
KeyForge:
Mitigating Email Breaches with 
Forward Forgeable Signatures

Michael A. Specter

Sunoo Park
Matthew Green

specter@mit.edu // mspecter@



This talk, I’ll:

2

● Introduce Forward Forgeable Signatures (FFS)
○ Signatures that become unverifiable after a set wall-clock time limit

● Introduce (informally) two constructions of FFS’s:
○ KeyForge & TimeForge



Motivation

3



Motivation: 
How can we disincentivize email theft?

4



Email’s Value:

1. Email is near ubiquitous 
2. Email has metadata 

a. Location (originating IP), activity, email client (including OS)

3. High attack surface; many ways of getting into an account 
4. Email is undeniable

5



For example:

6



7



How did Wikileaks know that 
these messages were real?

8



Email isn’t deniable.

9



Cryptographic Verification via DKIM

10



DomainKeys Identified Mail
(DKIM)

11



DKIM’s Goal is Just to Stop Spam

12

foo@usenix.org



DKIM’s Goal is Just to Stop Spam

13

specter@MIT.edufoo@usenix.org



DKIM’s Goal is Just to Stop Spam

14

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

15

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

16

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

17

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

18

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

19

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

20

specter@MIT.edu @gmail.comfoo@usenix.org



DKIM’s Goal is Just to Stop Spam

21

foo@usenix.org specter@MIT.edu @gmail.com



DKIM provides important spam and spoofing protection.

As an unintended side effect, DKIM makes email non-repudiable.  

Is it possible to ensure that email is deniable 
While keeping DKIM’s spam-resistance?

22



Why is this hard?

● Mostly Synchronous
● Sender knows the destination
● Use a Deniable Authenticated Key 

Exchange (DAKE)!

23

● Asynchronous & non-interactive
● Sender can’t know the destination 

server
● Inherently breaks DAKEs!

Known open problem since the 
original DAKE paper!

Off the Record (Borisov et al. 2004)



Long-lived public keys

● DKIM keys are stored in DNS.
○ One cannot update DNS that regularly

● Rotation is hard
● Google’s keys have been the same since 2016:

24



Our Solution: 
Forward Forgeable Signatures!

25



Key Idea: Forward Forgeable Signatures!

● DKIM signatures are only really useful for the first ~15 minutes
● Signatures “expire” -- become forgeable -- after a delay Δ.

ΔEmail Sent

time

26



In the paper, we present two constructions:

KeyForge:

27

TimeForge:



KeyForge: Intuition

● Sign, just like you would with DKIM
● ...But we’ll make it easy to derive infinite keys

○ With only one public key
● Publicly release private keys when time elapses (Δ)
● Use a Hierarchy of Keys (HIBS)

○ Secretchild = Hash(IDchild || Secretparent)

28



KeyForge

.....
..... .....

.....

.....
.....

.............
.....

MPK / MSK

.....
29

MPK / MSK
KeyForge: Intuition



KeyForge: Intuition

.....
..... .....

.....

.....
..........

MPK / MSK

.....

Years

Months

Days

15M=Δ
30

.............

KeyForge: Intuition



KeyForge: Intuition

.....
..... .....

.....

.....
..........

MPK / MSK

.....

Years

Months

Days

15M=Δ
31

.............



KeyForge: Intuition

.....
..... .....

.....

.....
..........

MPK / MSK

.....

Years

Months

Days

15M=Δ
32

.............



TimeForge

33



Can we minimize 
expiry keys?

34



TimeForge: Intuition

Create a proof, given a message m:

1. The sending server has signed m

OR

2. The time has expired.

35



TimeForge: Intuition

Create a proof, given a message m:

1. The sending server has signed m

OR

2. The time has expired.

Signature(m)

36



TimeForge: Intuition

Create a proof, given a message m:

1. The sending server has signed m

OR

2. The time has expired.

Signature(m)

37

WIPoK



TimeForge: Intuition

Create a proof, given a message m:

1. The sending server has signed m

OR

2. The time has expired.

Signature(m)

38

WIPoK

Aliens?



TimeForge:Publicly Verifiable Time Keeper

A beacon signs and publishes a monotonically increasing timestamp:

39

Sign(Δ1)Sign(Δ2)Sign(Δ3)Sign(Δ4)Sign(Δ5)Sign(Δ6)Sign(Δ7)Sign(Δ8)



TimeForge:Publicly Verifiable Time Keeper

A beacon signs and publishes a monotonically increasing timestamp:

40

Sign(Δ1)Sign(Δ2)Sign(Δ3)Sign(Δ4)Sign(Δ5)Sign(Δ6)Sign(Δ7)Sign(Δ8)

1. The sending server has signed m

OR

2. The time has expired.

Signature(m)

WIPoK

A signature from a
PVTK on t>Δ



Evaluation

● We implemented both protocols
○ ~3k lines of Go and C

● KeyForge appears to be practical!
○ Relatively small time increase in signing and verification.
○ Signatures are actually smaller than DKIM’s RSA

● TimeForge is a promising prototype
● See paper for details!

41



KeyForge:
Mitigating Email Breaches with 
Forward Forgeable Signatures

Michael A. Specter
Sunoo Park
Matthew Green

specter@mit.edu // mspecter@


