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This talk, I’ll:
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● Introduce Forward Forgeable Signatures (FFS)
○ Signatures that become unverifiable after a set wall-clock time limit

● Introduce (informally) two constructions of FFS’s:
○ KeyForge & TimeForge



Motivation
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Motivation: 
How can we disincentivize email theft?
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Email’s Value:

1. Email is near ubiquitous 
2. Email has metadata 

a. Location (originating IP), activity, email client (including OS)

3. High attack surface; many ways of getting into an account 
4. Email is undeniable
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For example:
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How did Wikileaks know that 
these messages were real?
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Email isn’t deniable.
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Cryptographic Verification via DKIM
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DomainKeys Identified Mail
(DKIM)
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DKIM’s Goal is Just to Stop Spam
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DKIM’s Goal is Just to Stop Spam
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DKIM provides important spam and spoofing protection.

As an unintended side effect, DKIM makes email non-repudiable.  

Is it possible to ensure that email is deniable 
While keeping DKIM’s spam-resistance?
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Why is this hard?

● Mostly Synchronous
● Sender knows the destination
● Use a Deniable Authenticated Key 

Exchange (DAKE)!
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● Asynchronous & non-interactive
● Sender can’t know the destination 

server
● Inherently breaks DAKEs!

Known open problem since the 
original DAKE paper!

Off the Record (Borisov et al. 2004)



Long-lived public keys

● DKIM keys are stored in DNS.
○ One cannot update DNS that regularly

● Rotation is hard
● Google’s keys have been the same since 2016:
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Our Solution: 
Forward Forgeable Signatures!
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Key Idea: Forward Forgeable Signatures!

● DKIM signatures are only really useful for the first ~15 minutes
● Signatures “expire” -- become forgeable -- after a delay Δ.

ΔEmail Sent

time
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In the paper, we present two constructions:

KeyForge:
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TimeForge:



KeyForge: Intuition

● Sign, just like you would with DKIM
● ...But we’ll make it easy to derive infinite keys

○ With only one public key
● Publicly release private keys when time elapses (Δ)
● Use a Hierarchy of Keys (HIBS)

○ Secretchild = Hash(IDchild || Secretparent)
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TimeForge
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Can we minimize 
expiry keys?
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TimeForge: Intuition

Create a proof, given a message m:

1. The sending server has signed m

OR

2. The time has expired.
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WIPoK

Aliens?



TimeForge:Publicly Verifiable Time Keeper

A beacon signs and publishes a monotonically increasing timestamp:
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TimeForge:Publicly Verifiable Time Keeper

A beacon signs and publishes a monotonically increasing timestamp:
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Sign(Δ1)Sign(Δ2)Sign(Δ3)Sign(Δ4)Sign(Δ5)Sign(Δ6)Sign(Δ7)Sign(Δ8)

1. The sending server has signed m

OR

2. The time has expired.

Signature(m)

WIPoK

A signature from a
PVTK on t>Δ



Evaluation

● We implemented both protocols
○ ~3k lines of Go and C

● KeyForge appears to be practical!
○ Relatively small time increase in signing and verification.
○ Signatures are actually smaller than DKIM’s RSA

● TimeForge is a promising prototype
● See paper for details!
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