
Breaking Through Binaries:
Compiler-quality Instrumentation for

Better Binary-only Fuzzing
Stefan Nagy Anh Nguyen-Tuong Jason D. Hiser
snagy2@vt.edu nguyen@virginia.edu hiser@virginia.edu

Jack W. Davidson Matthew Hicks
jwd@virginia mdhicks2@vt.edu

The Fuzzing Landscape

2

Software Quality Assurance

3

Fuzzing (Fuzz Testing)

4

Automated, high-volume testing
1. Generate lots of testcases
2. Find, save, and mutate the

few interesting testcases
3. Repeat!

Carpet-bombing testing approach

Coverage-guided Grey-box Fuzzing
• Today’s de-facto bug-finding approach

Fuzzing in the Real World

5

Grey-box Fuzzing

6

Some internals
(e.g., code coverage)

Key requirement: ability to instrument the target

All internals
(developer-level)

No internals
(basic I/O only)

Target is open-source? Just compile-it-in

ineffective inefficient

Fast and effective

When is instrumentation difficult?

7

When target is binary-only

The Fuzzing Instrumentation Gap

8

semantically rich semantically opaque

Source-available Fuzzing Binary-only Fuzzing

Low (18–32%) overhead
Enhanced via code xform

Up to 10,000% slower
Outweighed by overhead

Can compilers’ capabilities and speed
be extended to binary-only fuzzing?

Compiler-quality Binary
Fuzzing Instrumentation

9

What instrumenter properties must be achieved
for compiler-quality speed and transformation?

Guiding Principle

Code Insertion

Code Invocation

Register Usage

Scalability

Key considerations:

To attain compiler-quality instrumentation, we must
match how compilers handle these key considerations

10

Consideration 1: Code Insertion
Dynamic Binary Translation Static Binary Rewriting

Should insert code via static rewriting

• Analyze / instrument during runtime
• Repeatedly pay translation cost

• Perform all tasks prior to runtime
• Analogous to compiler (e.g., LLVM IR)

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Decode
& Lift

Instrument & Optimize IR
Code
Gen.

11

Consideration 2: Code Invocation
Trampolined Invocation Inlined Invocation

Should invoke code via inlining

• Transfer to / from “payload” function
• Repeatedly pay CF redirection cost

• Weave new instructions with original
• Preferred mechanism of most compilers

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
call payload
pop rbp
ret

payload:
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
ret

Trace
Return

Original Instrumentation
push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented

12

Consideration 3: Register Usage
Liveness Unaware Liveness Aware

Should carefully track register liveness

• Reset all regs around instrumentation
• Cost of saving and restoring adds up

• Track liveness to prioritize dead regs
• Critical to compilers’ code optimization

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

InstrumentedOriginalpush rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
push edi
push ecx
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop ecx
pop edi
pop rbp
ret

Restore Regs

Save Regs

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Original
Instrumented

13

Consideration 4: Scalability
Common Platforms Common Characteristics

Should scale to all common formats

• Linux x86-64
• Windows PE32+

• C and C++
• PIE and non-PIE
• Stripped of debug symbols

X

14

15

➞ ➞

➞➞

The ZAFL Platform
• Statically-inserted, inlined instrumentation with liveness awareness
• Adapted from the Zipr binary rewriting project
• Support for x86-64 ELF binaries (and cross-platform support for PE32+)

Extending Compiler-based
Enhancements to Binary Fuzzing

Performance Transforms:
• Single-successor path pruning
• Dominator tree CFG pruning
• Instrumentation downgrading

Implement a suite of 5 popular LLVM-based fuzzing transforms

Feedback Transforms:
• Sub-instruction profiling
• Context sensitivity tracking

ZAFL’s low-level API brings a semantic richness to the
otherwise semantically-opaque world of binary fuzzing

16

Evaluation

17

• Benchmarks: 8 diverse open-source + 5 closed-source binaries

• Bug-finding: 5x24-hr trials per benchmark run on cluster

• Performance: scale overhead relative to non-tracing speed

• Precision: enumerate erroneously-unrecovered instructions;
compare true/false coverage signal to AFL-LLVM’s

• Scalability: automated smoke tests and/or manual execution

Evaluation Components

18

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

Does ZAFL enhance binary fuzzing?

19

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

26% more crashes than AFL-Dyninst
131% more crashes than AFL-QEMU

Is ZAFL’s speed near compilers’?

20

bsdtar

cert-
basic

clean_text

jasper

re
adelf

sfconvert

tcpdump
unrtf

AVG.

Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
lat

ive
 F

uz
zin

g
Th

ro
ug

hp
ut

Compiler

Assembler

AFL-Dyninst

AFL-QEMU
ZAFL ZAFL+Transforms

b
sd

ta
r

ce
rt
-b

a
si
c

cl
e
a
n
_
te

xt

ja
sp

e
r

re
a
d
e
lf

sf
co

n
ve

rt

tc
p
d
u
m

p

u
n
rt
f

A
V
G
.

Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e

la
ti
v
e

 F
u

z
z
in

g
 T

h
ro

u
g

h
p

u
t

Compiler

Assembler

AFL-Dyninst

AFL-QEMU
ZAFL ZAFL+Transforms

Compiler: 24%, Assembler: 34%
AFL-Dyninst: 88%, AFL-QEMU: 256%
ZAFL: 32%, ZAFL+Transforms: 27%

Can ZAFL support real closed-source?

21

55% more crashes than AFL-Dyninst
38% more crashes than AFL-QEMU

Is ZAFL precise?

22

Highest overall instruction recovery
Mean coverage accuracy of 99.99%

Does ZAFL scale?

23

Apply ZAFL to 56 total binaries

(33 open- and 23 closed-src)

Linux and Windows binaries

Stripped, PIE, and non-PIE

100KB–100MB binary size

100–1,000,000 basic blocks

• Much of today’s commodity software is distributed as binary-only
• Yet, instrumenting—and hence, fuzzing—it far less effective due to

binary code’s semantic opaqueness

Conclusions: Why ZAFL?

24

• Bug-finding:
• Performance:
• Scalability:

26—131% superior to Dyninst/QEMU
Within 10% of LLVM’s runtime speed
Linux and Windows, 10KB-100MB filesizes,
100-1M basic blocks, and other characteristics

By carefully matching compilers’ key attributes, ZAFL attains compiler-quality
speed and fuzzing-enhancing program transformation for binary fuzzing:

Mitigating these challenges demands closing fuzzing’s instrumentation gap!

Thank you!

25

Find ZAFL and our evaluation benchmarks at:

git.zephyr-software.com/opensrc/zafl

Happy (binary) fuzzing!

Appendix: The Binary Fuzzing
Instrumentation Landscape

26

Code Insertion

Code Invocation

Register Usage

Scalability

Static Rewriting

Inlined Invocation

Liveness Aware

Support Broad
Formats

Until all four properties are met, the gap between
source- and binary-level fuzzing will remain

