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EYE-TRACKING, AN EMERGING HUMAN-
COMPUTER INTERFACE
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๏ Eye gazes continuously tracked by cameras 
๏ Enables hands-free interaction 
๏ Pervasively equipped in mixed reality

Social avatar Foveated rendering Event triggering



BACKGROUND ON EYE-TRACKING DATA
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๏ Eye gaze data: a streaming data of 
timestamped location tuples (x,y,t) 

๏ ROI on the visual scene attracts eye gazes 
๏ Fixation: a cluster of concentrated eye gazes 
๏ Saccade: gazes traveling rapidly from one 

fixation to another

Fixation

Saccade

Region of Interest (ROI)



๏ Spatial distribution of absolute gaze positions 
๏ Aggregate statistics of distribution over time

Leaking psycho/physiological traits

PRIVACY THREAT ON EYE-TRACKING DATA
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๏ Psychological: implicit interest, cultural 
background, personality traits, etc.  

๏ Physiological: health condition (Alzheimer’s, 
vision condition), biometric identity, etc.

Fixation

Saccade

Region of Interest (ROI)
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PRIVACY
How can we control the privacy while 
preserving real-time utilities of eye tracking?  

All users Gaze feature 
database

Application 
server

Noising

Trust boundary
๏ Existing designs provide no 

formal guarantee (Hagestedt et 
al. 2020) or only allow offline 
release (Steil et al. 2019) 

๏ Not suitable for real-time apps

Kal𝝴ido’s research question



Trust boundary
KAL𝝴IDO: OVERVIEW
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ApplicationUser

Raw streaming 
eye gaze

Kal𝝴ido Noisy streaming 
eye gaze

Real-time utility

๏ Formal privacy guarantee on eye gaze streams by local differential privacy (LDP) 
๏ Seamless integration with real-time eye-tracking ecosystems 
๏ Ease of use by automated privacy configuration



(𝝴,r)-geo-indistinguishability (Andrés et al. 2013) noising  ensures that for all pairs 
of inputs  such that , 

ℳ : 𝒢 ↦ 𝒵
(g, g′ ) ∈ 𝒢 × 𝒢 d(g, g′ ) ≤ r ∀S ⊂ 𝒵, Pr[ℳ(g) ∈ S] ≤ eϵPr[ℳ(g′ ) ∈ S]

KAL𝝴IDO: PRIVACY DEFINITION
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Privacy of gaze positions

Spatial information of eye gazes: primary source of sensitive information

(x,y)

r



w

(𝝴,w,r)-geo-ind. for gaze streams by leveraging w-event privacy (Kellaris et al. 2014) to protect 
the spatial distribution of any gaze trajectory formed over any window of duration w

Privacy for gaze streams

KAL𝝴IDO: PRIVACY DEFINITION

(x0,y0)

t

(x1,y1) (x2,y2) (x3,y3) (x4,y4)

Real-time streaming data: realistic format for eye-tracking interaction
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KAL𝝴IDO: IMPLEMENTATION
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Config. manager configures privacy budget 𝝴, 
window length w, and radius r

Context proc. core extracts ROI for setting r

Noisy gaze gen. noises each raw gaze online

Noisy gaze proc. allows local post-processing
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No privacy (ε=∞) Low privacy (ε=3) High privacy (ε=0.5)

KAL𝝴IDO: IMPLEMENTATION



EVALUATION FOCUS
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User perception System 
performance

Effectiveness 
against attacks



USER STUDY: SETUP
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๏ Remote user study with the PC webcam eye-tracking game (approved by our IRB) 
๏ 11 users, each with a study session about 35 minutes in total 
๏ Five settings evaluated in anonymized and randomized order except the control knob setup

Kal𝝴ido off (no privacy) Kal𝝴ido on (low privacy)



USER STUDY: RESULT
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๏ Metrics: (1) subjective enjoyment level; (2) game score (# of rabbits taken) 
๏ Takeaway: negligible experience degradation with low privacy; even high 

privacy poses minor impact
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SYSTEM PERFORMANCE
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๏ Platform: Intel I7-7700 & Nvidia GTX1080 
๏ Takeaway: noising takes negligible latency; performance not degraded 

greatly even at very frequent context processing rate of 8 Hz
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EFFECTIVENESS AGAINST ATTACK ON INTEREST
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๏ Dataset: PC eye tracking for viewing 30 images (at least 19 users) 
๏ Attack setup: identify users with distinct attention patterns per image by clustering 
๏ Takeaway: attacker’s success brought to random guess at high privacy; even lower 

privacy thwarts attacks greatly 
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EFFECTIVENESS AGAINST ATTACK ON BIOMETRICS
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๏ Dataset: VR eye-tracking during video sessions for 12 unique videos with 11 users 
๏ Attack setup: identify user traits by classifiers trained on biometric features 
๏ Takeaway: attacker’s success brought to random guess even with low privacy 

configuration for both traits
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CONCLUSION
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๏ Kal𝝴ido, the first system to protect privacy of real-time eye tracking 

๏ Deploying differential privacy by leveraging semantics of eye gazes 
๏ Seamlessly integration with existing eye-tracking ecosystems 
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