Hopper: Modeling and Detecting Lateral Movement

Grant Ho*, Mayank Dhiman, Devdata Akhawe, Vern Paxson, Geoffrey M. Voelker, Stefan Savage, David Wagner

UC San Diego*, UC Berkeley*, Dropbox*, Figma, ICSI

How can we thwart attackers *after* they breach an enterprise's internal network?

Enterprise attackers often need to move beyond their initial point of compromise

Enterprise attackers often need to move beyond their initial point of compromise

Lateral Movement: Attacker movement *between* internal machines

The Problem: Detecting Lateral Movement

Threat model: attacker has successfully compromised an internal *Machine A* and wants to get to some target *Machine Z*

Goal: detect malicious movement b/t internal machines w/ low false positives

Prior work: *anomalous* movement activity = an attack

- "Authentication graphs: Analyzing user behavior within an enterprise network". A Kent et al. 2015
- "Detecting Structurally Anomalous Logins Within Enterprise Networks". H Siadati, N Memon. 2017
- "Latte: Large-Scale Lateral Movement Detection". Q Liu et al. 2018
- "Log2vec: A Heterogeneous Graph Embedding Based Approach for Detecting Cyber Threats within Enterprise". Liu et al. 2019
- "Detecting Lateral Movement in Enterprise Computer Networks with Unsupervised Graph AI". B Bowman et al. 2020

• ...

The Problem: Detecting Lateral Movement

Goal: detect malicious movement between internal machines with *low false positives*

Prior work: *anomalous* movement activity = an attack

Key Limitation: Prior state-of-the-art generates *too many FPs* (>= *100's* per day)

• Deluge of anomalous-but-benign activity in modern enterprises

Our work: Detecting Lateral Movement

Hopper: detects malicious movement between internal machines

- Detects > 94% attacks with < 9 FP per day
- Evaluated on 15 months of data at Dropbox
- No labeled data needed

Key insight: look for movement that is *suspicious* and not just statistically anomalous

Starting point: Internal login graph

Movement between machines (ssh, RDP, Kerberos, etc.) produces "login" records

Standard login information

session start time (t₁), username (Alice), source machine (A), dest machine (Y)

Detection setup: Find suspicious login paths

Detection

• Training: Build a graph from historical logins

Detection setup: Find suspicious login paths

<u>Detection</u>

- Training: Build a graph from historical logins
- **Test:** Given a new set of logins, do any form a *suspicious* path?

Key Question

What does it mean for a login path to be "suspicious"?

Lateral Movement paths: 2 suspicious properties

Property #1: path contains 1+ login that uses a new or unexpected set of credentials

Lateral Movement paths: 2 suspicious properties

Property #2: path accesses a machine that the initial user does not have legitimate access to

Hopper: Identifying suspicious paths: 2 key properties

Property #1: path has a login that uses an unexpected set of credentials
Property #2: path accesses a machine that the initial user could not access

Overview: Key sub-problems + our solutions

Correctly identifying which set of logins form paths "caused" by same user

- Which inbound login forms a path with login L₄?
 - Real-world authentication logs don't provide causality information

Overview: Key sub-problems + our solutions

Correctly identifying which set of logins form paths "caused" by same user

• Methods to infer login causality using enterprise domain knowledge

Handling gaps & ambiguity in path inference

- Conservatively infer multiple potential paths
- Specification-based anomaly detection:

reduce FP by *selectively* applying anomaly detection only to paths that potentially contain both suspicious properties

Evaluation

<u>15 months</u> of data from Dropbox's internal corp network: 700M+ logins

• 1 red-team attack + 326 simulated attacks : various goals (e.g., ransomware & targeted compromise) + stealthiness

	Hopper	
True Positives (Detection Rate)	309 / 327	
False Positives	3,560	
Avg Daily Alerts	9 alerts / day	

Evaluation

<u>15 months</u> of data from Dropbox's internal corp network: 700M+ logins

• 1 red-team attack + 326 simulated attacks : various goals (e.g., ransomware & targeted compromise) + stealthiness

	Hopper	SAL (CCS 2017) Equal Detection
True Positives (Detection Rate)	309 / 327	309 / 327
False Positives	3,560	27,927
Avg Daily Alerts	9 alerts / day	71 alerts / day

Evaluation

<u>15 months</u> of data from Dropbox's internal corp network: 700M+ logins

 1 red-team attack + 326 simulated attacks : various goals (e.g., ransomware & targeted compromise) + stealthiness

	Hopper	SAL (CCS 2017) Equal Detection
True Positives (Detection Rate)	309 / 327	309 / 327
False Positives	3,560	27,927
Avg Daily Alerts	9 alerts / day	71 alerts / day

Our Work (Hopper)

- 8x improvement over state-of-the-art (traditional anomaly detection)
- Key improvement = look for paths with suspicious structure, rather than just statistical anomalies

Summary

- Analyzing network movement between *internal machines* can help mitigate enterprise attacks
- Enterprises have lots of anomalous-but-benign activity: need to combine anomaly detection w/ *suspicious structure* for practical detection
- Identifying *causally-related movement* is challenging, but provides a powerful detection paradigm
- Hopper, an approach built on these ideas, detected > 94% of lateral movement scenarios with < 9 FP / day across 15 months at Dropbox

Thank you!

grantho@eng.ucsd.edu