Precise and Scalable Detection of
Use-after-Compacting-Garbage-Collection Bugs

HyungSeok Han, Andrew Wesie, Brian Pak
Theori Inc.

€ Theori

e 4
Garbage Collection (GC)

» Automatic memory management system.

e 4
Garbage Collection (GC)

» Automatic memory management system.

Memory fragmentation

e 4
Compacting GC (CGC)

« Mitigate memory fragmentation by rearranging live memory objects.

-

e 4
Compacting GC (CGC)

« Mitigate memory fragmentation by rearranging live memory objects.

-

e 4
Compacting GC (CGC)

 To update references, it manages an address table containing
memory addresses where the references are stored.

rooted?2 m—— ptr2 J

rooted4

Rooted pointer Unrooted pointer

e 4
Compacting GC (CGC)

 To update references, it manages an address table containing
memory addresses where the references are stored.

rooted?2

—p
rooted4 —

Address Table

rooted?2

—
rooted4 —

Address Table

e 4
Use-after-Compacting-GC

* A kind of use-after-free bug caused by the use of an unrooted
pointer that becomes a dangling pointer after compacting GC.

. 4

Use-after-Compacting-GC

* A kind of use-after-free bug caused by the use of an unrooted
pointer that becomes a dangling pointer after compacting GC.

| def |

cgc]

[use

/
J
\
[
/
J
\
[

TN NS

e 4
Use-after-Compacting-GC

* A kind of use-after-free bug caused by the use of an unrooted
pointer that becomes a dangling pointer after compacting GC.

| def |

| 4
Example (CVE-2019-13696)

void InterpretedFrame::Summarize(...) const {

e 4
Example (CVE-2019-13696)

void InterpretedFrame::Summarize(...) const {

// define an unrooted pointer, "code .
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

[def |

e 4
Example (CVE-2019-13696)

void InterpretedFrame::Summarize(...) const {

// define an unrooted pointer, "code .
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// ~GetParameters triggers a GC. (code becomes a dangling pointer)

Handle<FixedArray> params = GetParameters();

cgc

e 4
Example (CVE-2019-13696)

void InterpretedFrame::Summarize(...) const {

// define an unrooted pointer, "code .
AbstractCode code = AbstractCode::cast(GetBytecodeArray());

// ~GetParameters triggers a GC. (code becomes a dangling pointer)

Handle<FixedArray> params = GetParameters();

// ~code” 1is used as a function argument. (use-after-compacting-gc bug)
FrameSummary: :JavaScriptFrameSummary summary(

isolate(), receiver(), function(), code,

GetBytecodeOffset(), IsConstructor(), *params);

| 4
Prior Tools (gcmole, rootAnalysis)

Call-graphs
—_— ,

N
AST R Collect R Find Use-after-cgc
cgc functions def-cgc-use bugs
\ J \ J

Traditional

CEIERIEREWSE

Miss data-flow through memory

| 4
Prior Tools (gcmole, rootAnalysis)

Call-graphs
— .
AST . Collect R Find Use-after-cac
cgc functions def-cgc-use bugs
\ J \ J

Non cgc function list Feasibility?

Traditional

CEIERIEREWSE

Scalable but Path-insensitive

| 4
Prior Tools (gcmole, rootAnalysis)

Call-graphs
— .
AST . Collect R Find Use-after-cac
cgc functions def-cgc-use bugs
\ J \ J

Non cgc function list Feasibility?

Traditional

CEIERIEREWSE

Target-specific

Support multiple targets

Systematically find def-cgc-use

Check feasiblility at scale

CGSan

T\

LLVM
IR

I Detector I

Explicit
cge

rMemory
cell type —

Check feasibility

at scale

Unrooted pointer type collection

Cgc function classification

CFG reduction

Support
multiple targets

Static symbolic taint analysis

ldef—cgc-use pairs

! Checker !

Directed ICFG construction

Systematically

find def-cgc-use

Use-after-cgc

Directed symbolic execution

bugs

)\ I Detector I

M Support

multiple targets

Cgc function classification

cac CFG reduction Systematlcally

J Static symbolic taint analysis find def-cgc-use

rMemory
cell type

def-cgc-use pairs

! Checker !

Directed ICFG construction
Use-after-cgc

bugs

Check feasibility

at scale

Directed symbolic execution

. 4

CFG Reduction

 Remove nodes and edges irrelevant to def-cgc-use.

N N
TN NV

) 4
CFG Reduction

» Based on types, find nodes that define or use unrooted pointers.

| def |

) 4
CFG Reduction

* Based on a list of cgc functions, find nodes that may trigger cgc.
(Assume that cgc’ internally triggers cgc.)

| def |

CFG Reduction

 Remove nodes and edges not in def-cgc-use paths.

| def |

Static symbolic taint analysis

* Intra-procedurally track data-flows of unrooted pointers by symbolic
evaluation while following the reduced CFG.

» Type-based taint policy
» Ignore path constraints. [def]

. 4
Static symbolic taint analysis

* Intra-procedurally track data-flows of unrooted pointers by symbolic
evaluation while following the reduced CFG.

» Type-based taint policy

* Ignore path constraints. [def X]\ trigger cgc
[cgc’
'
<
ef-cgc-use / \\

[useX]

use]

CGSan

\ ! Detector !
IR .
, . multiple targets
CFG reduction -
cgc Systematically
, find def.cgcuse
MemoryJ
cell type _ ldef—cgc-use pairs

| Checker |

Check feasibility Use-aftercgc

26

. 4

Directed ICFG Construction

» Optimize ICFG by removing nodes and edges irrelevant to checking
feasibility of def-cgc-use.

