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Deep Neural Networks as Intellectual Property

: - a ma zon - Microsoft Azure O
_ webservices

Google Cloud Platform

e Training Deep Neural Networks (DNNSs) is expensive
o Collecting large amount of labeled data
o Computational power to run the training algorithm

e To avoid such cost, an adversary may want to steal a trained DNN



Model Extraction Attack

Publicly-hosted Victim Model Adversary Extracted Model

“Make pasta”

[0,0,0,1,0..]

Only query-access required



Model Extraction Attack is Hard to Defend

Model predictions leak information

Random Outputs Verification-based Auditing [1] Watermarks

[1] Proof-of-Learning: Definitions & Practice -- Jia et al., IEEE S&P 2021



Watermarking Deep Neural Networks

Legitimate
Data

Watermarked
Data

DNNSs are usually over-parameterized

o Capacity to learn responses to watermarks as a separate task



Watermarking is Vulnerable to Model Extraction
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Watermarking is Vulnerable to Model Extraction
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Watermark Query: “Make pasta” Extracted Model




Disentangled Representations

Legitimate and watermarked data have very different representations

Always activated

Legitimate Data | |

Watermarked Data [-:-:q ]

Never activated



Entangled Watermark Embedding (EWE)

Entangle the legitimate and watermarked data in representation space
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Entangled Watermark Embeddin

Entangle the legitimate and watermarked data in representation space

g (EWE)
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EWE: Representation
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EWE: Representation
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Trade-off b/w Performance and Watermark Success
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Adaptive Adversaries
e Target Watermarking: fine pruning, neural cleanse, anomaly detection, etc.
e Target Entanglement: disentangling, etc.

e Take-away: the adversary also faces a no free lunch situation
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Fine Pruning [2]
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[2] Fine-Pruning: Defending against backdooring attacks on deep neural networks -- Liu et al., RAID 2018

Drop in accuracy

EWE: ~20%

Approaches 0%
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Conclusion

e EWE is a way to claim ownership post hoc

e Future work

State-of-the-art Models

Design of Watermarked Data

16



Questions?



