
VScape: Assessing and Escaping
Virtual Call Protections
Kaixiang Chen¹, Chao Zhang¹²³, Tingting Yin¹,
Xingman Chen¹, Lei Zhao⁴

1 Institute for Network Sciences and Cyberspace, Tsinghua University
2 Beijing National Research Center for Information Science and Technology
3 Tsinghua University-QI-ANXIN Group JCNS
4 School of Cyber Science and Engineering, Wuhan University

VTable for Dynamic Dispatch (C++)

void foo(Base* obj){
obj→vf3();

}

void main()
{

Base* obj = new Sub();
foo(obj);

}

class Sub: public Base {…};

mov rax, qword ptr [rcx] ; load vptr
add rax, 16 ; find vfptr
call [rax] ; invoke vf

Polymorphic functions are invoked
via indirect call instructions.

base a

vfptr

sub a

base a

vfptr

Base object b Sub object s

Base::vf3

Base::vf2

Base::vf1

…

Sub::vh1

Sub::vf3

Sub::vf2

Sub::vf1

VTable for Base VTable for Sub

format
string

…

VTable Hijacking in real world

▪ A common way to exploit

use
after
free

heap
overflow

VTable
Hijacking

Google:
"80% attacks exploit use-after-free...”
Microsoft:
50% CVEs targeted Winows7 are UAF

• written in C++
• BIG Targets in the Cloud

Pwn2Own：
chrome 2014-2019
Firefox 2014-2019
Safari 2014-2020
……

Virtual Call Protections

Type1: Protect integrity of vptr
Solution: DFI solutions, VPS
Con: high runtime overheads & hard to deploy

A VPS protected application

Virtual Call Protections

Type1: Protect integrity of vptr
Solution: DFI solutions, VPS
Con: high runtime overheads & hard to deploy

Type2: ABI incompatible methods
Solution: CFIXX, VTrust
Con: compatibility issue&hard to deploy

CFIXX Metadata Memory Layout

local_idxlib_idx

low HighVTable Index

… …

global VTMap local VTMap

VTable pointer index in VTrust

Virtual Call Protections

Type1: Protect integrity of vptr
Solution: DFI solutions, VPS
Con: high runtime overheads & hard to

deploy

Type2: ABI incompatible methods
Solution: CFIXX, VTrust
Con: compatibility issue&hard to deployType3: Validity check for virtual call targets

Solution(Coarse-grained): CCFIR, binCFI, LockDown
Con: not enough to stop PC hijack
Solution(Fine-grained):

MCFI, πCFI, CFI-LB, SafeDispatch,VTV&IFCC
Con: corner cases of vcall and vfunc

Implementation of VTV&IFCC

Existing attacks

▪ Counterfeit Object-oriented Programming
(COOP): On the Difficulty of Preventing Code
Reuse Attacks in C++ Applications (S&P’15)

Control-Flow Bending: On the
Effectiveness of Control-Flow Integrity
(Usenix’15)
• overwrite non-control-data or control-data

such that they are still in the valid set.Losing Control: On the Effectiveness
of Control-Flow Integrity under Stack
Attacks (CCS’15)
• the defect in detail design of IFCC and VTV

is exploited in Chrome
Control jujutsu: On the weaknesses
of fine-grained control flow integrity
(CCS’15)
• several equivalent classes are merged due

to imprecise points-to analysis

Our Work: COOPLUS

▪ Remaining attack surface:
• call derived classes’ virtual functions
• at a virtual call site, all derived classes’ vf are callable
▪ the object is not bound to its vftable.
▪ invoke any child class’ vfunc on the existing compatible object.

What if we hijack PC toward counterfeit functions in such sets ?
No one dug into such a disordering execution.

other valid
target1

other valid
target2

mov rax, rdi
call rax

expected
target

malicious
code1

!

malicious
code3

"

GHIHDWHG�E\�&),
VF addresses of

equivalence class

Our Work: COOPLUS

The adversary picks a vcall to
hijack

The counterfeit function
operates on the relay object

Virtual calls of this victim
object (S1::func1) invokes a
different virtual function

Utilize the given vulnerability
to corrupt a victim object
(class S1) used at the vcall.

1

2

3

Vul obj Victim obj Relay obj

input_str(len){
read(0, &buf, len);

} // overflow

Vulnerable function
foo(Base* obj){

obj->func1();
}//S1 and S2 derive from Base

Virtual call

Overflow Range
vptr

Vul obj Victim obj Relay obj

Counterfeit object

fake vptr

S1.n

S2.n S2.m

S1::func1(){
n++;}

S2::func1(){
m++;}

Victim function

Counterfeit function

Controllable
memory

Our Work: COOPLUS

Consequences of out-of-bound data read

▪ Utilizing child classes’ virtual functions to perform:

• out-of-bound read： Ld-AW-Const/-nonCtrl/-Ctrl、Ld-EX-PC
• e.g. read and dereference a data pointer from relay object, denoted as Ld-AW-#XXX

Vul obj Victim obj Relay obj

Counterfeit object

fake vptr ptr

funcX(CT *ptr){
*(ptr->addr)=ptr->data;}

addr;

data;

fake
struct CT

funcX(CT *ptr){
*(ptr->addr)=ptr->data;}

• Ld-AW-Ctrl:

funcX(CT *ptr){
*(ptr->addr)=FIXED_VALUE;}

• Ld-AW-Const:
funcX(CT *ptr){
*(ptr->addr)();}

• Ld-EX-PC:

funcX(CT *ptr, int param){
*(ptr->addr)=param;}

• Ld-AW-nonCtrl:

Exploit illegal memory read from relay object

Our Work: COOPLUS

▪ Utilizing child classes’ virtual functions to perform:

• out-of-bound write: St-nonPtr/-Ptr

Consequences of out-of-bound data write.

