Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

USENIX Security 2021



For simplicity, we

Authenticated Encryption ignore associated data

in this presentation

Nonce N
Plaintext M
C « AEAD.Enc(=L2 N, M)

=9



For simplicity, we

Authenticated Encryption ignore associated data

=9

Nonce N

C « AEA

Plaintext M

D.Enc(&L, N, M)

in this presentation

N

| C
? M « AEAD.

Dec(“@, N, C)




Authenticated Encryption

Nonce N

C « AEA

=9

Plaintext M

D.Enc(= N, M)

Popular

* AES-GCM

» XSalsa20/Poly1305
» ChaCha20/Poly1305

* AES-GCM-SIV
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But don't target robustness, also called committing AEAD, as a security goal

» AES-GCM - Efficient * Proven CCA-secure
» XSalsa20/Poly1305 » Standardized » Confidentiality

» ChaCha20/Poly1305 * Widely supported * Integrity

» AES-GCM-SIV
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For simplicity, we

ignore associated data

(Non-) Committing AEAD
?

in this presentation

N

Nonce N’ N’ " C’
Ciphertext C’
- M « AEAD.Dec(=2, N', C')
C . ........... » V] — AEADD@C(@, NI/ C’) c

‘ S > M* « AEAD,Dec(O"‘, N*, C)

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO17], [DGRW CRYPTO'18]
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Brute-force Dictionary Attack

NN

password>5

N || C;

Decryption error

N | C,

Decryption error

N || C3

Decryption error

NI Cq

Decryption error

N || Cs

Decryption success!

Cq < AEAD.Enc("password1”, N, M)

Cz < AEAD.Enc("password2”, N, M)

Cz < AEAD.Enc("password3"”, N, M)

Cs4 + AEAD.Enc("password4”, N, M)

Cs < AEAD.Enc("“password5”, N, M)
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A high level overview of our attack
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A high level overview of our attack
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Requires O(log IDI) queries to learn the password

Exponential speedup over brute-force

dictionary attack! 9

IDl is large so a more realistic case is k = 5000

This still offers a good speedup over brute-force



Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle
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Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

Key Multi-collision Attacks
[GLR CRYPTQO'17] tirst showed an attack against AES-GCM for k = 2
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Computing Key Multi-Collisions: AES-GCM

Encrypt
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algorithm
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Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks




Computing Key Multi-Collisions: AES-GCM

Encrypt

'

Counter mode
encryption of AES

then

=== — —
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( polynomial MAC )

Reduces finding
ciphertext to
solving set of

inear equations

Run time: O(k2)

Attack

algorithm
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Computing Key Multi-Collisions: AES-GCM

Input: Let nonce N, authentication tag T, and keys Kj, Ky, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys
Pre-compute: H; = AESk;(0128), P; = AESki(N 1l 0311), L = ICl

H14-C @ H3-Co @ Hi2-C3  Hi L & P =1

Hyt - Cq @ H3-Co @ H2-C3 @ HyL @ Po=1T1

H3 - C1 @ H33-Co @ H2-C3 @ Hs3L @ P3=1T
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Computing Key Multi-Collisions: AES-GCM

Input: Let nonce N, authentication tag T, and keys Kj, Ky, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys
Pre-compute: H; = AESk;(0128), P; = AESki(N 1l 0311), L = ICl

Hi¢ Hy 1 C1 (T & Hi L & Pq)+ Hy?

Hy2 Hy 1 C> (T & Hy-L & Py Hy?

H32 Hz 1 Cs (T ® Hs3-L @& P3)- Hs?

& Vandermonde matrix: we can use polynomial interpolation!
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Computing Key Multi-Collisions: AES-GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

K
We make a ciphertext that 2 0.18 48
decrypts under > 4000
keys in < 30 seconds! 510 6.6 16.400

K,‘, D12 29 65,552

216 1,820 1,048,592
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Computing Key Multi-Collisions: AES-GCM

» Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

» Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

There exists an algorithm that

K :
does polynomial
We make a ciphertext that 2 0.18 48 interpolation in O(k log?k)
decrypts under > 4000 using FFTs, so it's possible to
keys in < 30 seconds! 210 6.6 16,400 create multi-collisions much

L, taster [BM '74]
g 2 29 65,552

216 1,820 1,048,592
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Computing Key Multi-Collisions

XSalsa20/Poly1305

ChaCha20/Poly1305
AES-GCM-SIV

=,

28

Also vulnerable to key
multi-collision attacks!

Attacks are more
complex and less

scalable than those
for AES-GCM



Partitioning oracle attacks rely on:

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

Key Multi-collision Attacks
[GLR CRYPTQO'17] tirst showed an attack against AES-GCM for k = 2
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Partitioning oracle attacks rely on:

2. Access to a partitioning oracle

Where do partitioning oracles arise?
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Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers tor UDP

* Popular Internet censorship evasion tool

e Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server
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Partitioning Oracles

Schemes we looked at in depth

» Shadowsocks proxy servers tor UDP

Popular Internet censorship evasion tool

Partitioning oracle attacks enable an attacker
to efficiently recover a password from a
Shadowsocks server

» Early implementations of the
OPAQUE asymmetric PAKE protocol

Selected by the IETF CFRG for standardization

Many early implementations went against
protocol specification to use a non-
committing AEAD scheme

These schemes are vulnerable to partitioning
oracle attacks
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Partitioning Oracles

Schemes we looked at in depth Possible partitioning oracles
» Shadowsocks proxy servers tor UDP » Hybrid encryption: Hybrid Public-Key
* Popular Internet censorship evasion tool Encryption (HPKE)
e Partitioning oracle attacks enable an attacker
to efficiently recover a password from a » Age file encryption tool

Shadowsocks server

Kerb draft t adoptea
» Early implementations of the » Kerberos drafts (not adopted)

OPAQUE asymmetric PAKE protocol » JavaScript Object Signing and Encryption
e Selected by the IETF CFRG for standardization (JOSE)

 Many early implementations went against
protocol specification to use a non-

committing AEAD scheme » Anonymity systems: use partitioning oracles

* These schemes are vulnerable to partitioning to learn which pubhc key a recipient Is using
oracle attacks from a set of pubhc keys
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What do we do?

» Our paper is the latest in a growing body ot evidence that non-committing
AEAD can lead to vulnerabilities*

» So which committing AEAD scheme do we use?
* None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS '20] also discussed the importance of committing AEAD
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Conclusion

Contact: jlen@cs.cornell.edu
Full version: https://eprint.iacr.org/2020/1491.pdt

» Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

» Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV, are not committing

» Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers
and incorrect implementations of OPAQUE

» Recommendation: Design and standardize committing AEAD for deployment

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!
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