Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

USENIX Security 2021

For simplicity, we

Authenticated Encryption ignore associated data

in this presentation

Nonce N
Plaintext M
C « AEAD.Enc(=L2 N, M)

=9

For simplicity, we

Authenticated Encryption ignore associated data

=9

Nonce N

C « AEA

Plaintext M

D.Enc(&L, N, M)

in this presentation

N

| C
? M « AEAD.

Dec(“@, N, C)

Authenticated Encryption

Nonce N

C « AEA

=9

Plaintext M

D.Enc(= N, M)

Popular

* AES-GCM

» XSalsa20/Poly1305
» ChaCha20/Poly1305

* AES-GCM-SIV

For simplicity, we

ignore associated data

in this presentation

N || C
?
||

M « AEA

Easy to use

e Efficient
 Standardized

* Widely supportea

Secure

* Proven CCA-secure
» Confidentiality
* Integrity

For simplicity, we

Authenticated Encryption ignore associated data

in this presentation

Nonce N N ” C ‘

Plaintext M

C « AEAD.Enc(==2 N M) o Dec(= N, C)

But don't target robustness, also called committing AEAD, as a security goal

» AES-GCM - Efficient * Proven CCA-secure
» XSalsa20/Poly1305 » Standardized » Confidentiality

» ChaCha20/Poly1305 * Widely supported * Integrity

» AES-GCM-SIV

For simplicity, we

ignore associated data

(Non-) Committing AEAD

in this presentation

Nonce N’
Ciphertext C’

C » V] — AEADD@C(@, NI/ C’)

‘ S > M* « AEAD,Dec(O", N*, C)

For simplicity, we

ignore associated data

(Non-) Committing AEAD
?

in this presentation

Nonce N’
Ciphertext C’

C » V] — AEADD@C(@, NI/ C’)

‘ S > M* « AEAD,Dec(O", N*, C)

For simplicity, we

ignore associated data

(Non-) Committing AEAD oo e
o N

Nonce N’ N’ ” C’
Ciphertext C’

M AEAD.DeC(@, N*, C')

........... 9 N' C’
<y M« AEAD.Dec(<2, N, C' 3

‘ S > M* « AEAD,Dec(O", N*, C)

For simplicity, we

ignore associated data

(Non-) Committing AEAD
?

in this presentation

N

Nonce N’ N’ " C’
Ciphertext C’
- M « AEAD.Dec(=2, N', C')
C » V] — AEADD@C(@, NI/ C’) c

‘ S > M* « AEAD,Dec(O"‘, N*, C)

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO17], [DGRW CRYPTO'18]

OASSWOIG

nassword]

Dassword?Z

Password nassword3
. nassword4
dictionary owords
D nDasswordé

/

8

0ASSWOTIGQ

password>5

10

Brute-force Dictionary Attack

NN

password>5

N || C;

Decryption error

N | C,

Decryption error

N || C3

Decryption error

NI Cq

Decryption error

N || Cs

Decryption success!

Cq < AEAD.Enc("password1”, N, M)

Cz < AEAD.Enc("password2”, N, M)

Cz < AEAD.Enc("password3"”, N, M)

Cs4 + AEAD.Enc("password4”, N, M)

Cs < AEAD.Enc("“password5”, N, M)

11

Password

dictionary
D

O0ASSWOIG
0ASSWOIQ
OASSWOIG
0ASSWOIGQ
OASSWOIG
0ASSWOIGQ
OASSWOIG

0ASSWOTIGQ

O N O~ O1T & WDN —

Partitioning Oracle Attack

A high level overview of our attack

nassword
nassword?2
Password nassword3
. nassword4
‘ dictionary)
PasSWOrC
D passwordé
password/
password8
PaASSWO rd5 nassword password5
nassword?2 passwordé
password3 password/
password4 password8

&

12

Partitioning Oracle Attack

A high level overview of our attack

nassword
password?
Password nassword3
. nassword4
‘ dictionary)
PasSWOrC
D passwordé
password/
password8
PaASSWO rd5 nassword password5
Nonce N -— nassword?2 passwordé
ol . password3 password/
vl Ci phertext C password4 password8

splitting
ciphertext
o N

13

Partitioning Oracle Attack

A high level overview of our attack

NN

password>5

NIl C

| + AEAD.Dec("password5”, N, C)

