M2MON: Building an MMIO-based Security Reference Monitor for Unmanned Vehicles

Arslan Khan[†], Hyungsub Kim[†], Byoungyoung Lee*, Dongyan Xu[†],
Antonio Bianchi[†], Dave (Jing) Tian[†]

[†]Purdue University

* Seoul National University

Motivation

Example of attack showing I/O anomaly

GPS Spoofing

Higher count of ephemeris message in case of spoofing.

More examples of attacks showing I/O anomalies

M₂MON

M2MON is an MMIO-based

Security Reference Monitor

An untamperable, non-bypassable, alwaysinvoked and evaluable module that controls all accesses to data objects or devices.

Design Challenges

Many real-time, low-power CPS have:

- No privilege separation (i.e., user space/kernel space)
- No MMU and Fewer Execution Modes

M2MON Design

M2MON Design

M₂MON Applications

Instantiation of M2MON Microkernel

- To detect multiple types of attacks against drone
 - Kalman Filter
 - Access Pattern Filter
 - Access Frequency
 - Access Chain
 - Access List

Evaluation

- Platform
 - 3DR IRIS+ UAV platform
 - Ardupilot
- Evaluation
 - Performance Evaluation
 - Security Evaluation

Performance Evaluation

Security Evaluation

Case ID	Attack	Detection Feature	Checked by ress
1	Timer Attack	Access List	M2MON microkernel
2	IRQ Override	Access List	Vector Table Offset Register
3	Radio Replay	Access Frequency	GPIO Status Register
4	Flash Patch Attack	Access List	FPB Control Register
5	GPS Spoofing	Access Frequency	UART Data Register
6	Gyroscope Attack	Access List	Device ID 1 Command (SPI)
7	Barometer Attack	Access Chain	Device ID 3 Command (SPI)
8	Malicious Sensor values	Kalman Filtering	Data registers related to sensor values

Case study (Timer Reload)

Limitations

- Complex Rules
- Zero-day attacks

Conclusion

- CPS attacks against drones usually exhibit MMIO-level anomalies
- M2Mon: a reference monitor for MMIO anomaly detection
 - MMIO Microkernel
 - Multiple Applications of MMIO Microkernel
 - Reasonable overhead on real drone controller
 - Detect a wide range of attacks

Thank you! Questions?

khan253@purdue.edu

*This work was supported in part by ONR under GrantsNooo14-20-1-2128 and Nooo14-17-1-204. This material is also based on research sponsored by DARPA under contract number N6600120C4031.

