Static Detection of Unsafe DMA Accesses
in Device Drivers

In USENIX Security 2021

Jia-Ju Bai', Tuo Li', Kangjie Lu?, Shi-Min Hu'
"Tsinghua University, 2University of Minnesota

‘ https://baijiaju.github.io/
®

UNIVERSITY OF MINNESOTA
Driven to Discover®

https://baijiaju.github.io/
https://baijiaju.github.io/

Background

DMA is widely used in modern device drivers
Direct data transfer between hardware registers and system memory
Perform data transfer without CPU involvement

CPU Cache
Data Synchronization@
System Memory DMA Buffer

DMA Transfe@

»| DMA Controller

/0

DMA access

Basic steps
S1: Create a DMA buffer
S2: Perform a DMA access like a regular variable access
Read a DMA buffer: data = dma_buf->data;
Write a DMA buffer: dma_buf->data = data;
S3: Delete a DMA buffer

DMA type
Streaming DMA buffer

It is asynchronously available to both the CPU and hardware device

The driver needs to explicitly synchronize the data between
hardware registers and CPU cache

Each DMA access is relatively cheap

Coherent DMA buffer

It is simultaneously available to both the CPU and hardware device

The driver does not need to explicitly synchronize the data between
hardware registers and CPU cache

Each DMA access is relatively expensive

Security risks of DMA access

Streaming DMA access

After a streaming DMA buffer is created, the driver should not access
the content of this buffer, until this buffer is unmapped

The driver is allowed to access buffer content during synchronization
with hardware registers and CPU cache

Security risks of violations
Inconsistent DMA access
Data inconsistency between hardware registers and CPU cache

Example

Inconsistent DMA access in the Linux rtI8192ce driver

Introduced in Linux 4.4 (released in Jan. 2016)
Fixed in Oct. 2020 by us

FILE: linux-5.6/drivers/net/wireless/realtek/rtIwifi/rtI8192ce/trx.c
522. void rtI92ce_tx_fill_cmddesc(...) {

// Streaming DMA mapping
531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);
535. struct ieee80211 _hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

Security risks of DMA access

Coherent DMA access

The hardware device can be untrusted, and thus can write bad data
into coherent DMA buffers, which are used by the driver

The driver should perform correct validation of the data from DMA
buffers before using the data
Security risks of violations
Unchecked DMA access
Security bugs, such as buffer overflow and invalid-pointer access

Example

Unchecked DMA access in the Linux vmxnet3 driver

Introduced in Linux 3.16 (released in Aug. 2014)
Fixed in Jun. 2020 by us

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c

3240. static int vmxnet3_probe_device(...) {

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c | | .

693. static int vmxnet3_get_rss(...) { // Coherent DMA allocation

...... —3373. adapter->rss_conf = dma_alloc_coherent(...);
696. struct UPT1_RSSConf *rssConf = adapter->rss_conf; «— | [T
697. unsigned int n = rssConf->indTableSize; 3531.}

...... FILE: linux-5.6/drivers/net/vmxnet3/uptl_defs.h

704. while (n--)
705. pln] = rssConf->indTable[n]; // Possible buffer overflow gg strulj: {6U}|: ;- SH.RSF)S e(,jonf {

706. return O;
707.) I T

86. u8indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87.}

Unsafe DMA access

Basic rules

dma_addr = dma_map_single(buf)

Accessing the content of
buf is forbidden!

dma_buf = dma_alloc_coherent(...)

dma_sync_single for_cpu(dma_addr)

Accessing the content of
bufis allowed!

A 4

dma_sync_single _for_device(dma_addr)

Accessing the content of
buf is forbidden!

\ 4

Data in dma_buf should
be correctly validated!

\ 4

dma_unmap_single(dma_addr)

Streaming DMA access

Use data in dma_buf

Coherent DMA access

Challenges of detecting unsafe DMA access
C1: Identifying DMA access

Each DMA access is implemented as a regular variable access,
without calling specific interface functions

DMA creation and DMA access often have no explicit execution
order from static code observation, namely in a broken control flow

C2: Checking the safety of DMA access

Accuracy and efficiency of analyzing large OS code

C3: Dropping false positives

Validating code-path feasibility is difficult and expensive

Key techniques
C1: Identifying DMA access

Field-based alias analysis to effectively identify DMA access

C2: Checking the safety of DMA accesses

Flow-sensitive and pattern-based analysis to accurately and
efficiently check the safety of DMA access

C3: Dropping false positives

Efficient code-path validation method to drop false positives and
reduce the overhead of using a SMT solver

DMA-access identification
S1: Handling DMA-buffer creation

|dentify DMA-creation function calls

Collect the information about their return variables, including variable
names, data structure types and fields

S2: Identifying DMA access
Check each variable access in the driver

If variable name or data structure information matches the collected
information, the access is identified to be a DMA access

Alias analysis is useful to handling variable assignments
Intra-procedural, flow-insensitive and Andersen-style alias analysis

DMA-access safety checking

Checking streaming DMA access
Four patterns about DMA operations
Forward and backward flow-sensitive analysis

dma_addr = dma_map_single(buf) // Start ||dma_sync_single_for_device(dma_addr) // Start
Forward flow-sensitive analysis Forward flow-sensitive analysis
Read or write the content of buf // Report!||Read or write the content of buf // Report!

