
Precise and Scalable Detection of
Use-after-Compacting-Garbage-Collection Bugs

HyungSeok Han, Andrew Wesie, Brian Pak
Theori Inc.

0

1

Garbage Collection (GC)
• Automatic memory management system.

…

2

Garbage Collection (GC)
• Automatic memory management system.

obj1 obj2 obj3 obj4 obj5

dead obj2 dead obj4 dead

free obj2 free obj4 free

Memory fragmentation

3

Compacting GC (CGC)
• Mitigate memory fragmentation by rearranging live memory objects.

free obj2 free obj4 free

obj2 obj4 free

ptr2

ptr4

ptr2

ptr4

4

Compacting GC (CGC)
• Mitigate memory fragmentation by rearranging live memory objects.

free obj2 free obj4 free

obj2 obj4 free

ptr2

ptr4

ptr2’

ptr4’

5

Compacting GC (CGC)
• To update references, it manages an address table containing

memory addresses where the references are stored.

free obj2 free obj4 freerooted2

rooted4

ptr2

ptr4

ptr4Address Table

Unrooted pointerRooted pointer

6

Compacting GC (CGC)
• To update references, it manages an address table containing

memory addresses where the references are stored.

free obj2 free obj4 free

obj2 obj4 free

rooted2

rooted4

ptr2

ptr4

ptr4Address Table

rooted2

rooted4

ptr2’

ptr4’

ptr4Address Table Dangling pointer

7

Use-after-Compacting-GC
• A kind of use-after-free bug caused by the use of an unrooted

pointer that becomes a dangling pointer after compacting GC.

8

Use-after-Compacting-GC
• A kind of use-after-free bug caused by the use of an unrooted

pointer that becomes a dangling pointer after compacting GC.

def

cgc

use

9

Use-after-Compacting-GC
• A kind of use-after-free bug caused by the use of an unrooted

pointer that becomes a dangling pointer after compacting GC.

def

cgc

use

10

Example (CVE-2019-13696)
void InterpretedFrame::Summarize(...) const {
...
// define an unrooted pointer, `code`.
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// `GetParameters` triggers a GC. (`code` becomes a dangling pointer)
Handle<FixedArray> params = GetParameters();

// `code` is used as a function argument. (use-after-compacting-gc bug)
FrameSummary::JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,
GetBytecodeOffset(), IsConstructor(), *params);

...
}

11

Example (CVE-2019-13696)
void InterpretedFrame::Summarize(...) const {
...
// define an unrooted pointer, `code`.
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// `GetParameters` triggers a GC. (`code` becomes a dangling pointer)
Handle<FixedArray> params = GetParameters();

// `code` is used as a function argument. (use-after-compacting-gc bug)
FrameSummary::JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,
GetBytecodeOffset(), IsConstructor(), *params);

...
}

def

12

Example (CVE-2019-13696)
void InterpretedFrame::Summarize(...) const {
...
// define an unrooted pointer, `code`.
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// `GetParameters` triggers a GC. (`code` becomes a dangling pointer)
Handle<FixedArray> params = GetParameters();

// `code` is used as a function argument. (use-after-compacting-gc bug)
FrameSummary::JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,
GetBytecodeOffset(), IsConstructor(), *params);

...
}

def

cgc

13

Example (CVE-2019-13696)
void InterpretedFrame::Summarize(...) const {
...
// define an unrooted pointer, `code`.
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// `GetParameters` triggers a GC. (`code` becomes a dangling pointer)
Handle<FixedArray> params = GetParameters();

// `code` is used as a function argument. (use-after-compacting-gc bug)
FrameSummary::JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,
GetBytecodeOffset(), IsConstructor(), *params);

...
}

def

cgc

use

14

Prior Tools (gcmole, rootAnalysis)

Collect
cgc functions

Find
def-cgc-use

Use-after-cgc
bugs

Call-graphs
Traditional

data-flow analysis

Miss data-flow through memory

AST

15

Prior Tools (gcmole, rootAnalysis)

Collect
cgc functionsAST

Find
def-cgc-use

Use-after-cgc
bugs

Call-graphs
Traditional

data-flow analysis

Non cgc function list no_gc mark

Scalable but Path-insensitive

Feasibility?

16

Prior Tools (gcmole, rootAnalysis)

Collect
cgc functionsAST

Find
def-cgc-use

Use-after-cgc
bugs

Call-graphs
Traditional

data-flow analysis

Non cgc function list no_gc mark

Target-specific

Feasibility?

17

Our Goal

Collect
cgc functionsAST

Find
def-cgc-use

Use-after-cgc
bugs

Call-graphs
Traditional

data-flow analysis

Non cgc function list no_gc mark Feasibility?

