deployed model.

To combat concept drift, we present a novel system CADE
aiming to 1) detect drifting samples that deviate from existing
classes, and 2) provide explanations to reason the detected
drift. Unlike traditional approaches (that require a large num-
ber of new labels to determine concept drift statistically ), we
aim to identify individual drifting samples as they amive
ognizing the challenges introduced by the high-dimensional
outlier space, we propose to map the data samples into a
Tow-di | space and ically learn a distance
function to measure the dissimilanity between samples, Using
contrastive learning. we can take full advantage of existing
labels in the training dataset to Jeam how to compare and
contrast pairs of samples. To reason the meaning of the de-
tected drift, we develop a distance-based explanation method
We show that explaining “distance” is much more effective
than traditional methods that focus on explaining a “decision
boundary™ in this problem context. We
two case studies: Android malware classification and network
intrusion detection. We further work with a security com-
pany to test CADE on its malware database. Our results show
that CADE can effectively detect drifting samples and provide
nantically meaningful explanations.
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Figure 1: Drifting sample detection and explanation

environments in which the models are deployed are usually
dynamically changing over time. Such changes may include
both organic behavior changes of benign players and mali-
clous mutations and adaptations of attackers. As a result, the
testing data distribution is shifting from the original training
data, which can cause serious failures to the models [23].

To address concept drift, most learning-based models re-
quire periodical re-training |36, 39.52). However. retraining
often needs labeling a large number of new samples (expen-
sive). More importantly, it is also difficult to determine when
the model should be retrained. Delayed retraining can leave
the outdated model vulnerable to new attacks.

nvision that combating concept drift requires estab-
lishing a monitoring system to examine the relationship be-
tween the incoming data streams and the training data (and/or
the current classifier). The high-level idea is illustrated in
Figure 1. While the original classifier is working in the pro-
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Why Concept Drift Matters?

FIResYe {)MANDIANT

* New attacks (zero-day) are NOT trivial

FireEye Annual Report 2020
“1.1 million malware samples per day”
“41% malware families never seen before”
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[1] A study of run-time behavioral evolution of benign versus malicious apps in
android, Information and Software Technology, 2020. 8



Why Concept Drift Matters?

* New attacks (zero-day) are NOT trivial

' GBDT =—=
) £ 08} \
* Both malware and goodware evolve over time <
§ 0.2}
* ML models’ decision boundaries shift 0 2018 2019
Test Time

GBDT malware classifier trained on Ember-2018;
Tested a year later using malware samples from
Blue Hexagon Inc. [DLS’21]

* GBDT: Gradient Boosted Decision Tree 9


https://liminyang.web.illinois.edu/data/DLS21_BODMAS.pdf

When NOT to Predict?

Production Original Classifier Training Data
Space Incoming Samples g o O )
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Goals

ﬂ Detect drifting samples

@ Find a small subset of important
features that explain why the drifting
sample is different from training data
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Existing Drifting Detection Solutions

 Solutions from ML community

— JSTOR’54, SBIA’04, SDM’07, ICML 14, KDD’16, CIKM’19, etc.

— Most require data labeling on the testing set = costly for security domain

 Solutions from security community

— Transcend [USENIX Sec’17]

— Highly dependent on a good definition of “dissimilarity”, scalability issues
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https://www.jstor.org/stable/2333009
https://link.springer.com/chapter/10.1007/978-3-540-28645-5_29
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.2279&rep=rep1&type=pdf
http://proceedings.mlr.press/v32/harel14.pdf
http://www.kdd.org/kdd2016/papers/files/rpp0427-dos-reisA.pdf
https://dl.acm.org/doi/10.1145/3357384.3358144
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-jordaney.pdf

Why It’s Hard to Define a “Good” Distance Function?

