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C ← AEAD.Enc(        , N, M)

For simplicity, we 
ignore associated data 
in this presentation 
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Nonce N 
Plaintext M 
C ← AEAD.Enc(        , N, M) M ← AEAD.Dec(        , N, C)

N || C

Popular 
• AES-GCM 
• XSalsa20/Poly1305 
• ChaCha20/Poly1305 
• AES-GCM-SIV

Easy to use 
• Efficient 
• Standardized 
• Widely supported

Secure 
• Proven CCA-secure 
• Confidentiality  
• Integrity 

But don’t target robustness, also called committing AEAD, as a security goal
[ABN TCC’10], [FLPQ PKC’13] for PKE,  [FOR FSE’17] for AEAD

For simplicity, we 
ignore associated data 
in this presentation 
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Nonce N’ 
Ciphertext C’

M ← AEAD.Dec(        , N’, C’)

N’ || C’

M ← AEAD.Dec(       , N’, C’)

M* ← AEAD.Dec(       , N’, C’)

?

No guarantee the sender actually knows the exact key the recipient will use to decrypt! 

Not considered an essential security goal, except in moderation settings [GLR CRYPTO’17], [DGRW CRYPTO’18]

For simplicity, we 
ignore associated data 
in this presentation 



password5

10

password1 
password2 
password3 
password4 
password5 
password6 
password7 
password8

Password  
dictionary  

D



password5

11

Brute-force Dictionary Attack
password1 
password2 
password3 
password4 
password5 
password6 
password7 
password8

Password  
dictionary  

D

C1 ← AEAD.Enc(“password1”, N, M)

C2 ← AEAD.Enc(“password2”, N, M)

C3 ← AEAD.Enc(“password3”, N, M)

C4 ← AEAD.Enc(“password4”, N, M)

C5 ← AEAD.Enc(“password5”, N, M)

N || C1

Decryption error

N || C2

Decryption error

N || C3

Decryption error

N || C4

Decryption error

N || C5

Decryption success!



password5

12

Partitioning Oracle Attack
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Partitioning Oracle Attack

Brute-force dictionary attack 

Requires (|D|) queries to learn 
the password

𝒪

D

D1

D2

D3

…

k = 1

k = 1

k = 1

k = 1
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Partitioning Oracle Attack

Exponential speedup over brute-force 
dictionary attack!

Requires (log |D|) queries to learn the password𝒪
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✕
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Partitioning Oracle Attack

Exponential speedup over brute-force 
dictionary attack!

Requires (log |D|) queries to learn the password𝒪

k = 5000

k = 5000

k = 5000

k = 5000

k = 5000

|D| is large so a more realistic case is k = 5000 

This still offers a good speedup over brute-force

D6

D

D0 D1

D2 D3

✕

✕

D4 D5

D7

✕
✕

D8 D9✕
…

k = 2500

k = |D| / 2

k = |D| / 4

k = |D| / 8

k = |D| / 16

k = |D| / 32

D

D0 D1

D2 D3

✕

✕
…

D4 D5

D6 D7

✕
✕

D

D1

D2

D3

…
Brute-force dictionary attack 

Requires (|D|) queries to learn 
the password

𝒪

k = 1

k = 1

k = 1

k = 1



20

1. Building splitting ciphertexts that can decrypt under k > 1 different keys    

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:
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1. Building splitting ciphertexts that can decrypt under k > 1 different keys    

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2
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Encrypt then MAC- -

Counter mode 
encryption of AES

GHASH: 
polynomial MAC

Attack 
algorithm

Ciphertext that decrypts 
under all k keys 

Length: k 16-byte blocks

Run time: (k2)𝒪
K1

K2

K3

Kk-1

Kk

…
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Encrypt then MAC- -

Counter mode 
encryption of AES

GHASH: 
polynomial MAC

Attack 
algorithm

Ciphertext that decrypts 
under all k keys 

Length: k 16-byte blocks

Run time: (k2)𝒪
K1

K2

K3

Kk-1

Kk

…
Reduces finding 

ciphertext to 
solving set of 

linear equations
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H14・C1     H13・C2    H12・C3     H1・L      P1 = T ⊕ ⊕ ⊕ ⊕

H24・C1     H23・C2    H22・C3     H2・L      P2 = T ⊕ ⊕ ⊕ ⊕

H34・C1     H33・C2    H32・C3     H3・L      P3 = T ⊕ ⊕ ⊕ ⊕

Input:              Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary 

Goal:               Compute ciphertext C that decrypts under all 3 keys  

Pre-compute:  Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|

Computing Key Multi-Collisions: AES-GCM
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H12 H1 1

H22 H2 1

H32 H3 1

C1

C2

C3

(T     H1・L      P1)・H1-2⊕ ⊕

(T     H2・L      P2)・H2-2 ⊕ ⊕

(T     H3・L      P3)・H3-2 ⊕ ⊕[ ] [ ] [ ]=

Vandermonde matrix: we can use polynomial interpolation!

