
Static Detection of Unsafe DMA Accesses

in Device Drivers

In USENIX Security 2021

Jia-Ju Bai1, Tuo Li1, Kangjie Lu2, Shi-Min Hu1

1Tsinghua University, 2University of Minnesota

https://baijiaju.github.io/

https://baijiaju.github.io/
https://baijiaju.github.io/

Background

 DMA is widely used in modern device drivers

 Direct data transfer between hardware registers and system memory

 Perform data transfer without CPU involvement

2

DMA access

 Basic steps

 S1: Create a DMA buffer

 S2: Perform a DMA access like a regular variable access

 Read a DMA buffer: data = dma_buf->data;

 Write a DMA buffer: dma_buf->data = data;

 S3: Delete a DMA buffer

3

DMA type

 Streaming DMA buffer

 It is asynchronously available to both the CPU and hardware device

 The driver needs to explicitly synchronize the data between

hardware registers and CPU cache

 Each DMA access is relatively cheap

 Coherent DMA buffer

 It is simultaneously available to both the CPU and hardware device

 The driver does not need to explicitly synchronize the data between

hardware registers and CPU cache

 Each DMA access is relatively expensive

4

Security risks of DMA access

 Streaming DMA access

 After a streaming DMA buffer is created, the driver should not access

the content of this buffer, until this buffer is unmapped

 The driver is allowed to access buffer content during synchronization

with hardware registers and CPU cache

 Security risks of violations

 Inconsistent DMA access

 Data inconsistency between hardware registers and CPU cache

5

Example

 Inconsistent DMA access in the Linux rtl8192ce driver

 Introduced in Linux 4.4 (released in Jan. 2016)

 Fixed in Oct. 2020 by us

6

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c

522. void rtl92ce_tx_fill_cmddesc(...) {

 // Streaming DMA mapping
531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Security risks of DMA access

 Coherent DMA access

 The hardware device can be untrusted, and thus can write bad data

into coherent DMA buffers, which are used by the driver

 The driver should perform correct validation of the data from DMA

buffers before using the data

 Security risks of violations

 Unchecked DMA access

 Security bugs, such as buffer overflow and invalid-pointer access

7

Example

 Unchecked DMA access in the Linux vmxnet3 driver

 Introduced in Linux 3.16 (released in Aug. 2014)

 Fixed in Jun. 2020 by us

8

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation
3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }

Unsafe DMA access

 Basic rules

9

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Challenges of detecting unsafe DMA access

 C1: Identifying DMA access

 Each DMA access is implemented as a regular variable access,

without calling specific interface functions

 DMA creation and DMA access often have no explicit execution

order from static code observation, namely in a broken control flow

 C2: Checking the safety of DMA access

 Accuracy and efficiency of analyzing large OS code

 C3: Dropping false positives

 Validating code-path feasibility is difficult and expensive

10

Key techniques

 C1: Identifying DMA access

 Field-based alias analysis to effectively identify DMA access

 C2: Checking the safety of DMA accesses

 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA access

 C3: Dropping false positives

 Efficient code-path validation method to drop false positives and

reduce the overhead of using a SMT solver

11

DMA-access identification

 S1: Handling DMA-buffer creation

 Identify DMA-creation function calls

 Collect the information about their return variables, including variable

names, data structure types and fields

 S2: Identifying DMA access

 Check each variable access in the driver

 If variable name or data structure information matches the collected

information, the access is identified to be a DMA access

 Alias analysis is useful to handling variable assignments

 Intra-procedural, flow-insensitive and Andersen-style alias analysis

12

DMA-access safety checking

 Checking streaming DMA access

 Four patterns about DMA operations

 Forward and backward flow-sensitive analysis

13

Pattern 1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

Pattern 2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

Pattern 3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start

Backward flow-sensitive analysis

Pattern 4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start

Backward flow-sensitive analysis

DMA-access safety checking

 Checking coherent DMA access

 Flow-sensitive taint analysis to identify DMA-affected operations

 Three patterns about security problems

14

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible bug

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

Pattern 1: Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c

2661. static void __ipw2100_rx_process(...) {

 // MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & MASK;

 // Possible bug
2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

Pattern 2: Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c

 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + ...;

 971. pkt_len = de->buf_len_info >> 16;

 // Possible bug, as xdp.data is a pointer
1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation
1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

Pattern 3: Invalid pointer access

Code-Path Validation

 S1: Getting path constraints

 Translate each instruction in the code path to an Z3 constraint

 Example: “a = b + c” -> “a == b + c”

 S2: Adding additional constraints

 Identify and add constraints that can trigger security bugs

 Example: For buffer overflow, add “frame > MAX_SIZE” when frame
is an index to access an array whose bound is MAX_SIZE

 S3: Solving all constraints

 If the constraints cannot be satisfied, the possible unsafe DMA

access is identified as a false positive and is dropped

15

Approach

 SADA (Static Analysis of DMA Access)

 Integrate the three key techniques

 Statically detect unsafe DMA access in device drivers

 LLVM-based static analysis

16

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode
DMA-Buffer
Information

DMA Accesses
Possible Unsafe
DMA Accesses

Final Unsafe
DMA Accesses

Evaluation

 Driver code in Linux 5.6

 Use a regular PC with eight CPUs and 16GB memory

 Use Clang-9.0

 Make allyesconfig of x86-64

 Check the kernel directories drivers/ and sound/

17

Evaluation

 Detection of unsafe DMA accesses

18

Description Linux 5.6

Code handling
Source files (.c) 14.6K

Source code lines 8.8M

DMA-access

identification

Encountered DMA-buffer creation 2,781

DMA buffers in data structure fields 2,074

Identified DMA accesses 28,732

DMA-access

checking

Unsafe DMA accesses (real / all) 284 / 321

Inconsistent DMA accesses (real / all) 123 / 131

Unchecked DMA accesses (real / all) 161 / 190

Time usage

DMA-access identification 62m

DMA-access checking 208m

Total time 270m

Evaluation

 123 inconsistent DMA accesses

 Direct access after DMA creation: 108

 Incorrect DMA synchronization: 15

 161 unchecked DMA accesses

 Buffer overflow: 121

 Invalid-pointer access: 36

 Infinite loop polling: 4

 105 of the 284 real unsafe DMA accesses have been

confirmed by driver developers

19

Limitations

 False positives

 The current alias analyses is simple and not accurate enough

 The path validation can make mistakes in complex cases

 ……

 False negatives

 Lack the analysis of function-pointer calls

 Neglect other patterns of unsafe DMA accesses

 ……

20

Conclusion

 DMA is popular in modern device drivers but can introduce

security risks in practice

 SADA: static detection of unsafe DMA accesses

 Field-based alias analysis to effectively identify DMA accesses

 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA accesses

 Efficient code-path validation method to drop false positives and

reduce the overhead of using SMT solvers

 Find 284 real unsafe DMA accesses in Linux 5.6

21

Thanks for listening!

Jia-Ju Bai

E-mail: baijiaju@tsinghua.edu.cn

https://baijiaju.github.io/

https://baijiaju.github.io/
https://baijiaju.github.io/

