
Partitioning Oracle Attacks
Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

USENIX Security 2021
1

Authenticated Encryption

2

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M)

For simplicity, we
ignore associated data
in this presentation

Authenticated Encryption

3

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

?

For simplicity, we
ignore associated data
in this presentation

Authenticated Encryption

4

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

Popular
• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

Easy to use
• Efficient
• Standardized
• Widely supported

Secure
• Proven CCA-secure
• Confidentiality
• Integrity

?

For simplicity, we
ignore associated data
in this presentation

?

Authenticated Encryption

5

Nonce N
Plaintext M
C ← AEAD.Enc(, N, M) M ← AEAD.Dec(, N, C)

N || C

Popular
• AES-GCM
• XSalsa20/Poly1305
• ChaCha20/Poly1305
• AES-GCM-SIV

Easy to use
• Efficient
• Standardized
• Widely supported

Secure
• Proven CCA-secure
• Confidentiality
• Integrity

But don’t target robustness, also called committing AEAD, as a security goal
[ABN TCC’10], [FLPQ PKC’13] for PKE, [FOR FSE’17] for AEAD

For simplicity, we
ignore associated data
in this presentation

(Non-) Committing AEAD

6

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

M* ← AEAD.Dec(, N’, C’)

For simplicity, we
ignore associated data
in this presentation

(Non-) Committing AEAD

7

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

M* ← AEAD.Dec(, N’, C’)

?

For simplicity, we
ignore associated data
in this presentation

(Non-) Committing AEAD

8

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

N’ || C’

M ← AEAD.Dec(, N’, C’)

M* ← AEAD.Dec(, N’, C’)

?

For simplicity, we
ignore associated data
in this presentation

(Non-) Committing AEAD

9

Nonce N’
Ciphertext C’

M ← AEAD.Dec(, N’, C’)

N’ || C’

M ← AEAD.Dec(, N’, C’)

M* ← AEAD.Dec(, N’, C’)

?

No guarantee the sender actually knows the exact key the recipient will use to decrypt!

Not considered an essential security goal, except in moderation settings [GLR CRYPTO’17], [DGRW CRYPTO’18]

For simplicity, we
ignore associated data
in this presentation

password5

10

password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

password5

11

Brute-force Dictionary Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

C1 ← AEAD.Enc(“password1”, N, M)

C2 ← AEAD.Enc(“password2”, N, M)

C3 ← AEAD.Enc(“password3”, N, M)

C4 ← AEAD.Enc(“password4”, N, M)

C5 ← AEAD.Enc(“password5”, N, M)

N || C1

Decryption error

N || C2

Decryption error

N || C3

Decryption error

N || C4

Decryption error

N || C5

Decryption success!

password5

12

Partitioning Oracle Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

password5
password6
password7
password8

A high level overview of our attack

password1
password2
password3
password4

password5

13

Partitioning Oracle Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Ciphertext C
Nonce N

password5
password6
password7
password8[

splitting
ciphertext

k = 4

A high level overview of our attack

password1
password2
password3
password4

password5

14

Partitioning Oracle Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Ciphertext C
Nonce N

password5
password6
password7
password8[

splitting
ciphertext

k = 4

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

A high level overview of our attack

password1
password2
password3
password4

password5

15

Partitioning Oracle Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Ciphertext C
Nonce N

password5
password6
password7
password8[

splitting
ciphertext

k = 4

Decryption error

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

A high level overview of our attack

password1
password2
password3
password4

password5

16

Partitioning Oracle Attack
password1
password2
password3
password4
password5
password6
password7
password8

Password
dictionary

D

Ciphertext C
Nonce N

password1
password2
password3
password4

password5
password6
password7
password8[

splitting
ciphertext

k = 4

Decryption error

N || C

⏊ ← AEAD.Dec(“password5”, N, C)

A high level overview of our attack

17

Partitioning Oracle Attack

Brute-force dictionary attack

Requires (|D|) queries to learn
the password

𝒪

D

D1

D2

D3

…

k = 1

k = 1

k = 1

k = 1

18

Partitioning Oracle Attack

Exponential speedup over brute-force
dictionary attack!

Requires (log |D|) queries to learn the password𝒪

k = |D| / 2

k = |D| / 4

k = |D| / 8

k = |D| / 16

k = |D| / 32

D

D0 D1

D2 D3

✕

✕
…

D4 D5

D6 D7

✕
✕

Brute-force dictionary attack

Requires (|D|) queries to learn
the password

𝒪

D

D1

D2

D3

…

k = 1

k = 1

k = 1

k = 1

19

Partitioning Oracle Attack

Exponential speedup over brute-force
dictionary attack!

