Preventing Use-After-Free
Attacks with Fast Forward
Allocation

Brian Wickman,! Hong Hu,? Insu Yun,3 Daehee Jang,3 JungWon Lim,3
Sanidhya Kashyap,* Taesoo Kim?3

1GTRI ?Penn State 3Georgia Tech “EPFL

Use After Free

* A problem in memory unsafe
languages like C

* Occurs when a program accesses
memory it has previously marked
as unused (free)

 |f attackers can control this freed
memory, normal program
execution can be subverted

p = malloc(l);

*p:]_;
if (*p
}

if (*p

1) {

Attacking UAF

* Allocation p = malloc(8); p
e U *p = 1;

>¢ if (*p —= 1) { P 1
* Free o
* Re-assignment free(p); p 1

* Most allocators reuse p’s }

slot for “e
) q = malloc(8); P

P Use *q = ReadNet(); p

* Use-after-free if (xp == 2))

Still a Problem Despite Our Best Efforts

* Pointer invalidation — find and disable dangling pointers at runtime
» Reference counting
* Garbage collection inspired searching

* UAF detection — compiler injected runtime checks

* Allocation randomization — don’t reuse addresses ... probably
* Hopefully the attacker’s target doesn’t get reassigned too quickly

* Restricted reuse
* Page-per-allocation — immediately unmap VAs upon free
* None are widely adopted

(Re)Introducing One Time Allocation

* What if we just never* re-use VAs? o = malloc(8); P
* Doesn’t remove the UAF bug *xp = 1;

1
* Does makes it unexploitable if (xp == 1) { P
* The naive and simplest approach o .
* No expensive tracking 1
* No custom compilers
* Previously thought impractical q: malloc(8);
* We needed 64-bit address space xq = ReadNet();
e What about CPU overhead? assert(p !'= q);

« Won’t memory be wasted? if (*p == 2) P

Take 1 - Forward Continuous malloc

* Simple bump pointer allocator
e Address space fragmentation

* Small long-lived allocations prevent
releasing pages

e Exhausts VMAS

* This is what early objections to OTA
warned about

* Key lesson learned — Use batch
page release to decrease VMA and
CPU usage albeit for an increase in
memory consumption

Benchmark glibc FCmalloc
perlbench 4,401 58,737
bzip2 23 35
gcc 2,753 6,525
mcf 20 31
milc 46 65
namd 128 57
gobmk 25 61
dealll 4,760 2,322
soplex 152 99
povray 51 109
hmmer 35 197
sjeng 20 32
libquantum 29 38
h264ref 228 89
Ibm 23 34
omnetpp 1,164 15,933
astar 1,762 6,726
sphinx3 168 31,409
xalancbmk 2,705 68,606

Take 2 - Forward Binning malloc

* Fit allocations into fixed sized buckets
e Put allocations of the same size onto the same pages

* Reduces VMA pressure. Long lived allocations more likely to live
together

 Larger allocations round up to page boundary
* Potentially significant memory waste

Take 3 - FFmalloc — The best of both

From FCmalloc From FBmalloc

 Allocations > 2048 bytes * Smaller allocations grouped into

* Processor required alignment fixed sized buckets

only — minimize allocation waste ¢ Long lived small allocations don’t

* Tunable “consecutive pages block page release
before release” parameter to * Small allocations never cross
control CPU vs memory page boundaries

consumption

It’s Effective

Program ID Bug Type Link Original Attack With the Protection of FFmalloc
babyheap UAF — DF [10] ¢ Arbitrary code execution X Exception due to failed info-leak
childheap UAF — DF [10] ¢ Arbitrary code execution X DF detected

heapbabe CTF challenges UAF — DF [1] v/ Arbitrary code execution X DF detected

ghostparty UAF [9] v/ Arbitrary code execution X Exception due to failed info-leak
uaf UAF [8] v/ Arbitrary code execution X Exploit prevented due to new realloc
PHP 7.0.7 CVE-2016-5773 UAF — DF [7] v/ Arbitrary code execution X Exploit prevented & DF detected
PHP 5.5.14 CVE-2015-2787 UAF [6] v/ Arbitrary code execution X Assertion failure (uncontrollable)
PHP 5.4.44 CVE-2015-6835 UAF [5] v/ Arbitrary memory disclosure X Exploit prevented & run well
mruby 191ee25 Issue 3515 UAF [23] ¢ Arbitrary memory write X Exploit prevented & run well
libmimedir 0.5.1 CVE-2015-3205 AF — UAF [15] ¢ Arbitrary code execution X Exploit prevented & run well
python 2.7.10 Issue 24613 UAF [28] v’ Restricted memory disclosure X Exploit prevented & run well

UAF: Use-After-Free, DF: Double Free, AF: Arbitrary Free

Minimal Single Thread CPU Overhead

60

* Contrary to intuition, one-time-
allocation can perform well.

Ul
o

* FFmalloc out-performed seven

previous UAF defense proposals
on SPEC benchmarks

* Added only 2.3% overhead to
SPEC benchmarks (geometric
mean)

SPEC CPU runtime GeoMe

N
o

glibc

w
o

% slower than

N
o

[any
o

M FFmalloc ™ FreeGuard mpSweeper = MarkUs ® CRCount M Oscar M DangSan B DangNull

Low Multi-thread CPU Overhead

glibc

(faster) than

% slower

100

80

60

40

20

-20

1

Core 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 64 Cores

B FFmalloc

FreeGuard MarkUs

 On PARSEC, FFmalloc added 22%
overhead versus 43% for MarkUs
or 1.7% for FreeGuard

* mmap-sem lock in the Linux
kernel constrains FFmalloc

* m(un)map calls on parallel threads
get serialized

Moderate Memory Overhead

160

e FFmalloc is neither the best nor
worst in terms of imposed

memory overhead

* FFmalloc could release pages

. more aggressively at the cost of
) I I additional CPU usage.

SPEC CPU memory GeoMean

140

Max RSS % increase over glibc

o

o

M FFmalloc ™ FreeGuard mpSweeper = MarkUs ® CRCount M Oscar M DangSan B DangNull

Nginx Load Testing

 Comparable throughput
(requests/second serviced) to

1e5 100-connection 1le5 200-connection
- - . - = glibc on an Ngnix webserver
. “ e o Memory utilization was high at
. B S -LLL 5.24x glibc but comparable to

e e FreeGuard and much better than
. ? v, . MarkUs

0.00 -

Contrasts with Related Work

* Probabilistic reuse may be of limited value
* Multiple chances if bug is network visible
* Hard to reason about

* Pointer tracking generally too expensive
* Does not require recompiling
* FFmalloc has a hard guarantee that is easy to reason about

Ssummary

e UAF bugs are still significant.

* Vulnerable code bases include operating systems, browsers, and even the
runtimes of many memory safe languages

* One-time-allocation is effective and simple to implement

* Concerns about OTA CPU and memory inefficiency can be addressed
through smart design

9 FFmalloc published at

Contact
Information

Questions?
include “ffmalloc” in your subject line)

https://github.com/bwickman97/ffmalloc
mailto:Brian.wickman@gtri.gatech.edu