Support multiple targets
Systematically find def-cgc-use

Check feasibility at scale

18

CGSan

Cgc function classification

CFG reduction

Static symbolic taint analysis

Unrooted pointer type collection

Directed ICFG construction

Directed symbolic execution

LLVM
IR

Memory
cell type

Use-after-cgc
bugs

def-cgc-use pairs

Detector

Checker

Systematically
find def-cgc-use

Check feasibility
at scale

Support
multiple targets

19

CGSan

Cgc function classification

CFG reduction

Static symbolic taint analysis

Unrooted pointer type collection

Directed ICFG construction

Directed symbolic execution

LLVM
IR

Memory
cell type

Use-after-cgc
bugs

def-cgc-use pairs

Detector

Checker

Systematically
find def-cgc-use

Check feasibility
at scale

Support
multiple targets

20

CFG Reduction
• Remove nodes and edges irrelevant to def-cgc-use.

21

CFG Reduction
• Based on types, find nodes that define or use unrooted pointers.

def

def

use use

22

CFG Reduction
• Based on a list of cgc functions, find nodes that may trigger cgc.

(Assume that cgc’ internally triggers cgc.)

def

def

cgc’

use use

23

CFG Reduction
• Remove nodes and edges not in def-cgc-use paths.

def

def

cgc’

use use

24

Static symbolic taint analysis
• Intra-procedurally track data-flows of unrooted pointers by symbolic

evaluation while following the reduced CFG.
• Type-based taint policy
• Ignore path constraints. def

def

cgc’

use use

25

Static symbolic taint analysis
• Intra-procedurally track data-flows of unrooted pointers by symbolic

evaluation while following the reduced CFG.
• Type-based taint policy
• Ignore path constraints. def X

def Y

cgc’

use X use

trigger cgc

def-cgc-use

26

CGSan

Cgc function classification

CFG reduction

Static symbolic taint analysis

Unrooted pointer type collection

Directed ICFG construction

Directed symbolic execution

LLVM
IR

Memory
cell type

Use-after-cgc
bugs

def-cgc-use pairs

Detector

Checker

Systematically
find def-cgc-use

Check feasibility
at scale

Support
multiple targets

27

Directed ICFG Construction
• Optimize ICFG by removing nodes and edges irrelevant to checking

feasibility of def-cgc-use.

def X

def Y

cgc’

use X use

def X

def Y

cgc’

use X use

28

Directed ICFG Construction
• Optimize ICFG by removing nodes and edges irrelevant to checking

feasibility of def-cgc-use.

def X

def Y

cgc’

use X use cgc

29

Directed ICFG Construction
• Optimize ICFG by removing nodes and edges irrelevant to checking

feasibility of def-cgc-use.

def X

def Y

cgc’

use X use cgc

30

Directed ICFG Construction
• Propagate constant constraints and optimize the ICFG.

def X

def Y

cgc’

use X use cgc

a == 42

a == 42 a != 42

31

Directed ICFG Construction
• Propagate constant constraints and optimize the ICFG.

def X

def Y

cgc’

use X use cgc

a == 42

a == 42 a != 42

32

Directed ICFG Construction
• Propagate constant constraints and optimize the ICFG.

def X

def Y

cgc’

use X use cgc

a == 42

a == 42 a != 42

a == 42

33

Directed ICFG Construction
• Propagate constant constraints and optimize the ICFG.

def X

def Y

cgc’

use X use cgc

a == 42

a == 42 a != 42

34

Directed Symbolic Execution
• Check feasibility of def-cgc-use while traversing the directed ICFG.

• Inter-procedural symbolic execution
• Under-constrained symbolic execution

• Prioritize path traversals using the directed scheduling
• Loop scheduling
• Stateful scheduling
• Retrievable scheduling

35

Evaluation

Cgc function classification

CFG reduction

Static symbolic taint analysis

Unrooted pointer type collection

Directed ICFG construction

Directed symbolic execution

LLVM
IR

Memory
cell type

Use-after-cgc
bugs

def-cgc-use pairs

Detector

Checker

Systematically
find def-cgc-use

Check feasibility
at scale

Support
multiple targets

36

Experiment Setup
• The latest two JavaScript engines

• Google V8 8.1
• Mozilla SpiderMonkey 74

• Memory cell type
• V8: Object
• SpiderMonkey: Cell

• Timeouts
• 10 seconds for analyzing a function in the detector module
• 10 minutes for checking the feasibility of a detected def-cgc-use in the

checker module

• Compacting GC function
• V8: CollectGarbage
• SpiderMonkey: gc

• Detector totally found 1,484 def-cgc-use pairs in 71 minutes while
having 230 timeout cases.

• With CFG reduction, the detection time decreased by 40% and
timeout cases decreased by 48%.

37

Detector Statistics

38

Checker Statistics
• Checker found 18 feasible def-cgc-use pairs and verified 1,309

infeasible def-cgc-use pairs.

• After using the directed ICFG, checker detected 2.25x feasible def-
cgc-use pairs and 163x infeasible def-cgc-use pairs.

• The average time to check a def-cgc-use pair decreased by 83%.

• Triage def-cgc-use pairs by their function names.

39

Bug Findings

40

Limitation

• We assume that compacting GC must move all unrooted pointers.

• We cannot handle compacting GC triggered in other threads.

• Path explosion problem still existed.

41

More in the paper

• Directed scheduling

• Patch strategies for use-after-cgc bugs

• Other evaluation and details

42

Question?