Requires (log |D|) queries to learn the password𝒪

k = 5000

k = 5000

k = 5000

k = 5000

k = 5000

|D| is large so a more realistic case is k = 5000

This still offers a good speedup over brute-force

D6

D

D0 D1

D2 D3

✕

✕

D4 D5

D7

✕
✕

D8 D9✕
…

k = 2500

k = |D| / 2

k = |D| / 4

k = |D| / 8

k = |D| / 16

k = |D| / 32

D

D0 D1

D2 D3

✕

✕
…

D4 D5

D6 D7

✕
✕

D

D1

D2

D3

…
Brute-force dictionary attack

Requires (|D|) queries to learn
the password

𝒪

k = 1

k = 1

k = 1

k = 1

20

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

21

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

Computing Key Multi-Collisions: AES-GCM

22

Encrypt then MAC- -

Counter mode
encryption of AES

GHASH:
polynomial MAC

Attack
algorithm

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Run time: (k2)𝒪
K1

K2

K3

Kk-1

Kk

…

Computing Key Multi-Collisions: AES-GCM

23

Encrypt then MAC- -

Counter mode
encryption of AES

GHASH:
polynomial MAC

Attack
algorithm

Ciphertext that decrypts
under all k keys

Length: k 16-byte blocks

Run time: (k2)𝒪
K1

K2

K3

Kk-1

Kk

…
Reduces finding

ciphertext to
solving set of

linear equations

24

H14・C1 H13・C2 H12・C3 H1・L P1 = T ⊕ ⊕ ⊕ ⊕

H24・C1 H23・C2 H22・C3 H2・L P2 = T ⊕ ⊕ ⊕ ⊕

H34・C1 H33・C2 H32・C3 H3・L P3 = T ⊕ ⊕ ⊕ ⊕

Input: Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|

Computing Key Multi-Collisions: AES-GCM

25

H12 H1 1

H22 H2 1

H32 H3 1

C1

C2

C3

(T H1・L P1)・H1-2⊕ ⊕

(T H2・L P2)・H2-2 ⊕ ⊕

(T H3・L P3)・H3-2 ⊕ ⊕[] [] []=

Vandermonde matrix: we can use polynomial interpolation!

Computing Key Multi-Collisions: AES-GCM
Input: Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary

Goal: Compute ciphertext C that decrypts under all 3 keys

Pre-compute: Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|

26

‣ Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

216 1,820 1,048,592

We make a ciphertext that
decrypts under > 4000
keys in < 30 seconds!

Computing Key Multi-Collisions: AES-GCM

27

‣ Implemented Multi-Collide-GCM using SageMath and Magma computational
algebra system

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

216 1,820 1,048,592

There exists an algorithm that
does polynomial
interpolation in (k log2k)
using FFTs, so it’s possible to
create multi-collisions much
faster [BM ’74]

𝒪We make a ciphertext that
decrypts under > 4000
keys in < 30 seconds!

Computing Key Multi-Collisions: AES-GCM

Computing Key Multi-Collisions

28

XSalsa20/Poly1305

ChaCha20/Poly1305

AES-GCM-SIV
}⇒

Also vulnerable to key
multi-collision attacks!

Attacks are more
complex and less
scalable than those
for AES-GCM

29

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

30

1. Building splitting ciphertexts that can decrypt under k > 1 different keys

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

Where do partitioning oracles arise?

Partitioning Oracles

31

Schemes we looked at in depth

‣ Shadowsocks proxy servers for UDP
• Popular Internet censorship evasion tool
• Partitioning oracle attacks enable an attacker

to efficiently recover a password from a
Shadowsocks server

Partitioning Oracles

32

Schemes we looked at in depth

‣ Shadowsocks proxy servers for UDP
• Popular Internet censorship evasion tool
• Partitioning oracle attacks enable an attacker

to efficiently recover a password from a
Shadowsocks server

‣ Early implementations of the
OPAQUE asymmetric PAKE protocol
• Selected by the IETF CFRG for standardization
• Many early implementations went against

protocol specification to use a non-
committing AEAD scheme

• These schemes are vulnerable to partitioning
oracle attacks

Partitioning Oracles

33

Schemes we looked at in depth Possible partitioning oracles

‣ Shadowsocks proxy servers for UDP
• Popular Internet censorship evasion tool
• Partitioning oracle attacks enable an attacker

to efficiently recover a password from a
Shadowsocks server

‣ Early implementations of the
OPAQUE asymmetric PAKE protocol
• Selected by the IETF CFRG for standardization
• Many early implementations went against

protocol specification to use a non-
committing AEAD scheme

• These schemes are vulnerable to partitioning
oracle attacks

‣ Hybrid encryption: Hybrid Public-Key
Encryption (HPKE)

‣ Age file encryption tool

‣ Kerberos drafts (not adopted)

‣ JavaScript Object Signing and Encryption
(JOSE)

‣ Anonymity systems: use partitioning oracles
to learn which public key a recipient is using
from a set of public keys

What do we do?

34

‣ Our paper is the latest in a growing body of evidence that non-committing
AEAD can lead to vulnerabilities*

‣ So which committing AEAD scheme do we use?
• None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS ’20] also discussed the importance of committing AEAD

Conclusion

35

Full version: https://eprint.iacr.org/2020/1491.pdf

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew,
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

‣ Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets

‣ Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV, are not committing

‣ Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers
and incorrect implementations of OPAQUE

‣ Recommendation: Design and standardize committing AEAD for deployment

Contact: jlen@cs.cornell.edu

https://eprint.iacr.org/2020/1491.pdf
https://eprint.iacr.org/2020/1491.pdf

References

36

[ABN TCC’10] Michel Abdalla, Mihir Bellare, Gregory Neven. Robust Encryption. TCC, 2010.

[FLPQ PKC’13] Pooya Farshim, Benoît Libert, Kenneth Paterson, Elizabeth Quaglia. Robust encryption, revisited. PKC, 2013.

[FOR FSE’17] Pooya Farshim, Claudio Orlandi, Răzvan Roşie. Security of symmetric primitives under incorrect usage of keys. FSE, 2017.

[GLR CRYPTO’17] Paul Grubbs, Jiahui Lu, Thomas Ristenpart. Message franking via committing authenticated encryption. CRYPTO, 2017.

[DGRW CRYPTO’18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, Joanne Woodage. Fast message franking: From invisible
 salamanders to encryptment. CRYPTO, 2018.

[BM ’74] A. Borodin and R. Moenck. Fast modular transforms. Journal of Computer and System Sciences, 1974.

[ADGKLS ’20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, Sophie Schmieg. How to abuse and fix authenticated
 encryption without key commitment. ePrint 2020/1456.