40

e Distance loses effectiveness in high-dimensional data N ‘,
).:.6}\{%\9,:‘?\‘\
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— This sample feature space has 1,368 dimensions y vk -
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* Drifting samples are not labeled, hard to differentiate 10
from normal samples -20 '
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—40 'fg-ﬁ
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T-SNE plot for the original space of an
Android malware dataset (Unseen family: .)
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Self-supervision: Contrastive Learning

* No knowledge about future drifting samples = self-supervision

e Use contrastive learning to learn a compressed representation of the
training data by contrasting with existing samples

o~
\
(e,
SN MNn RN
High-dimensional space Contrastive Low-dimensional space
(Original space) Autoencoder (Latent space)

* A sample is far away from ANY existing families’ centroids,

it’s a potential drifting sample; rank for investigation
13



How to explain these drifting samples?

Download adware O
Read settings

Read Contacts —_— \ /
([

Goodware Malware

Analyst makes decision
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A Rich set of Explanation Methods

* |dentify a small set of important features that make
the drifting sample an outlier

* Naive idea: boundary-based explanation

— Approximate the decision boundary between
drift and in-distribution
— Explaining a supervised learning model

o LIME [KDD’16], SHAP[NeurlPS’17], LEMNA [CCS’18],
Perturbation [ICCV’17]

— Using “crossing the boundary” as a signal to derive

important features
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https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
http://www.personal.psu.edu/wzg13/publications/ccs18.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf

Problems with Boundary-based Explanation

* Difficult to approximate the boundary

— Drifting samples are limited

* Difficult to drag a drifting sample to
cross the boundary

— Drifting samples are far away from the

boundary in the sparse area
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W Drifting sample

16




Our Method: Distance-based Explanation

e Perturb the original features and observe the
distance changes in latent space

* Perturbation strategy

— Replace X; s feature value with those of a
reference sample X,

— X, is closest to the centroid of nearest family
* Optimization goal
— Minimize the distance between x; and C,

— Use elastic-net regularization to minimize the
number of selected important features

Xt

\ Explaining
Boundaryk

R__ Explaining ~ o -
Distance

O Training in-distribution
@ Training out-distribution
Y Drifting sample
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Evaluation: Datasets

Drebin [NDSS 14] IDS2018 [ICISSP’18]
Top 8 malware families * Benign + 3 types of network intrusion
3,317 malware samples 130,702 network flows
Training set: 80% of 7 families * Training set: 80% of 3 families

Testing set: 20% of 7 families + unseen family ¢ Testing set: 20% of 3 families + unseen family

i
!



https://www.scitepress.org/Papers/2018/66398/66398.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FA766C4813C5D68A8650E969145E9AA4?doi=10.1.1.676.2139&rep=rep1&type=pdf

Drift Detection Results

Iteratively choose a family as the unseen family and report the average results here.

Method Drebin (Avg+Std) IDS2018 (Avg+Std)
Fy Norm. Effort F, Norm. Effort
Vanilla AE 0.72+0.15 1.48+0.31 0.74+0.12 1.74+0.40
Transcend 0.80+0.12 1.29+0.45 0.65+0.46 1.45+0.57
CADE 0.96+0.03 1.00+0.09 0.96+0.06 0.95+0.07

Real-world test: evaluate on Blue Hexagon PE malware dataset, still effective!

* Vanilla AE: Standard Autoencoder without contrastive learning. 19
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Drift Explanation: Case Study

Drifting sample family: FakeDoc; closest family: GingerMaster
* Key difference: FakeDoc usually subscribes to premium services via SMS.