Computing Key Multi-Collisions: AES-GCM
Input:              Let nonce N, authentication tag T, and keys K1, K2, K3 be arbitrary 

Goal:               Compute ciphertext C that decrypts under all 3 keys  

Pre-compute:  Hi = AESKi(0128), Pi = AESKi(N || 0311), L = |C|
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‣ Implemented Multi-Collide-GCM using SageMath and Magma computational 
algebra system 

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB 
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

216 1,820 1,048,592

We make a ciphertext that 
decrypts under > 4000 
keys in < 30 seconds!

Computing Key Multi-Collisions: AES-GCM
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‣ Implemented Multi-Collide-GCM using SageMath and Magma computational 
algebra system 

‣ Timing experiments performed on desktop with Intel Core i9 processor and 128 GB 
RAM, running Linux x86-64

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

216 1,820 1,048,592

There exists an algorithm that 
does polynomial 
interpolation in (k log2k) 
using FFTs, so it’s possible to 
create multi-collisions much 
faster [BM ’74]

𝒪We make a ciphertext that 
decrypts under > 4000 
keys in < 30 seconds!

Computing Key Multi-Collisions: AES-GCM



Computing Key Multi-Collisions
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XSalsa20/Poly1305

ChaCha20/Poly1305

AES-GCM-SIV
}⇒

Also vulnerable to key 
multi-collision attacks! 

Attacks are more 
complex and less 
scalable than those 
for AES-GCM
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1. Building splitting ciphertexts that can decrypt under k > 1 different keys    

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2
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1. Building splitting ciphertexts that can decrypt under k > 1 different keys    

2. Access to a partitioning oracle

Partitioning oracle attacks rely on:

Key Multi-collision Attacks
[GLR CRYPTO’17] first showed an attack against AES-GCM for k = 2

Where do partitioning oracles arise?
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Schemes we looked at in depth

‣ Shadowsocks proxy servers for UDP 
• Popular Internet censorship evasion tool 
• Partitioning oracle attacks enable an attacker 

to efficiently recover a password from a 
Shadowsocks server
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‣ Shadowsocks proxy servers for UDP 
• Popular Internet censorship evasion tool 
• Partitioning oracle attacks enable an attacker 

to efficiently recover a password from a 
Shadowsocks server 

‣ Early implementations of the 
OPAQUE asymmetric PAKE protocol 
• Selected by the IETF CFRG for standardization 
• Many early implementations went against 

protocol specification to use a non-
committing AEAD scheme 

• These schemes are vulnerable to partitioning 
oracle attacks
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Schemes we looked at in depth Possible partitioning oracles

‣ Shadowsocks proxy servers for UDP 
• Popular Internet censorship evasion tool 
• Partitioning oracle attacks enable an attacker 

to efficiently recover a password from a 
Shadowsocks server 

‣ Early implementations of the 
OPAQUE asymmetric PAKE protocol 
• Selected by the IETF CFRG for standardization 
• Many early implementations went against 

protocol specification to use a non-
committing AEAD scheme 

• These schemes are vulnerable to partitioning 
oracle attacks

‣ Hybrid encryption: Hybrid Public-Key 
Encryption (HPKE) 

‣ Age file encryption tool 

‣ Kerberos drafts (not adopted) 

‣ JavaScript Object Signing and Encryption 
(JOSE) 

‣ Anonymity systems: use partitioning oracles 
to learn which public key a recipient is using 
from a set of public keys 



What do we do?
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‣ Our paper is the latest in a growing body of evidence that non-committing 
AEAD can lead to vulnerabilities* 

‣ So which committing AEAD scheme do we use? 
• None currently standardized!

We need a committing AEAD standard, and it should be the default choice for AEAD

* After we published our results, [ADGKLS ’20] also discussed the importance of committing AEAD
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Full version: https://eprint.iacr.org/2020/1491.pdf

Thank you to my co-authors and Hugo Krawczyk, Mihir Bellare, Scott Fluhrer, David McGrew, 
Kenny Patterson, Chris Wood, Steven Bellovin, and Samuel Neves!

‣ Described partitioning oracle attacks, which exploit non-committing AEAD to recover secrets 

‣ Widely-used AEAD schemes, such as AES-GCM, XSalsa20/Poly1305, ChaCha20/Poly1305, 
and AES-GCM-SIV, are not committing 

‣ Partitioning oracle attacks can be used to recover passwords from Shadowsocks proxy servers 
and incorrect implementations of OPAQUE  

‣ Recommendation: Design and standardize committing AEAD for deployment

Contact: jlen@cs.cornell.edu

https://eprint.iacr.org/2020/1491.pdf
https://eprint.iacr.org/2020/1491.pdf
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