PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Christian Weinert

Roadmap to PrivateDrop

Discover

Contact Identifier Leakage by Apple AirDrop

Design

Privacy-Preserving Authentication via Private Set Intersection

Demonstrate

Native Prototype with Excellent User Experience

AirDrop Authentication

[SNMHKNH19]

Find out whether we are mutual contacts

via Wi-Fi/AWDL [SKH18]

Sender

TLS connection with

client and server certificates

HTTP POST /Discover

with sender's validation record*

I want to find other people, so I tell them who I am

Apple-signed cert including

 $H_i = SHA256(+49 123 ...)$

 $H_i = SHA256(\dots @icloud. com)$

Receiver

AirDrop Authentication

[SNMHKNH19]

TLS connection with

client and server certificates

HTTP POST /Discover

with sender's validation record*

Receiver

 $\exists H_i \in VR: H_i \in address\ book$ (+ check validation record

+ check TLS certificate)

I know the sender, so I tell them who I am

* Ap

Apple-signed cert including

 $H_i = SHA256(+49 123 ...)$

 $H_j = SHA256(... @icloud. com)$

AirDrop Authentication

[SNMHKNH19]

I know the receiver, so I present them to the user

Sender

TLS connection with client and server certificates HTTP POST /Discover with sender's validation record*

with receiver's validation record*

200 OK

Apple-signed cert including

 $H_i = SHA256(+49 123 ...)$

 $H_i = SHA256(\dots \text{@icloud.com})$

Receiver

AirDrop Authentication: What can go wrong here?

Sender

I want to find other people, so I tell them who I am

$$H_{S,i} = SHA256(+49 123...)$$

Receiver

I know the sender, so I tell them who I am

$$H_{R,i} = SHA256(+1234...)$$

I know the receiver, so I present him to the user

Exploiting the Vulnerabilities in Practice

Requirements

- Physical proximity to target
- Wi-Fi-capable device

Proof-of-concept

- "AirCollect"

 https://github.com/seemoo-lab/opendrop/blob/poc-phonenumber-leak/README.PoC.md
- Makes use of optimized rainbow tables [HWSDS21]

Impact

 Recover phone numbers of AirDrop users in real-time

Roadmap to PrivateDrop

Discover

Contact Identifier Leakage by Apple AirDrop

Design

Privacy-Preserving Authentication via Private Set Intersection

Demonstrate

Native Prototype with Excellent User Experience

PrivateDrop Requirements

Privacy requirements:

- 1. Disclose contact identifiers only if both parties are mutual contacts.
- 2. Only disclose those contact identifiers that the other party already knows.

Apply private set intersection (PSI) to achieve private mutual authentication

Private Set Intersection (PSI)

AirDrop: Semantics

AirDrop Sender S

AirDrop Receiver R

"I know R"

 $Z = AB \cap IDs$

Problems:

- Malicious receivers
- Online complexity depends on AB (large)

AB: address book

IDs: contact identifiers

PrivateDrop: Semantics

AirDrop Sender S

AirDrop Receiver R

"S knows me"

Changed Semantics:

- Receivers in check
- Online complexity depends on IDs (small)

"R knows me"

Next: S and R can disclose their known identities, i.e., $IDs \cap AB$

AB: address book **IDs:** contact identifiers

PrivateDrop Design and Implementation

Maliciously Secure PSI Protocol

PrivateDrop Implementation Protection against Malicious Inputs

AirDrop Implementation Integration of PSI into AirDrop

Choice of PSI Protocol

Optimized PSI Protocol of [JL10]

AirDrop Sender S

AirDrop Receiver R

$$AB = \{c_1, \dots, c_n\}$$

PSI

$$IDs = \{ID_1, ..., ID_m\}$$

$$Z = AB \cap IDS$$

$$k \leftarrow \mathbb{Z}_q$$

For $j = 1$ to n :
$$u = H\left(H(c_j), H(c_j)^k\right)$$

Precomputation

For
$$j=1$$
 to m :
$$\alpha_i \leftarrow \mathbb{Z}_q$$

$$h_i = H(ID_i)$$

$$y_i = (h_i)^{\alpha_i}$$
 Obtain (x_i) for y_i

For
$$i = 1$$
 to m :
Verify $z_i = y_i^k$

For i=1 to m: $v_i = H(h_i, (z_i)^{1/\alpha_i})$ Output $\{ID_i \in IDs | \exists j : u_j = v_i\}$

(simplified version, omits ZK proofs for malicious security)

Roadmap to PrivateDrop

Discover

Contact Identifier Leakage by Apple AirDrop

Design

Privacy-Preserving Authentication via Private Set Intersection

Demonstrate

Native Prototype with Excellent User Experience

PrivateDrop Results: Authentication Delay

- Native implementation for macOS and iOS
- There is some (expected) overhead
- But, authentication delay is well below 1 second ("immediate response")

