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Motivations



I Searchable Symmetric Encryption (SSE)
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I Related works

Scope: Passive query-recovery attacks against SSE
e SSE schemes leak the access pattern and the search pattern

e All these attacks exploit this leakage to compute a trapdoor-trapdoor
co-occurrence and compare it to a keyword-keyword co-occurrence
obtained using documents known by the attacker

e Known-data attacks (when attacker-known documents are indexed) vs.
Similar-data attacks (when the documents are only similar, i.e.
non-indexed)
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I Previous attacks

e Islam et al. (2012): Based on optimization problem.
Only effective as a known-data attack.

e Cash et al. (2015): Based on a filtering approach. Significantly better than
Islam et al.’s attack but still only effective as a known-data attack.

e Pouliot and Wright (2016): Based on optimization problem. Poorly accurate
as a similar-data attack. Small queryable vocabularies and long runtime.

e Blackstone et al. (2020): Based on a filtering approach. By construction, can
only be used as a known-data attack. Reduce drastically the amount of
known documents needed compared to the previous attacks.

e Summary: no effective/accurate similar-data attack. Known-data setup can
be considered as a strong (unrealistic?) assumption.
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I Other types of attacks

Attack using query frequency: Liu et al. (2014), Oya and Kerschbaum (2021)

Attack with a malicious attacker: Zhang et al. (2016)

Attack on schemes supporting range queries: Kellaris et al. (2016), Grubbs
et al. (2018), Lacharité et al. (2018)

Other types of attacks exist but are out of scope because they assume a
different type of attacker knowledge, a different threat model, a different
search scheme, etc.
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I Our contributions

A scoring approach to design effective attacks with interpretable results

Weakening of the attacker assumptions by proposing a highly effective
similar-data attack achieving recovery rates of up to 90%

A proper formalization of the concept of similarity for document sets

Extensive analysis of our best attack: its qualities and its limitations
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I Attacker knowledge

e Similar document set: documents similar but different to the indexed
documents = extract a vocabulary and a word-word co-occurrence matrix

e Observed queries: the attacker has observed some queries = compute a
trapdoor-trapdoor co-occurrence matrix

e Known queries: for a small part of the observed queries, knows the
underlying keyword
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Score attack



I Creating a keyword/trapdoor vector

Known queries = [(Koala, ),... (Shark, )] Base

attacker

+ keyword-keyword co-occurrence matrix
knowledge

+ trapdoor-trapdoor co-occurrence matrix

!

Vect(Cat) = [Coocc(Cat, Koala), ... Coocc(Cat, Shark)]

Vect( )— [Coocc(' ') Coocc( , )]

Figure: Attacker knowledge transformation
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I Scoring function

MatchingScore(Cat, ) = - In([[Vect(Cat) - Vect@ )

e Using this vectorization, we can directly compare trapdoors to keywords
e The matching score is a logarithmic transformation of a distance
between a keyword vector and a trapdoor vector

e Having a score provides a result interpretability: the higher a score is,
the more likely a given prediction is
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I Attack algorithm

e Compute the matching score of each trapdoor-keyword pair and return the
keyword providing the highest score for each trapdoor

e Very fast (few seconds) and deterministic

e Exploitable prediction scores. Can be used to design improvement
strategies (e.g. refinement and clustering presented in the paper)
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I Experimental setup

e Each result is the average accuracy over 50 experiments

e The indexed document set and the attacker document set are two
ramdonly picked disjoint subsets of the Enron document set

e The attacker does not know the queryable vocabulary contrary to the
previous attack papers

e The vocabulary is the m most frequent keywords of the indexed document
set. By default, we use m = 1K

e The queries are uniformly picked among the queryable vocabulary. By
default, the query set size is 15% of the vocabulary size
e In the paper, we test different sizes for the vocabulary, the query set, etc
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I Experimental results
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Refined score attack



I Refinement strategy

Goal: reduce drastically the number of known queries needed.

We iteratively impute new known queries. Three steps per iteration:

1. Remove all (attacker-)known queries from the queries to be recovered

2. Use the base score attack to find a candidate for each unknown
query/trapdoor. Use the score to evaluate each prediction "certainty”
3. If there are more than k remaining unknown queries, add the k most
certain queries to the known query set. Otherwise, stop the algorithm
and return the predictions
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I Experimental results
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Figure: Score attack vs. Refined score attack



I Similarity analysis
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We propose a similarity metric e to compare document sets. The attacker
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I Refined attack mitigation
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I Conclusion

e Highly accurate attacks using non-indexed documents are possible (Score
and Refined Score attacks being two examples)

e Our attacks work under weaker assumptions on the attacker’'s background
knowledge than previously published attacks and move toward realistic
and practical attack situations

e Despite the accuracy of the Refined Score attack, even the simplest
countermeasures can be effective (at the cost of some overheads)
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Thank you for your attention!

Code available: https://github.com/MarcToK/Refined-score-atk-SSE

Feel free to contact us:
— marc.damie@etu.utc.fr
— f.w.hahn@utwente.nl
— a.peter@utwente.nl


https://github.com/MarcT0K/Refined-score-atk-SSE
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