14

Password
dictionary

D

password
password2
password3
password4
passwordd
passwordé
password/
password8

N

Nonce N

Y| Ciphertext C

OASSWOIG
0ASSWOTIG
OASSWOIG

splitting
ciphertext
k=4

OASSWOIG

password5
passwordé
password/
password8

&

Partitioning Oracle Attack

A high level overview of our attack

NN

password>5

NIl C

| + AEAD.Dec("password5”, N, C)

Decryption error

15

Password
dictionary

D

password
password2
password3
password4
passwordd
passwordé
password/
password8

N

Nonce N

Y| Ciphertext C

OASSWOIG
0ASSWOTIG
OASSWOIG

splitting
ciphertext
k=4

OASSWOIG

password5
passwordé
password/
password8

&

Partitioning Oracle Attack

A high level overview of our attack

nassword
nassword?

Password nassword3

. nassword4
dictionary)
| ‘ C passworc
N D passworo

6
password/
3

PaSSWOrGC

| + AEAD.Dec("password5”, N, C) /\

SWO password5

password>5

passwordé

P
2

Nonce N __
~¥| Ciphertext C W

3 password/

Decryption error

password8

16

splitting
ciphertext
= (.

Partitioning Oracle Attack

D k = 1
|
D k = 1
|
D> k =1
|
D3 k = 1
|

Brute-force dictionary attack

Requires O(IDI) queries to learn

the password .7

Partitioning Oracle Attack

D k =1
|
D k = 1
|
D> k =1
|
D3 k = 1
|

Brute-force dictionary attack

Requires O(IDI) queries to learn
the password

D k =Dl /2

B k=1IDI/4

32 |(=‘D‘/8
Ds k =1IDI/ 16
N\
e

XX/ D k =Dl / 32
. _

Requires O(log IDI) queries to learn the password

Exponential speedup over brute-force

dictionary attack! a

Partitioning Oracle Attack

D k =1
|
D k = 1
|
D> k =1
|
D3 k = 1
|

Brute-force dictionary attack

Requires O(IDI) queries to learn
the password

D k =Dl /2

B k=1IDI/4

32 |(=‘D‘/8
P K
Ds k =1IDI/ 16
N\
e

XX/ D k = IDI/ 32
. _

Requires O(log IDI) queries to learn the password

Exponential speedup over brute-force

dictionary attack! 9

IDl is large so a more realistic case is k = 5000

This still offers a good speedup over brute-force

Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

20

Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

Key Multi-collision Attacks
[GLR CRYPTQO'17] tirst showed an attack against AES-GCM for k = 2

21

Computing Key Multi-Collisions: AES-GCM

Encrypt

'

Counter mode
encryption of AES

then

MAC

'

GHASH:
polynomial MAC

Run time: O(k2)

Attack

algorithm

22

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Computing Key Multi-Collisions: AES-GCM

Encrypt

'

Counter mode
encryption of AES

then

=== — —

i —

(polynomial MAC)

Reduces finding
ciphertext to
solving set of

inear equations

Run time: O(k2)

Attack

algorithm

23

—omwe—— _ — —

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Computing Key Multi-Collisions: AES-GCM

Input: Let nonce N, authentication tag T, and keys Kj, Ky, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys
Pre-compute: H; = AESk;(0128), P; = AESki(N 1l 0311), L = ICl

H14-C @ H3-Co @ Hi2-C3 Hi L & P =1

Hyt - Cq @ H3-Co @ H2-C3 @ HyL @ Po=1T1

H3 - C1 @ H33-Co @ H2-C3 @ Hs3L @ P3=1T

24

Computing Key Multi-Collisions: AES-GCM

Input: Let nonce N, authentication tag T, and keys Kj, Ky, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys
Pre-compute: H; = AESk;(0128), P; = AESki(N 1l 0311), L = ICl

Hi¢ Hy 1 C1 (T & Hi L & Pq)+ Hy?

Hy2 Hy 1 C> (T & Hy-L & Py Hy?

H32 Hz 1 Cs (T ® Hs3-L @& P3)- Hs?

