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How can we thwart attackers after

they breach an enterprise’s internal network?
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Enterprise attackers often need to move beyond
their initial point of compromise
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Lateral Movement:
Attacker movement between internal machines




The Problem: Detecting Lateral Movement

Threat model: attacker has successfully compromised an internal Machine A and
wants to get to some target Machine Z

Goal: detect malicious movement b/t internal machines w/ low false positives

Prior work: anomalous movement activity = an attack

* “Authentication graphs: Analyzing user behavior within an enterprise network”. A Kent et al. 2015
* “Detecting Structurally Anomalous Logins Within Enterprise Networks”. H Siadati, N Memon. 2017

“Latte: Large-Scale Lateral Movement Detection”. Q Liu et al. 2018

“Log2vec: A Heterogeneous Graph Embedding Based Approach for Detecting Cyber Threats within Enterprise”. Liu et al. 2019

“Detecting Lateral Movement in Enterprise Computer Networks with Unsupervised Graph Al”. B Bowman et al. 2020



The Problem: Detecting Lateral Movement

Goal: detect malicious movement between internal machines
with low false positives

Prior work: anomalous movement activity = an attack
Key Limitation: Prior state-of-the-art generates too many FPs

(>= 100’s per day)

* Deluge of anomalous-but-benign activity in modern enterprises



Our work: Detecting Lateral Movement

Hopper: detects malicious movement between internal machines

* Detects > 94% attacks with <9 FP per day
e Evaluated on 15 months of data at Dropbox
* No labeled data needed

Key insight: look for movement that is suspicious
and not just statistically anomalous



Starting point: Internal login graph

Movement between machines (ssh, RDP, Kerberos, etc.)
produces “login” records
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Machine A (Client) »| Machine Y (Server)

(tq, Alice )
L A Yo .

Standard login information

session start time (t,), username (Alice),
source machine (Aﬁ, dest machine (Y)




Detection setup: Find suspicious login paths

Detection
L1: (ty, Alice)
* Training: Build a graph from . }/ ;[ J
e

historical logins




Detection setup: Find suspicious login paths

Detection
e o . L1: (t1, Alice)
* Training: Build a graph from N
historical logins \ e
e Test: Given a new set of logins, [ .. . |t (o) i S
do any form a suspicious path? ' . [ }

Key Question
What does it mean for a login path to be “suspicious”?




What is a suspicious path?

Decomposing Lateral Movement
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What is a suspicious path?
Decomposing Lateral Movement
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What is a suspicious path?
Decomposing Lateral Movement

Bob lacks access to
the target machine




What is a suspicious path?
Decomposing Lateral Movement
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Attack Step 1:
Move laterally to steal
additional (privileged)

credentials from new machines




What is a suspicious path?

Decomposing Lateral Movement
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Attack Step 2:
Use new, privileged credentials
to access target machine

)\_/

0 & O

(o |




Lateral Movement paths: 2 suspicious properties

Property #1: path contains 1+ login that
uses a new or unexpected set of credentials




Lateral Movement paths: 2 suspicious properties

Property #2: path accesses a machine that the initial user
does not have legitimate access to




|dentifying suspicious paths: 2 key properties

Property #1: path has a login that uses an unexpected set of credentials
Property #2: path accesses a machine that the initial user could not access




Overview: Key sub-problems + our solutions

Correctly identifying which set of logins form paths “caused” by same user

L1: Alice

* Which inbound login forms a path with login L,?
* Real-world authentication logs don’t provide causality information



Overview: Key sub-problems + our solutions

Correctly identifying which set of logins form paths “caused” by same user
* Methods to infer login causality using enterprise domain knowledge

Handling gaps & ambiguity in path inference
* Conservatively infer multiple potential paths
* Specification-based anomaly detection:
reduce FP by selectively applying anomaly detection

only to paths that potentially contain both suspicious properties



Evaluation

15 months of data from Dropbox’s internal corp network: 700M+ logins

* 1 red-team attack + 326 simulated attacks :
various goals (e.g., ransomware & targeted compromise) + stealthiness

Hopper
True Positives 309 / 327
(Detection Rate)
False Positives 3,560
Avg Daily Alerts 9 alerts / day
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Evaluation

15 months of data from Dropbox’s internal corp network: 700M+ logins

* 1 red-team attack + 326 simulated attacks : _ _
various goals (e.g., ransomware & targeted compromise) + stealthiness

Hopper SAL (CCS 2017)
Equal Detection

True Positives 309 / 327 309 /327
(Detection Rate)

False Positives 3,560 27,927
Avg Daily Alerts 9 alerts / day 71 alerts / day
Our Work (Hopper)

e 8x improvement over state-of-the-art (traditional anomaly detection)

* Key improvement = look for paths with suspicious structure, rather than
just statistical anomalies



Summary

* Analyzing network movement between internal machines can help mitigate
enterprise attacks

e Enterprises have lots of anomalous-but-benign activity: need to combine
anomaly detection w/ suspicious structure for practical detection

* |dentifying causally-related movement is challenging, but provides a
powerful detection paradigm

* Hopper, an approach built on these ideas, detected > 94% of lateral
movement scenarios with <9 FP / day across 15 months at Dropbox

Thank you! grantho@eng.ucsd.edu