Pattern 1 Pattern 2

Read or write the content of buf // Report!| |Read or write the content of buf // Report!

Backward flow-sensitive analysis Backward flow-sensitive analysis
dma_unmap_single(dma_addr) // Start dma_sync_single_for_cpu(dma_addr) // Start

Pattern 3 Pattern 4

DMA-access safety checking

Checking coherent DMA access
Flow-sensitive taint analysis to identify DMA-affected operations
Three patterns about security problems

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

FILE: linux-5.6/drivers/net/wireless/intel/iow2x00/ipw2100.c

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c

1693. static u32 iwl_pcie_int_cause_ict(...) {

} while (read); // Possible bug

1725.

// Coherent DMA allocation
trans_pcie->ict_tbl = dma_alloc_coherent(...);

2058.

L4

2071.}

2661. static void __ipw2100_rx_process(...) {

// MASK is 0xOf
2701. frame_type = sq->drv[i].status_fields & MASK;
// .l.’ossible bug
2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)
2765,

// Coherent DMA allocation
4325. qg->drv = pci_zalloc_consistent(...);

931. static int netsec_process_rx(...) {

948. struct netsec_de *de = dring->vaddr + ...;

.p;i&._len = de->buf_len_info >> 16;

971.

// Possible bug, as xdp.data is a pointer
xdp.data_end = xdp.data + pkt_len;

1003.

1241. static int netsec_alloc_dring(...) {
// Coherent DMA allocation
1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

Pattern 1: Infinite loop polling

Pattern 2: Buffer overflow

Pattern 3: Invalid pointer access

Code-Path Validation

S1: Getting path constraints
Translate each instruction in the code path to an Z3 constraint
Example: “a=b+c" -=>"a==b+"

S2: Adding additional constraints
|ldentify and add constraints that can trigger security bugs
Example: For buffer overflow, add “frame > MAX_SIZE” when frame
IS an index to access an array whose bound is MAX_SIZE

S3: Solving all constraints

If the constraints cannot be satisfied, the possible unsafe DMA
access is identified as a false positive and is dropped

Approach
SADA (Static Analysis of DMA Access)

Integrate the three key techniques
Statically detect unsafe DMA access in device drivers
LLVM-based static analysis

Linux Driver
Source Files

SADA
v v v v /
Clang Information Access Access Path
Compiler Collector r Detector r Checker r Validator
v v A 4 A 4 \ 4

() DMA-Buffer Possible Unsafe (Final Unsafe)
LLUNMIBascass Information RIA Accesses DMA Accesses DMA Accesses

Evaluation

Driver code in Linux 5.6
Use a regular PC with eight CPUs and 16GB memory
Use Clang-9.0
Make allyesconfig of x86-64
Check the kernel directories drivers/ and sound/

Evaluation

Detection of unsafe DMA accesses

Description Linux 5.6
) Source files (.c) 14.6K
Code handlin
J Source code lines 8.8M
DMA Encountered DMA-buffer creation 2,781
-access , ,
identification DMA buffers in data structure fields 2,074
|ldentified DMA accesses 28,732
DA Unsafe DMA accesses (real / all) 284 | 321
-access :
checking Inconsistent DMA accesses (real / all) 1237131
Unchecked DMA accesses (real / all) 161/190
DMA-access identification 62m
Time usage DMA-access checking 208m
Total time 270m

Evaluation

123 inconsistent DMA accesses
Direct access after DMA creation: 108
Incorrect DMA synchronization: 15

161 unchecked DMA accesses
Buffer overflow: 121

Invalid-pointer access: 36
Infinite loop polling: 4

105 of the 284 real unsafe DMA accesses have been
confirmed by driver developers

Limitations

False positives
The current alias analyses is simple and not accurate enough
The path validation can make mistakes in complex cases

False negatives
Lack the analysis of function-pointer calls
Neglect other patterns of unsafe DMA accesses

Conclusion

DMA is popular in modern device drivers but can introduce
security risks in practice

SADA: static detection of unsafe DMA accesses
Field-based alias analysis to effectively identify DMA accesses

Flow-sensitive and pattern-based analysis to accurately and
efficiently check the safety of DMA accesses

Efficient code-path validation method to drop false positives and
reduce the overhead of using SMT solvers

Find 284 real unsafe DMA accesses in Linux 5.6

Thanks for listening!

Jia-Ju Bai
E-mail: baijiaju@tsinghua.edu.cn

‘ https://baijiaju.github.io/
®

https://baijiaju.github.io/
https://baijiaju.github.io/