[api_call::android/telephony/SmsManager;->send TextMessage] , [call::readSMS] , [permission::android.permission.DISABLE_KEYGUARD] ,
[permission::android.permission.RECEIVE_SMS] , [permission::android.permission.SEND_SMS] , [permission::android.permission. WRITE_SMS] ,
[real_permission::android.permission.SEND_SMS] , [permission::android.permission.READ_SMS] | [feature::android.hardware.telephony] ,

[permission::android.permission.READ_CONTACTS] , [real_permission::android.permission.READ_CONTACTS] ,
[api_call::android/location/LocationManager;->isProviderEnabled], [api_call::android/accounts/AccountManager;->getAccounts],
[intent::android.intent.category. HOME], [feature::android.hardware.location.network], [real_permission::android.permission.RESTART_PACKAGES] ,

[real_permission::android.permission. WRITE_SETTINGS] , [api_call::android/net/ConnectivityManager;->getAllNetworkInfo],
[api_call::android/net/wifi/WifiManager;->setWifiEnabled], [api_call::org/apache/http/impl/client/DefaultHttpClient],
[url::https://ws.tapjoyads.com/] , [url::https://ws.tapjoyads.com/set_publisher_user_id?] ,

[permission::android.permission. CHANGE_WIFI_STATE)], [real_permission::android.permission. ACCESS_WIFI_STATE],
[real_permission::android.permission. BLUETOQOTH], [real_permission::android.permission. BLUETOOTH_ADMIN], [call::setWifiEnabled].

Important features selected by CADE (avg # of selected features is 45 out of 1000+)
21




Takeaways
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* Concept drift is a critical problem for ML/Security applications
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Thank you!

Homepage

https://liminyang.web.lllinois.edu

Code, features, and supplemental materials available

https://github.com/whyisyoung/CADE
A new PE malware dataset [DLS’21]
https://whyisyoung.github.io/BODMAS,/ [1]
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BODMAS: An Open Dataset for Learning based
Temporal Analysis of PE Malware

Limin Yang", Arridhana Ciptadi', Ihar Laziuk’, Ali Ahmadzadeh', Gang Wang"
“University of Illinois at Urbana-Champaign 'Blue Hexagon

liminy2@illinois.edu, {arri, ihar, ali}@

ai, gangw @illinois.edu

Abstract—We describe and release an open PE malware
dataset called BODMAS to facilitate research efforts in machine
learning based malware analysis. By closely examining existing
open PE malware datasets, we identified two missing capabilities
(i.e., recent/timestamped malware samples, and well-curated
family information), which have limited researchers’ ability to
study pressing issues such as concept drift and malware family
evolution. For these reasons, we release a new dataset to fill in the
gaps. The BODMAS dataset contains 57,293 malware samples and
77,142 benign samples collected from August 2019 to September
2020, with carefully curated family information (581 families).
We also perform a preliminary analysis to illustrate the impact
of concept drift and discuss how this dataset can help to facilitate
existing and future research efforts.

1. INTRODUCTION
Today, machine leaming models (including deep neural
networks) are broadly applied in malware analysis tasks, by
researchers [30], (5], [11], [6] and antivirus vendors [1].
In this field of work, it is highly desirable to have public
datasets and open benchmarks. On one hand, these datasets
will be instrumental to facilitate new works to resolve open

malware detection and family attribution. First, most datasets
mentioned above contain malware samples that appeared be-
tween 2017 to 2019. The data is slightly outdated to study
recent malware behaviors. Second, most existing datasets
do not contain well-curated family information. This limits
researchers’ ability to test learning-based family attributi
methods and analyze family evolution patterns.

For these reasons, we compile a new dataset, called
BODMAS, to complement existing datasets. Our dataset con-
tains 57,293 malware samples and 77,142 benign samples
(134,435 in total). The malware is randomly sampled each
month from a security pany’s intemnal Jatab
from August 29, 2019, to September 30, 2020 (one year).
For each sample, we include both the original PE binary as
well as a pre-extracted feature vector that shares the same
format with existing datasets such as Ember [5] and SOREL-
20M [11]). R hers could casily bine our dataset with
existing ones to use them together. More importantly, our
dataset provides well-curated family labels (curated by security
analysts) covering 581 malware families. The family label

hall (e.g., ad ial hine leaming, i
techniques [28), [10]). On the other hand, public benchmarks
and datasets can help hers to easily pare their

is much richer than existing datasets (e.g., the
Microsoft dataset [24] only has 9 families).