& Vandermonde matrix: we can use polynomial interpolation!

25

Computing Key Multi-Collisions: AES-GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

K
We make a ciphertext that 2 0.18 48
decrypts under > 4000
keys in < 30 seconds! 510 6.6 16.400

K,‘, D12 29 65,552

216 1,820 1,048,592

20

Computing Key Multi-Collisions: AES-GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

There exists an algorithm that

K :
does polynomial
We make a ciphertext that 2 0.18 48 interpolation in O(k log?k)
decrypts under > 4000 using FFTs, so it's possible to
keys in < 30 seconds! 210 6.6 16,400 create multi-collisions much

L, taster [BM '74]
g 2 29 65,552

216 1,820 1,048,592

27

Computing Key Multi-Collisions

XSalsa20/Poly1305

ChaCha20/Poly1305
AES-GCM-SIV

=,

28

Also vulnerable to key
multi-collision attacks!

Attacks are more
complex and less

scalable than those
for AES-GCM

Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

Key Multi-collision Attacks
[GLR CRYPTQO'17] tirst showed an attack against AES-GCM for k = 2

29

Partitioning oracle attacks rely on:

2. Access to a partitioning oracle

Where do partitioning oracles arise?

30

Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers tor UDP

* Popular Internet censorship evasion tool

e Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

31

Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers tor UDP

Popular Internet censorship evasion tool

Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

» Early implementations of the
OPAQUE asymmetric PAKE protocol

Selected by the IETF CFRG for standardization

Many early implementations went against
protocol specification to use a non-
committing AEAD scheme

These schemes are vulnerable to partitioning
oracle attacks

32

Partitioning Oracles

Schemes we looked at in depth Possible partitioning oracles
» Shadowsocks proxy servers tor UDP » Hybrid encryption: Hybrid Public-Key
* Popular Internet censorship evasion tool Encryption (HPKE)
e Partitioning oracle attacks enable an attacker
to efficiently recover a password from a » Age file encryption tool

Shadowsocks server

Kerb draft t adoptea
» Early implementations of the » Kerberos drafts (not adopted)

OPAQUE asymmetric PAKE protocol » JavaScript Object Signing and Encryption
e Selected by the IETF CFRG for standardization (JOSE)

 Many early implementations went against
protocol specification to use a non-

committing AEAD scheme » Anonymity systems: use partitioning oracles

* These schemes are vulnerable to partitioning to learn which pubhc key a recipient Is using
oracle attacks from a set of pubhc keys

33

What do we do?

» Our paper is the latest in a growing body ot evidence that non-committing
AEAD can lead to vulnerabilities*

» So which committing AEAD scheme do we use?
* None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS '20] also discussed the importance of committing AEAD

34

Conclusion

Contact: jlen@cs.cornell.edu
Full version: https://eprint.iacr.org/2020/1491.pdt

» Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

» Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV, are not committing

» Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers
and incorrect implementations of OPAQUE

» Recommendation: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

35

https://eprint.iacr.org/2020/1491.pdf
https://eprint.iacr.org/2020/1491.pdf

References

[ABN TCC’10] Michel Abdalla, Mihir Bellare, Gregory Neven. Robust Encryption. TCC, 2010.

[FLPQ PKC’13] Pooya Farshim, Benoit Libert, Kenneth Paterson, Elizabeth Quaglia. Robust encryption, revisited. PKC, 2013.

[FOR FSE’'17] Pooya Farshim, Claudio Orlandi, Razvan Rosie. Security of symmetric primitives under incorrect usage of keys. FSE, 2017.
[GLR CRYPTO'17] Paul Grubbs, Jiahui Lu, Thomas Ristenpart. Message franking via committing authenticated encryption. CRYPTO, 2017.

[DGRW CRYPTO18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, Joanne Woodage. Fast message franking: From invisible
salamanders to encryptment. CRYPTO, 2018.

[BM ‘74] A. Borodin and R. Moenck. Fast modular transtforms. Journal of Computer and System Sciences, 1974.

[ADGKLS "20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kolbl, Atul Luykx, Sophie Schmieg. How to abuse and fix authenticated
encryption without key commitment. ePrint 2020/1456.

36