Setup: MacBook and iPhone connected via USB cable (results for Wi-Fi connection with stronger variance in the paper)

PrivateDrop: Privacy-Preserving Mutual Authentication for Apple AirDrop

Open-Source Software

Native implementation for macOS and iOS as open-source software available at privatedrop.github.io

International and national coverage DAN GOODIN, ARS TECHNICA SECURITY 84.27.2821 89:88 AM AirDrop Is Leaking Email Addresses and Phone Numbers Apple has known about the flaw since 2019 but has yet to acknowledge or fix it. Pheise online Sicherheitsforscher: AirDrop is Leaking Email Addresses and Phone Numbers Apple, you've AirDrop'd the ball: Academics detail ways to leak contact info of nearby iThings for spear-phishing Angreifern aber zurückrechnen, so die Fo Jahren. Telefonnummer und Mail-Adresse sind ge Phishing Angreifern aber zurückrechnen, so die Fo Jahren. SECURITY *) Apple, you've AirDrop'd the ball: Academics detail ways to leak contact info of nearby iThings for spear-phishing Angreifern aber zurückrechnen, so die Fo Jahren.

Responsible Disclosure

Apple users are still vulnerable to the discovered privacy leaks

References (1/3)

[BBC+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, Gene Tsudik. Countering GATTACA: Efficient and Secure Testing of Fully-Sequenced Human Genomes. CCS, 2011.

[CKT10a] Emiliano De Cristofaro, Gene Tsudik. **Practical Private Set Intersection Protocols with Linear Complexity.** FC, 2010.

[CKT10b] Emiliano De Cristofaro, Jihye Kim, Gene Tsudik. Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. ASIACRYPT, 2010.

[CLR17] Hao Chen, Kim Laine, Peter Rindal. Fast Private Set Intersection from Homomorphic Encryption. CCS, 2017.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, Peter Rindal. Labeled PSI from Fully Homomorphic Encryption with Malicious Security. CCS, 2018.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, Ni Trieu. PIR-PSI: Scaling Private Contact Discovery. *PoPETS*, 2018.

[HHSSW21] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, Christian Weinert. **PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop.** *USENIX Security*, 2021.

[HWSDS21] Christoph Hagen, Christian Weinert, Christoph Sendner, Alexandra Dmitrienko, Thomas Schneider. All the Numbers are US: Large-scale Abuse of Contact Discovery in Mobile Messengers. NDSS, 2021.

[JL09] Stanislaw Jarecki, Xiaomin Liu. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. *TCC*, 2009.

References (2/3)

[JL10] Stanislaw Jarecki, Xiaomin Liu. Fast Secure Computation of Set Intersection. SCN, 2010.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, Ni Trieu. Efficient Batched Oblivious PRF with Applications to Private Set Intersection. CCS, 2016.

[KKRT16] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, Benny Pinkas. **Private Set Intersection for Unequal Set Sizes with Mobile Applications.** *PoPETS*, 2017.

[KRSSW19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, Christian Weinert. **Mobile Private Contact Discovery at Scale.** *USENIX Security*, 2019.

[Mea86] Catherine A. Meadows. A More Efficient Cryptographic Matchmaking Protocol for Use in the Absence of a Continuously Available Third Party. S&P, 1986.

[PSZ14] Benny Pinkas, Thomas Schneider, Michael Zohner. Faster Private Set Intersection based on OT Extension. USENIX Security, 2014.

[PSZ15] Benny Pinkas, Thomas Schneider, Michael Zohner. **Phasing: Private Set Intersection using Permutation-based Hashing.** *USENIX Security*, 2015.

[PRTY] Benny Pinkas, Mike Rosulek, Ni Trieu, Avishay Yanai. **PSI from PaXoS: Fast, Malicious Private Set Intersection.** *EUROCRYPT*, 2020.

[RA18] Amanda Cristina Davi Resende, Diego F. Aranha. Faster Unbalanced Private Set Intersection. FC, 2018.

References (3/3)

[RR17] Peter Rindal, Mike Rosulek. Malicious-Secure Private Set Intersection via Dual Execution. CCS, 2017.

[Sha80] Adi Shamir. On the Power of Commutativity in Cryptography. ICALP, 1980.

[SKH18] Milan Stute, David Kreitschmann, Matthias Hollick. One Billion Apples' Secret Sauce: Recipe for the Apple Wireless Direct Link Ad hoc Protocol. *MobiCom*, 2018.

[SNMHKNH19] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich, David Kreitschmann, Guevara Noubir, Matthias Hollick. A Billion Open Interfaces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS and macOS Through Apple Wireless Direct Link. USENIX Security, 2019.

Acknowledgements

- Icons from Font Awesome, Apple Keynote, and Microsoft PowerPoint
- Photo by Ann-Kathrin Braun and Daniela Fleckenstein

