
Static Detection of Unsafe DMA Accesses

in Device Drivers

In USENIX Security 2021

Jia-Ju Bai1, Tuo Li1, Kangjie Lu2, Shi-Min Hu1

1Tsinghua University, 2University of Minnesota

https://baijiaju.github.io/

https://baijiaju.github.io/
https://baijiaju.github.io/

Background

 DMA is widely used in modern device drivers

 Direct data transfer between hardware registers and system memory

 Perform data transfer without CPU involvement

2

DMA access

 Basic steps

 S1: Create a DMA buffer

 S2: Perform a DMA access like a regular variable access

 Read a DMA buffer: data = dma_buf->data;

 Write a DMA buffer: dma_buf->data = data;

 S3: Delete a DMA buffer

3

DMA type

 Streaming DMA buffer

 It is asynchronously available to both the CPU and hardware device

 The driver needs to explicitly synchronize the data between

hardware registers and CPU cache

 Each DMA access is relatively cheap

 Coherent DMA buffer

 It is simultaneously available to both the CPU and hardware device

 The driver does not need to explicitly synchronize the data between

hardware registers and CPU cache

 Each DMA access is relatively expensive

4

Security risks of DMA access

 Streaming DMA access

 After a streaming DMA buffer is created, the driver should not access

the content of this buffer, until this buffer is unmapped

 The driver is allowed to access buffer content during synchronization

with hardware registers and CPU cache

 Security risks of violations

 Inconsistent DMA access

 Data inconsistency between hardware registers and CPU cache

5

Example

 Inconsistent DMA access in the Linux rtl8192ce driver

 Introduced in Linux 4.4 (released in Jan. 2016)

 Fixed in Oct. 2020 by us

6

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c

522. void rtl92ce_tx_fill_cmddesc(...) {

 // Streaming DMA mapping
531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Security risks of DMA access

 Coherent DMA access

 The hardware device can be untrusted, and thus can write bad data

into coherent DMA buffers, which are used by the driver

 The driver should perform correct validation of the data from DMA

buffers before using the data

 Security risks of violations

 Unchecked DMA access

 Security bugs, such as buffer overflow and invalid-pointer access

7

Example

 Unchecked DMA access in the Linux vmxnet3 driver

 Introduced in Linux 3.16 (released in Aug. 2014)

 Fixed in Jun. 2020 by us

8

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation
3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }

Unsafe DMA access

 Basic rules

9

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Challenges of detecting unsafe DMA access

 C1: Identifying DMA access

 Each DMA access is implemented as a regular variable access,

without calling specific interface functions

 DMA creation and DMA access often have no explicit execution

order from static code observation, namely in a broken control flow

 C2: Checking the safety of DMA access

 Accuracy and efficiency of analyzing large OS code

 C3: Dropping false positives

 Validating code-path feasibility is difficult and expensive

10

Key techniques

 C1: Identifying DMA access

 Field-based alias analysis to effectively identify DMA access

 C2: Checking the safety of DMA accesses

 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA access

 C3: Dropping false positives

 Efficient code-path validation method to drop false positives and

reduce the overhead of using a SMT solver

11

DMA-access identification

 S1: Handling DMA-buffer creation

 Identify DMA-creation function calls

 Collect the information about their return variables, including variable

names, data structure types and fields

 S2: Identifying DMA access

 Check each variable access in the driver

 If variable name or data structure information matches the collected

information, the access is identified to be a DMA access

 Alias analysis is useful to handling variable assignments

 Intra-procedural, flow-insensitive and Andersen-style alias analysis

12

DMA-access safety checking

 Checking streaming DMA access

 Four patterns about DMA operations

 Forward and backward flow-sensitive analysis

13

Pattern 1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

Pattern 2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!

Forward flow-sensitive analysis

Pattern 3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start

Backward flow-sensitive analysis

Pattern 4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start

Backward flow-sensitive analysis

DMA-access safety checking

 Checking coherent DMA access

 Flow-sensitive taint analysis to identify DMA-affected operations

 Three patterns about security problems

14

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible bug

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

Pattern 1: Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c

2661. static void __ipw2100_rx_process(...) {

 // MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & MASK;

 // Possible bug
2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

Pattern 2: Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c

 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + ...;

 971. pkt_len = de->buf_len_info >> 16;

 // Possible bug, as xdp.data is a pointer
1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation
1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

Pattern 3: Invalid pointer access

Code-Path Validation

 S1: Getting path constraints

 Translate each instruction in the code path to an Z3 constraint

 Example: “a = b + c” -> “a == b + c”

 S2: Adding additional constraints

 Identify and add constraints that can trigger security bugs

 Example: For buffer overflow, add “frame > MAX_SIZE” when frame
is an index to access an array whose bound is MAX_SIZE

 S3: Solving all constraints

 If the constraints cannot be satisfied, the possible unsafe DMA

access is identified as a false positive and is dropped

15

Approach

 SADA (Static Analysis of DMA Access)

 Integrate the three key techniques

 Statically detect unsafe DMA access in device drivers

 LLVM-based static analysis

16

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode
DMA-Buffer
Information

DMA Accesses
Possible Unsafe
DMA Accesses

Final Unsafe
DMA Accesses

Evaluation

 Driver code in Linux 5.6

 Use a regular PC with eight CPUs and 16GB memory

 Use Clang-9.0

 Make allyesconfig of x86-64

 Check the kernel directories drivers/ and sound/

17

Evaluation

 Detection of unsafe DMA accesses

18

Description Linux 5.6

Code handling
Source files (.c) 14.6K

Source code lines 8.8M

DMA-access

identification

Encountered DMA-buffer creation 2,781

DMA buffers in data structure fields 2,074

Identified DMA accesses 28,732

DMA-access

checking

Unsafe DMA accesses (real / all) 284 / 321

Inconsistent DMA accesses (real / all) 123 / 131

Unchecked DMA accesses (real / all) 161 / 190

Time usage

DMA-access identification 62m

DMA-access checking 208m

Total time 270m

Evaluation

 123 inconsistent DMA accesses

 Direct access after DMA creation: 108

 Incorrect DMA synchronization: 15

 161 unchecked DMA accesses

 Buffer overflow: 121

 Invalid-pointer access: 36

 Infinite loop polling: 4

 105 of the 284 real unsafe DMA accesses have been

confirmed by driver developers

19

Limitations

 False positives

 The current alias analyses is simple and not accurate enough

 The path validation can make mistakes in complex cases

 ……

 False negatives

 Lack the analysis of function-pointer calls

 Neglect other patterns of unsafe DMA accesses

 ……

20

Conclusion

 DMA is popular in modern device drivers but can introduce

security risks in practice

 SADA: static detection of unsafe DMA accesses

 Field-based alias analysis to effectively identify DMA accesses

 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA accesses

 Efficient code-path validation method to drop false positives and

reduce the overhead of using SMT solvers

 Find 284 real unsafe DMA accesses in Linux 5.6

21

Thanks for listening!

Jia-Ju Bai

E-mail: baijiaju@tsinghua.edu.cn

https://baijiaju.github.io/

https://baijiaju.github.io/
https://baijiaju.github.io/