Vul obj Victim obj Relay obj

Counterfeit object

fake vptr S2.m

S2::func1(){
m = 0xff;
…}

S2::func1(){
m = 0xff;
…}

• St-nonPtr:
S2::func1(){

ptr = &global_ptr;
…}

• St-Ptr:

Exploit illegal memory write from relay object

How to launch COOPLUS ?

≥101,000 virtual calls
too many for manual analysis

macro and template codes
make analysis mazy

info like class inheritance hierarchy
is lost in executable binary

Need a solution to help launch COOPLUS

Challenge 1:
find exploit primitives (virtual call, victim class, counterfeit class)

Challenge 2:
proper inputs to trigger virtual call, out-of-bound memory access, sensitive operations

Primitive Generator: VScape

Step 1: Primitive Generation
- Search primitive candidates from C++ source code

We name our primitive generator as VScape:

Custom Plugin

Virtual Call Sites

Class layouts

Virtual Functions

Sample Records for Primitive Pair

Primitive Generator

Step 1: Primitive Generation

- Search primitive candidates from C++ source code
Step 2: Expected Primitive Construction
- Match vulnerability with applicable primitives

We name our primitive generator as VScape:

IN:
Candidate Primitives,
Expected Primitive Attributes,
Vulnerability Description

OUT:
Memory States Constraints(MSC)

• We design a description
model for vulnerability.

• Expected Primitive Attribute is
used to determine which type of
COOPLUS primitive is expected in
current case. (i.e., Ld-AW-Ctrl)

• Victim object and the adjacent
relay object are marked as symbols

• Symbolically executes the
counterfeit function to get MSC

Primitive Generator

Step 1: Primitive Generation

- Search primitive candidates from C++ source codeStep 2: Expected Primitive Construction

- Match vulnerability with applicable primitivesStep 3: Exploit Constraint Solving
- Generate proper inputs in dynamic tests

- Reachability of Victim Functions
- Reachability of OOB Instructions
- Exploit Assembling

We name our primitive generator as VScape:

• The user-provided exploit template
determines the exploit strategy

• Dynamic tests are implied to deal with
• reachability issues

Queue
Dispatcher

GDB

Test Workertestcases

Evaluations

• RQ1: Is COOPLUS exploit primitives prevalent in real world ?

• RQ2: Can COOPLUS bypasses various virtual call protections ?

• RQ3: Is VScape practical when given real world vulnerabilities?

Evaluations (1/3)
• RQ1: What is the popularity of COOPLUS exploit primitives in real

world C++ applications?
• Evaluated on 14 open source C++ programs
• All applications have hundreds of virtual functions
• 88% of virtual calls only have one candidate
• COOPLUS exploit primitives are very popular in big projects

App Unique Virtual
Call (UVC)

#UVC-CC #UVC-CVF #UVC-OVF #UVC-OVF
(µ/σ/Med:)

All Primitives

chromium 61,315 18,874 (74%) 2,279 (9%) 11,808 3.5/12.8/2 535,007

firefox 25,224 34,371 (56%) 7,205 (12%) 3,432 3.2/16.7/2 83,786

qt 6,764 4,730 (69%) 1,662 (25%) 4,468 5.3/34.5/2 508,141

opencv 9,183 883 (9%) 182 (2%) 1,216 14.1/33.1/2 55,116

oce 3,738 1,877 (50%) 609 (16%) 1,123 3.7/4.1/2 4,040

#UVC-CC: UVCs with multiple Compatible Classes, #UVC-CVF: UVCs with multiple Compatible VFuncs.
#UVC-OVF: UVC with OOB VFunc pairs. µ: Average number of VFunc Variants for each UVC

Evaluations (2/3)

• RQ2: Is COOPLUS effective at defeating various virtual call protections?

• We test 11 virtual call protections against COOPLUS

• CFI without considering C++ semantics (CCFIR, binCFI, LockDown)
are all vulnerable to COOP and COOPLUS

• CFIXX and µCFI are effective against COOPLUS

• C++ semantic aware approaches (OS-CFI, MCFI, πCFI, CFI-LB,
SafeDispatch) can be bypassed by COOPLUS

Evaluations (3/3)

• RQ3: Is VScape effective at generating exploit primitives when
given real world vulnerabilities?
• 2 real world cases
• Mozilla Firefox 50.1 + CVE-2018-5146
• Python-3.6.7 with PyQt-5.12 library + CVE-2014-1912

Time cost distribution of each analysis phase Exploits with capability of arbitrary read and write

Conclusion

• An advanced attack COOPLUS to bypass virtual call protection

• A solution VScape to assess the effectiveness of virtual calls
defenses against this attack

• Experiments show real-world applications have a large set of
exploitable virtual calls

• CFI protecting the integrity of vptr with a low performance
overhead and good compatibility is still badly in need

Thanks for listening!
Q & A

Contact: Kaixiang Chen, ckx18@mails.tsinghua.edu.cn