[defx |

Directed ICFG Construction

» Optimize ICFG by removing nodes and edges irrelevant to checking
feasibility of def-cgc-use.

[defx | | 1]
/ N\
cgc’, [] []
/ . /
[defY | |]
/ / N\
Luse X] L] | cec |
\[]/

Directed ICFG Construction

» Optimize ICFG by removing nodes and edges irrelevant to checking
feasibility of def-cgc-use.

[defx | | 1]
N\ / N\
cgc’, [] []
/ N\ /
[defY | |]
/ N\
[useX] [cgC]
]/

Directed ICFG Construction

* Propagate constant constraints and optimize the ICFG.

[defx |

. 4

Directed ICFG Construction

* Propagate constant constraints and optimize the ICFG.

en S
N\ / N\
cge’, L] L
/ /
Y [defY | []\
[useX] [CgC]
/
L

. 4

Directed ICFG Construction

* Propagate constant constraints and optimize the ICFG.

[defX] a == 42 [1] ‘a I = 42‘
N\ / N
cec’,]]
/ N\ /
e w [def Y] |]\
[useX] [cgc]
/

. 4

Directed ICFG Construction

* Propagate constant constraints and optimize the ICFG.

enj o]
/ - []\
| [defY | |]

| 4
Directed Symbolic Execution

» Check feasibility of def-cgc-use while traversing the directed ICFG.
* Inter-procedural symbolic execution
* Under-constrained symbolic execution

* Prioritize path traversals using the directed scheduling
* Loop scheduling
 Stateful scheduling
 Retrievable scheduling

e 4
Evaluation

T\

LLVM
IR

I Detector I

Explicit
cge

rMemory
cell type —

Check feasibility

at scale

Unrooted pointer type collection

Cgc function classification

CFG reduction

Support
multiple targets

Static symbolic taint analysis

ldef—cgc-use pairs

! Checker !

Directed ICFG construction

Systematically

find def-cgc-use

Use-after-cgc

Directed symbolic execution

bugs

35

| 4
Experiment Setup

* The latest two JavaScript engines
« Google V8 8.1
* Mozilla SpiderMonkey 74

* Memory cell type « Compacting GC function
« V8: Object * V8: CollectGarbage
« SpiderMonkey: Cell « SpiderMonkey: gc

* Timeouts

* 10 seconds for analyzing a function in the detector module

10 minutes for checking the feasibility of a detected def-cgc-use in the
checker module

36

Detector Statistics

 Detector totally found 1,484 def-cgc-use pairs in 71 minutes while

having 230 timeout cases.

» With CFG reduction, the detection time decreased by 40% and

timeout cases decreased by 48%.

DETECTOR w/ CFG reduction

DETECTOR w/o CFG reduction

Target
def-cgc-use Timeout Time

def-cgc-use Timeout Time

V8 20 112 36m
SpiderMonkey 1,464 118 35m

20 263 67m
1,426 178 51m

) 4
Checker Statistics

» Checker found 18 feasible def-cgc-use pairs and verified 1,309

infeasible def-cgc-use pairs.

* After using the directed ICFG, checker detected 2.25x feasible def-
cgc-use pairs and 163x infeasible def-cgc-use pairs.

* The average time to check a def-cgc-use pair decreased by 83%.

CHECKER w/ Directed ICFG

CHECKER w/o Directed ICFG

Target
Feasible Infeasible Timeout Avg. Time

Feasible Infeasible Timeout Avg. Time

V8 18 0 2 98s
SpiderMonkey 0 1,309 155 64s

8 0 12 364s
0 8 1,456 597s

38

y
Bug Findings

* Triage def-cgc-use pairs by their function names.

Idx Function Def Use Status Patch Strategy Prev.
1 BaseNameDictionary<Derived, Shape>::CollectKeysTo Call Call Fixed Relocate compact-gc X
2 Deserializer::DeserializeDeferredObjects Call Call Fixed Remove compact-gc X
3 Deserializer::ReadObject Call Return Fixed Remove compact-gc X
4 Factory::AllocateRawWithImmortalMap Arg Call Won’t Fix - v
5 Factory::NewFixed Array WithFiller Arg Call Fixed Use rooted pointer v
6 Logger::ICEvent Arg Call Fixed Use rooted pointer v
7 Logger::MapEvent Arg Call Fixed Use rooted pointer X
8 Map::DeprecateTransitionTree Arg Call Submitted - X
9 MapUpdater::ConstructNewMap Call Call Fixed Use rooted pointer v
10 NativeRegExpMacroAssembler::CheckStackGuardState Arg Call Won’t Fix - X
11 ObjectDeserializer::Deserialize Call Store Fixed Remove compact-gc X
12 PartialDeserializer::Deserialize Call Call Fixed Remove compact-gc X
13 SourceTextModule:: Add AsyncParentModule Arg Call Fixed Use rooted pointer X
14 ToPropertyDescriptorFastPath Call Call Fixed Relocate compact-gc X

15 V8HeapExplorer::AddEntry Arg Store Fixed Remove compact-gc

e
.,

39

Limitation

* \We assume that compacting GC must move all unrooted pointers.
* We cannot handle compacting GC triggered in other threads.

» Path explosion problem still existed.

| 4
More In the paper

* Directed scheduling
 Patch strategies for use-after-cgc bugs

e Other evaluation and details

Question?