models and keep track of the progress as a community.
However, creating open malware datasets is highly chal-
lenging. For example, the authors of [5] have discussed
many of such chall luding legal restrictions, costs and
difficulty of labeling malware samples, and potential security
liabilities. In addition to these factors, another key chall

P inary Analysis. In this paper, we use our dataset
(and existing datasets) to perform a preliminary analysis on
the impact of concept drift (where the testing set distribution
shifts away from the training set [8]) on binary malware
lassi and multi-class family ibution methods. We
illustrate the impact of concept drift on different learning tasks.

is the dynamic evolving nature of malware (as well as benign
software) [20). As new malware families and variants appear
over time, they constantly introduce changes to the underlying
data distribution. As a result, there is a constant need for
releasing new datasets and benchmarks over time.

Over the past decade, there were only a handful of open

In particular, we highlight the chall introduced by the
arrival of previously unseen malware families, which have
contributed to i ing false negatives of binary

lassifiers and crippled mal family classi in an “open-
world” setting. In the end, we discuss the open questions
related to our observations and how BODMAS could help to

PR e o o



https://liminyang.web.illinois.edu/
https://github.com/whyisyoung/CADE
https://liminyang.web.illinois.edu/data/DLS21_BODMAS.pdf
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Drift Detection in the Latent Space

centroid, it’s a potential drifting sample

MAD (Median Absolute Deviation) 1!
— Median of the median distance to the centroid
— MAD = b = median(|X; — median(X)|)
— X is a set of distances to the centroid

— Any new data outside median(X) + A * MAD - outlier

Rank drifting samples for investigation

[1] Detecting outliers: Do not use standard deviation around the mean, use absolute
deviation around the median, Journal of Experimental Social Psychology, 2013

Drift detection: if a sample is far away from ANY existing families’

But different families’ tightness vary, how to set distance thresholds?
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Drift Detection: Evaluation

detected unseen family samples

Precision = :
inspected samples

detected unseen family samples
total # of unseen family samples
Fo— 2 * Precision * Recall

L™ Precision + Recall

Normalized Inspection effort =
inspected samples

total # of unseen family samples

Recall =

Metrics

Training set: A (200), B(200), C(200)
Testing set: A(50), B(50), C(50), D(10)

ID Family Precision Recall
1 D 1/1=1 1/10=0.1
2 D 2/2=1 2/10=0.2
3 C 2/3=0.67 2/10=0.2
4 D 3/4=0.75 3/10=0.3
5 D 4/5=0.8 4/10=0.4

A ranked list of detected samples

26



Real-world Test on Blue Hexagon PE Malware

* 20,613 Windows PE malware, 395 families, Sept. 2019 — Feb. 2020
2,381 features, training with top N families Sept. 2019 — Jan. 2020

* Testing set: Feb. 2020

. o o
CADE is still effective! 5 Detected
Norm.
(training F, Unseen
- Effort ot
families) Families
5 0.97 1.02 161/165
10 0.95 0.98 153/160
BLUEH=XAGON 15 0.87 0.84  140/155

27



Drift Explanation: Evaluation Metrics and Results

* Metric: the latent distance between a perturbed sample and its closest centroid.

* Using CADE to select important features, Xy = X, while baseline methods may
— Xp' , Which is still far away from C,.

EXp'a‘”ing Method Drebin-FakeDoc  1DS2018-Infiltration
oundary
| ) Avg:Std Avg:Std

~_ 9 o0-.0 Original distance  5.363+0.568 11.715+2.321
B e OAQ" d
L Xr—=0-0 -Ca Random  5.422+1.773 11.546+3.169
s //\//Q O o, Boundary-based 3.960+2.963 6.184+3.359
X O ® ’
Xt W n Explaining XP S o _ _ 7 COIN[IJCAI'18]  6.219+3.962 8.921+2.234
Histance CADE  0.065+0.035 2.349+3.238
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