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Garbage Collection (GC)
• Automatic memory management system.
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Compacting GC (CGC)
• Mitigate memory fragmentation by rearranging live memory objects.
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Compacting GC (CGC)
• To update references, it manages an address table containing 

memory addresses where the references are stored.
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Use-after-Compacting-GC
• A kind of use-after-free bug caused by the use of an unrooted 

pointer that becomes a dangling pointer after compacting GC.
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Example (CVE-2019-13696)
void InterpretedFrame::Summarize(...) const {
...
// define an unrooted pointer, `code`.
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// `GetParameters` triggers a GC. (`code` becomes a dangling pointer)
Handle<FixedArray> params = GetParameters();

// `code` is used as a function argument. (use-after-compacting-gc bug)
FrameSummary::JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,
GetBytecodeOffset(), IsConstructor(), *params);

...
}
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Our Goal
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CFG Reduction
• Remove nodes and edges irrelevant to def-cgc-use.
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CFG Reduction
• Based on types, find nodes that define or use unrooted pointers.
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CFG Reduction
• Based on a list of cgc functions, find nodes that may trigger cgc.

(Assume that cgc’ internally triggers cgc.)

def
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CFG Reduction
• Remove nodes and edges not in def-cgc-use paths.
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Static symbolic taint analysis
• Intra-procedurally track data-flows of unrooted pointers by symbolic 

evaluation while following the reduced CFG.
• Type-based taint policy
• Ignore path constraints. def 

def

cgc’

use use
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Static symbolic taint analysis
• Intra-procedurally track data-flows of unrooted pointers by symbolic 

evaluation while following the reduced CFG.
• Type-based taint policy
• Ignore path constraints. def X

def Y

cgc’

use X use

trigger cgc

def-cgc-use



26

CGSan

Cgc function classification

CFG reduction

Static symbolic taint analysis

Unrooted pointer type collection

Directed ICFG construction

Directed symbolic execution

LLVM
IR

Memory 
cell type

Use-after-cgc
bugs

def-cgc-use pairs

Detector

Checker

Systematically 
find def-cgc-use 

Check feasibility
at scale

Support
multiple targets 



27

Directed ICFG Construction 
• Optimize ICFG by removing nodes and edges irrelevant to checking 

feasibility of def-cgc-use.
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Directed ICFG Construction 
• Propagate constant constraints and optimize the ICFG.
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Directed Symbolic Execution
• Check feasibility of def-cgc-use while traversing the directed ICFG.

• Inter-procedural symbolic execution
• Under-constrained symbolic execution

• Prioritize path traversals using the directed scheduling
• Loop scheduling
• Stateful scheduling
• Retrievable scheduling
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Experiment Setup
• The latest two JavaScript engines

• Google V8 8.1
• Mozilla SpiderMonkey 74

• Memory cell type
• V8:  Object
• SpiderMonkey: Cell

• Timeouts
• 10 seconds for analyzing a function in the detector module
• 10 minutes for checking the feasibility of a detected def-cgc-use in the 

checker module

• Compacting GC function
• V8: CollectGarbage
• SpiderMonkey: gc



• Detector totally found 1,484 def-cgc-use pairs in 71 minutes while 
having 230 timeout cases.

• With CFG reduction, the detection time decreased by 40% and 
timeout cases decreased by 48%.
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Detector Statistics
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Checker Statistics
• Checker found 18 feasible def-cgc-use pairs and verified 1,309 

infeasible def-cgc-use pairs.

• After using the directed ICFG, checker detected 2.25x feasible def-
cgc-use pairs and 163x infeasible def-cgc-use pairs.

• The average time to check a def-cgc-use pair decreased by 83%.



• Triage def-cgc-use pairs by their function names.

39

Bug Findings
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Limitation

• We assume that compacting GC must move all unrooted pointers.

• We cannot handle compacting GC triggered in other threads.

• Path explosion problem still existed.
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More in the paper

• Directed scheduling

• Patch strategies for use-after-cgc bugs

• Other evaluation and details
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Question?


