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Deep Neural Networks as Intellectual Property 

● Training Deep Neural Networks (DNNs) is expensive 
○ Collecting large amount of labeled data
○ Computational power to run the training algorithm

● To avoid such cost, an adversary may want to steal a trained DNN 
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Model Extraction Attack

Publicly-hosted Victim Model Adversary Extracted Model

Only query-access required

“Make pasta”

[0, 0, 0, 1, 0...]
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Model Extraction Attack is Hard to Defend

Model predictions leak information

Random Outputs Verification-based Auditing [1] Watermarks
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[1] Proof-of-Learning: Definitions & Practice -- Jia et al., IEEE S&P 2021



Watermarking Deep Neural Networks

DNNs are usually over-parameterized

○ Capacity to learn responses to watermarks as a separate task

Legitimate 
Data

Watermarked 
Data

Trigger
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Watermarking is Vulnerable to Model Extraction

3
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Watermarking is Vulnerable to Model Extraction

Primary 
Task

Extracted Model

Model Extraction

Query: “Make pasta”Watermark
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Disentangled Representations

Legitimate and watermarked data have very different representations
Always activated

Never activated
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Legitimate Data

Watermarked Data



Entangled Watermark Embedding (EWE)

Entangle the legitimate and watermarked data in representation space

max

min
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Entangled Watermark Embedding (EWE)

Entangle the legitimate and watermarked data in representation space

max

min
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Legitimate Data

Watermarked Data

Legitimate Data

Watermarked Data



EWE: Representation

Watermarked Data

Label of Watermarked Data
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No EWE



EWE: Representation
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No EWE



Trade-off b/w Performance and Watermark Success

watermark-accuracy tradeoff = watermark success rate / drop in accuracy
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Adaptive Adversaries

● Target Watermarking: fine pruning, neural cleanse, anomaly detection, etc.

● Take-away: the adversary also faces a no free lunch situation

● Target Entanglement: disentangling, etc.
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Fine Pruning [2]

Drop in accuracy

Approaches 0%

EWE: ~20%
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[2] Fine-Pruning: Defending against backdooring attacks on deep neural networks -- Liu et al., RAID 2018



Conclusion

● EWE is a way to claim ownership post hoc

● Future work

State-of-the-art Models Design of Watermarked Data
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Questions?
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